半导体器件及其制造方法

文档序号:6851082阅读:115来源:国知局
专利名称:半导体器件及其制造方法
技术领域
本发明涉及半导体元件的封装技术,尤其涉及通过利用树脂密封半导体元件而封装的半导体器件、及其制造方法。
背景技术
近年来,为了减小半导体元件中由布线之间的寄生电容引起的信号延时以及元件中的漏电流,已经使用介电常数为3或更低的低介电层作为半导体元件的多层布线的层间绝缘体。为了实现2或更低的介电常数,在介电层中形成大约0.1nm到100nm的微小气孔,从而获得包括固体部分和介电常数较小的空气的多孔材料。这样的低介电膜具有低材料强度,并且由于其中含有微小气孔,所以非常脆弱易损。
另一方面,半导体元件是通过磨石从晶片上机械切割下来、安装在玻璃环氧衬底或者由铁或铜合金制成的引线框上、并用环氧或硅基树脂密封,从而生产出半导体封装。此时,由于半导体元件的外缘部分通过磨石切割,所以元件的外缘端部变得陡直而基本为直角,并且,元件的多层绝缘层也暴露在外面。半导体元件的陡直的侧表面表明是解理面,在所述解理面上纯硅的晶体取向一致,所以它与密封树脂的粘合强度较低(例如,日本专利申请公开2003-197564)。
形成半导体封装时,由于密封树脂、衬底和半导体元件之间的热膨胀系数的差异,会有应力作用在半导体元件的上表面、侧表面和下表面上。在半导体封装结构中,应力作用从中心向外缘增大,特别是,高应力作用在半导体元件的外缘部分,如元件的外缘端部和侧表面上。由于所述应力,存在这样的问题,即,在低介电膜中、或者在结合低介电膜的半导体元件的表面上的多层布线膜中的多层布线层的界面上,会发生剥离现象。半导体元件的表面越靠近其外缘端部,热应力越大,如果多层绝缘膜发生了即使是轻微的剥离,那么层间的剥离也会从该部分发展。
如上所述,半导体元件的侧表面和靠近半导体元件切割面的部分不能实现与密封树脂的高强度粘合。因此,在具有高热应力的半导体元件的侧表面上的密封树脂容易剥离,并且,靠近半导体元件的外缘端部的、包括多层布线的表面的应力急剧增加,从而加快了易损的低介电层的剥离,这是另一个问题。
如果半导体封装是按照常规方法,通过密封包括低介电常数的易损的层间绝缘膜的半导体元件构成,由于作用在半导体元件外缘部分上的应力,在具有低介电常数的层间绝缘膜中发生剥离,从而降低元件的可靠性,这又是另一个问题。

发明内容
根据本发明的一个方面,提供了一种半导体器件,包括半导体元件,其中在半导体衬底的表面上形成有包括绝缘膜的多个膜层构成的层叠膜,并且从半导体衬底的表面上去除层叠膜的部分,从而在该部分暴露出半导体衬底;安装衬底,在其上安装半导体元件;以及树脂层,其使用树脂密封半导体元件的至少一个表面。
根据本发明的另一方面,提供了一种半导体器件的制造方法,包括对半导体元件进行反应离子蚀刻,在所述元件中,在半导体衬底表面上形成由包括绝缘膜的多个膜层构成的层叠膜,并从半导体衬底的表面上去除层叠膜的部分,从而在所述部分暴露出半导体衬底;
将半导体元件安装在安装衬底上;以及使用树脂密封半导体元件的至少一个表面。
根据本发明的又一个方面,提供了一种半导体器件的制造方法,包括对半导体元件应用激光束,在所述元件中,在半导体衬底表面上形成由包括绝缘膜的多个膜层构成的层叠膜,并从半导体衬底的表面上去除层叠膜的部分,从而在所述部分暴露出半导体衬底;将半导体元件安装在安装衬底上;以及使用树脂密封半导体元件的至少一个表面。


图1是示出根据本发明第一实施例的半导体器件的示意结构的截面图;图2是示出用于图1所示半导体器件中的半导体元件的外缘结构的放大截面图;图3是示出常规半导体元件的示意结构的截面图;图4是用于说明第一实施例的曲线图,其中绘出了图3所示的常规半导体元件中作用在层叠膜上的最大主应力与到外缘端部的距离之间的关系;图5是用于说明第一实施例的曲线图,其中绘出了图1所示的半导体元件中作用在层叠膜上的最大主应力与到外缘端部的距离之间的关系;图6是用于说明第二实施例的曲线图,其中绘出了图7所示的半导体元件中作用在层叠膜上的最大主应力与到外缘端部的距离之间的关系;图7是示出用于本发明第二实施例中的半导体元件的外缘结构的放大截面图;图8是示出根据本发明第三实施例的经过激光处理的半导体元件的外缘结构的截面图;图9是图8所示的半导体元件的外缘结构在经过树脂密封后的截面图;图10是示出根据本发明第四实施例的经过激光处理的半导体元件的外缘结构的截面图;图11是图10所示的半导体元件的外缘结构在经过树脂密封后的截面图;图12是根据本发明第五实施例的经过激光处理的半导体元件的外缘结构的截面图;图13是图12所示的半导体元件的外缘结构在去除表面保护膜并经过树脂密封后的截面图;图14是示出根据本发明第六实施例的经过激光处理的半导体元件的外缘结构的截面图;图15是图14所示的半导体元件的外缘结构在去除表面保护膜并经过树脂密封后的截面图;图16是用于说明根据本发明的实施例的一种修改的截面图,其中半导体元件被设置成E-BGA型安装结构;图17是用于说明根据本发明的实施例的另一种修改的截面图,其中半导体元件被设置成FC-BGA型安装结构;以及图18是用于说明根据本发明的实施例的又一种修改的截面图,其中半导体元件被设置成T-BGA型安装结构。
具体实施例方式
下文中,将结合附图描述本发明的实施例。
(第一实施例)图1是示出根据本发明第一实施例的半导体器件的示意结构的截面图。
半导体芯片(半导体元件)12通过粘合剂13被安装在安装衬底11上,半导体元件12的电极焊盘(未示出)通过接线14连接安装衬底11上的布线(未示出)。在安装衬底11的底面上设置有焊球15。使用环氧或硅基树脂16密封半导体元件12。
尽管上述封装结构,即P-BGA的基本结构,与常规的结构相同,但是本实施例的半导体元件12的外缘结构不同于常规的封装,如下所述。
图2是示出本实施例的半导体元件12的外缘结构的放大截面图。为了简化对图2的说明,省略了粘合剂13和焊球15。
在半导体元件12中,在半导体衬底21上形成各种层间绝缘膜22,并在绝缘膜22之间形成布线层23。其中至少一个绝缘膜22是介电常数为2或更低的低介电膜。
将半导体元件12的层叠膜24(22、23)形成为晶片状态,并最后切割所述晶片形成多个小块的半导体芯片。根据本实施例,在切割晶片以从晶片上切下半导体元件之前或之后,通过利用非接触式高能处理,如反应离子蚀刻(RIE)、聚焦离子束蚀刻(FIB)和激光束,去除了在切割线上形成的包括低介电层的层叠膜24,从而暴露出硅晶片或芯片的表面。图2中的标号25表示层叠膜24的去除部分。
对于这样的结构,半导体元件12的外缘部分被形成为台阶状,从而可以在元件的外缘部分形成硅衬底的暴露表面。硅表面与环氧基或硅基密封树脂16之间具有极高的粘合性,因此树脂16不容易从硅上剥离。同时,可以获得这样的区域,其中确保不存在导致剥离开始发生的易损低介电层,并且,由粘合在硅表面上的密封树脂16产生作用在半导体元件外缘部分处的层叠膜24上的应力,从而可以降低易损层叠膜的端部上的应力,降低的量与层叠膜24的侧表面到元件内侧的距离相对应。
通过将距离半导体元件端部的较大宽度设置为去除层叠膜24的区域,可以降低作用在低介电层上的剥离应力。尽管当增大去除的层叠膜24的宽度时可以期望获得更好的效果,但是随着宽度的增大晶片的产率会下降。因此,当去除层叠膜24时,有效的是,去除被施加有高热应力的外缘部分处的层叠膜24。根据本发明人的实验发现,有效的是,去除的层叠膜24的宽度为从半导体元件的外缘端部到300μm。更优选,所述宽度为从半导体元件的外缘端部到5至10μm。
为了比较,图3示出了常规的元件封装的实例。半导体元件12的外缘部分被垂直切割,并且硅衬底21除了侧表面以外没有其它表面暴露,因此衬底硅和树脂层16之间的接触面积较小,不能获得高粘合强度。
图4是用于说明第一实施例的曲线图,其中绘出了图3所示的常规半导体元件中作用在层叠膜上的最大主应力与到外缘端部的距离之间的关系;图5是用于说明第一实施例的曲线图,其中绘出了图1所示半导体元件中作用在层叠膜上的最大主应力与到外缘端部的距离之间的关系。如图4所示,根据图3所示的常规结构,元件的外缘部分附近的应力非常大,这导致了膜的剥离。相反,如图5所示,根据图1所示的实施例的结构,由于去除了元件外缘部分的层叠膜,因而作用在层叠膜上的应力非常小。由此也可以明显看出,本实施例已经消除了层叠膜的外缘部分发生膜剥离的可能性,从而可以改善元件的可靠性。
如果使用RIE去除半导体元件12上的层叠膜24,那么包括层叠膜24和硅部分的侧壁表面可以得到的表面粗糙度为Rmax=1μm或更小。此外,同样是在层叠膜24的外缘部分,不会发生膜剥离。与此相反,在如常规地使用磨石的切削处理(blade processing)中,包括层叠膜24的侧壁表面可以得到的表面粗糙度Rmax为约10至100μm,硅部分可以得到的表面粗糙度Rmax为约5μm,在层叠膜24的外缘部分会发生膜剥离。
基于以上事实,可以认识到RIE的有效性。也就是说,上述本实施例的效果是通过进行RIE去除层叠膜而获得的,而如果通过切削处理去除元件外缘部分的层叠膜24,则不能得到上述效果。此外,使用FIB也可以期望得到与使用RIE一样的效果。较小的表面粗糙度意味着降低了元件面积因为粗糙度成为损坏区而浪费的可能生,从而提高元件的产率。
例如,通过使用二氧化碳气体激光器或YAG激光器去除半导体元件12上的层叠膜24,暴露出硅衬底,同时硅表面会被氧化,从而在元件的外缘部分形成厚度为1μm或更薄的二氧化硅膜。通过利用主要由例如注模、液体环氧的环氧树脂或硅树脂构成的密封树脂密封,由于粘合对象是二氧化硅膜,所以可以提高粘合强度。也就是说,通过激光处理、并在衬底21的暴露表面上形成二氧化硅膜,可以提高其与树脂16的粘合能力。
此外,通过利用激光处理层叠膜24,可以在衬底表面上形成普通机械研磨所不能获得的优良的粗糙度,从而进一步提高了作为粘合对象的半导体元件12的外缘部分与密封树脂16之间的粘合强度。通过提高元件外缘部分与密封树脂之间的粘合强度,可以减小对易损的膜的剥离应力。由于这些效果,可以切实地防止封装中易损的多层低介电膜的剥离。
此外,经过机械处理的硅与密封树脂之间的抗剪粘合强度平均为32Mpa,并且剥离界面为硅和树脂之间的界面。与此相反,当利用激光处理硅表面而生成的二氧化硅膜与树脂粘合时,即使尝试将其分离,但是在二氧化硅膜和树脂之间的界面处未发生剥离,从而毁坏了块硅。也就是说,二氧化硅膜和树脂之间的粘合强度达到了37Mpa或更高,超过了使块硅毁坏的粘合强度。
根据本实施例,对于这样的半导体元件12,其中在硅衬底21的表面上形成由包括绝缘膜的多个膜层构成的层叠膜24,通过RIE、FIB或激光从衬底外缘去除层叠膜24,从而可以将硅衬底暴露在元件的外缘。这样,当利用树脂密封元件的表面时,树脂16和衬底硅之间的粘合很强。结果,可以提高在元件外缘上的树脂16的粘合。因此,在包括例如低介电常数的易损层间绝缘膜的半导体元件12中,可以防止由作用在元件外缘部分的应力引起的层间分离,从而提高可靠性。
特别是,通过使用二氧化碳气体激光器或YAG激光器去除元件外缘上的层叠膜24时,可以在暴露的衬底硅的表面上形成二氧化硅膜,从而可以强化与树脂的粘合,而进一步提高可靠性。
(第二实施例)图7是示出用于本发明第二实施例中的半导体元件的外缘结构的放大截面图。相同的标号表示与图2相同的部件,并省略了详细的描述。
本实施例与上述第一实施例的不同之处在于,沟槽25不是形成于包括半导体元件12的外缘端部的外缘部分中,而是形成于半导体元件12的外缘端部的内侧,并沿着半导体元件12的外缘端部。
对于加工沟槽25的方法,可以使用上述RIE、FIB或激光束。沟槽25的形成位置为例如距离半导体元件的外缘端部10至300μm的内侧,以及沟槽的宽度为例如5至295μm。
这样,通过在半导体元件的外缘端部的内侧形成沟槽25,导致剥离开始发生的层叠膜的外缘部分与元件外缘端部的高应力范围分开,同时,沟槽25中的树脂16如上所述具有高粘合强度,从而树脂16弛豫了层叠膜的外缘端部的应力。本实施例中作用在层叠膜24上的应力在元件的外缘部分仍然较大,如图6所示,然而,由于在半导体元件的外缘端部的内侧形成沟槽25,可以极大降低作用在比沟槽25距离外缘端部更靠内侧的那部分层叠膜24上的应力。
因此,根据本实施例,还可以防止由作用在半导体元件12的外缘部分上的应力引起的层间分离,并且可以获得与第一实施例相同的效果。另外,类似于第一实施例,通过利用激光形成沟槽25可以得到进一步的效果。
(第三实施例)图8示出了根据本发明第三实施例的经过激光处理的半导体元件的外缘结构的截面。
根据本实施例,当利用激光在包括半导体元件12的外缘端部的外缘部分上去除包括低介电膜的层叠膜24,从而形成沟槽时,不但去除了包括低介电膜的层叠膜24,还从硅衬底的上表面去除了深度为1μm或更深的硅衬底,从而形成离硅衬底的上表面为1μm或更深的硅衬底21的暴露表面。由于硅衬底21的暴露底表面离其上表面为1μm或更深,密封树脂不仅粘合硅衬底21的暴露底表面,还粘合硅衬底21的暴露侧表面,从而密封树脂与硅衬底21之间的有效暴露面积增大。因此,相关于密封树脂的粘合强度增大了,从而防止了低介电膜的剥离和包括低介电膜的层叠膜24的剥离。此外,硅衬底21的暴露底表面的粗糙度,即硅衬底21的暴露底表面的深度不均匀度为3μm或更大。由此,这样就在硅衬底21的暴露底表面上形成了3μm或更大的不均匀度,从而密封树脂以足以发挥粘合效果的量填充入凹陷部分中。因此,硅衬底21与密封树脂之间的粘合强度增强,从而防止低介电膜的剥离和包括低介电膜的层叠膜24的剥离。对于这些利用激光的处理,例如,可以使用YAG激光器的三次谐波(355nm)。激光输出条件,例如激光输出功率和激光的输出脉冲数,由将要去除的目标层适当地确定。对将要去除的包括低介电膜的层叠膜24和硅衬底的范围的确定,考虑半导体晶片的有效使用,即从一块半导体晶片上切出最多半导体芯片;以及考虑在每个半导体芯片中的最小暴露范围,所述范围确保半导体元件与密封树脂之间的希望粘合强度。该去除范围是包括半导体元件12的外缘端部地从外缘端部到内侧300μm处。优选的是,该范围是包括半导体元件12的外缘端部地从外缘端部到内侧5至10μm处。
此外,优选的是,当在半导体芯片的外缘部分上去除包括低介电膜的层叠膜24和硅衬底时,激光输出不同于在去除硅衬底时的激光输出。也就是说,由于包括低介电膜的层叠膜24的机械强度不高,所以使用低输出激光去除该膜,即,使用输出为1W或更低的激光,以最小化施加到包括低介电膜的层叠膜24的暴露表面上的损坏。另一方面,由于硅衬底具有较高的机械强度,所以即使使用高输出激光去除衬底,而损坏仍较小,例如,使用输出为1W或更高的激光,并可以在短时间内去除预定的深度的硅衬底。通过适当地改变输出条件,如激光输出功率和激光输出脉冲数,提高了激光处理的效率。
图9是图8所示半导体元件的外缘结构在经过树脂16的密封后的截面图。除了提供了树脂16,该结构基本上与图8所示的结构相同,因而相同的标号表示与图8相同的部件,并省略对其的详细描述。
(第四实施例)图10是示出根据本发明第四实施例的经过激光处理的半导体元件的外缘结构的截面图。
本实施例与上述第三实施例的不同之处在于,沟槽25不是形成于包括半导体元件12的外缘端部的外缘部分中,而是形成于半导体元件12的外缘端部的内侧,并沿着半导体元件12的外缘端部。
沟槽25的形成位置为例如距离半导体元件的外缘端部10至300μm的内侧,沟槽的宽度为例如5至295μm。
这样,通过在半导体元件的外缘端部的内侧形成沟槽25,导致剥离开始发生的层叠膜的外缘部分与元件的外缘端部的高应力范围分开,同时,沟槽25中的树脂16如上所述具有高粘合强度,从而树脂16弛豫了层叠膜的外缘端部处的应力。本实施例中作用在层叠膜24上的应力在元件的外缘部分仍然较大,然而,由于在半导体元件的外缘端部的内侧形成了沟槽25,可以极大地降低作用在比沟槽25距离外缘更靠内侧的那部分层叠膜24上的应力。
因此,根据本实施例,还可以防止由作用在半导体元件12的外缘部分的应力引起的层间分离,并可以获得与图8所示的第三实施例相同的效果。另外,类似于第三实施例,通过利用激光形成沟槽25可以获得进一步的效果。
图11是图10所示的半导体元件的外缘结构在经过树脂16的密封后的截面图。除了提供了树脂16,该结构基本上与图10所示的结构相同,因此相同的标号表示与图10相同的部件,并省略对其的详细描述。
(第五实施例)图12是示出根据本发明第五实施例的经过激光处理的半导体元件的外缘结构的截面图。
当利用激光去除在包括半导体元件12的外缘端部的外缘部分上的包括低介电膜的层叠膜24、以及硅衬底,从而暴露出硅衬底21时,包括低介电膜的层叠膜24和硅衬底中的硅成分由于激光的作用而散布。如果散布的硅成分粘合到在硅衬底上形成的图形布线部分中,会在布线之间产生短路,从而造成元件缺陷。因此,为了防止散布的硅成分粘合到在硅衬底上形成的图形布线部分中,提供了表面保护膜(防粘膜)31,从而防止布线图形之间发生短路。为了利用YAG激光器的三次谐波(355nm)来形成沟槽,当通过elepso测量仪利用波长为365nm的光束测量折射率n时,表面保护膜的折射率n大于1.5(n>1.5)。表面保护膜由例如PVA(聚乙烯醇)制成。
由于在包括低介电膜的层叠膜24上提供了表面保护膜,当利用激光在包括半导体元件12外缘端部的外缘部分上去除包括低介电膜的层叠膜24和硅衬底时,散布的硅成分粘合到表面保护膜31上,从而防止了硅成分粘合到图形布线部分中。PVA在激光作用下具有良好的吸收特征,从而其具有较高的发热效率。因此,当应用激光时,包括低介电膜的层叠膜24和硅衬底的温度升高,从而加速了对包括低介电膜的层叠膜24和硅衬底的去除。通常,在沟槽形成后,利用激光一起除去表面保护膜31和散布的硅成分。清水清洗或化学溶液清洗也通常被用于去除表面保护膜31。
此外,如图12所示,当在包括低介电膜的层叠膜24和表面保护膜31之间的下层形成折射率为1.5或更小的绝缘膜32,如折射率为1.49的TEOS、在上层形成折射率大于1.5的绝缘膜33,如折射率为1.5至1.8的聚酰亚胺时,可以加速利用激光在低介电膜中形成沟槽时的处理效率。其原因是,如果上层膜(表面保护膜和折射率大于1.5的绝缘膜)31和33的折射率大于下层膜(折射率为1.5或更小的绝缘膜)32的折射率,不仅上层膜31和33对激光的吸收性能会增强,而且可以期望在利用激光加热包括低介电膜的层叠膜24的热处理方面的进展。此外,另一个原因是,如果上层膜(表面保护膜和折射率大于1.50的绝缘膜)31和33经处理而被去除一部分,那么除掉部分的作用就像一个开口,使在处理下层膜时产生的气体可以有效地向外排出,从而防止层叠膜24被气压损害。同时,如果将折射率大于1.5的绝缘膜33,例如折射率为1.5至1.8的聚酰亚胺形成在包括低介电膜的层叠膜24和表面保护膜31之间,那么不仅有作为表面保护膜的效果,而且如上述,还具有加速对包括低介电膜的层叠膜24的热处理的效果。
图13是图12所示半导体元件的外缘结构在去除表面保护膜31、并经过树脂16的密封后的截面图。除了去除了表面保护膜31并提供了树脂16以外,该结构基本上与图12所示的结构相同,所以相同的标号表示与图12相同的部件,并省略对其的详细描述。
(第六实施例)图14是示出根据本发明第六实施例的经过激光处理的半导体元件的外缘结构的截面图。
本实施例与上述第五实施例不同之处在于,沟槽25不是形成于包括半导体元件12的外缘端部的外缘部分中,而是形成于半导体元件12的外缘端部的内侧,并沿着半导体元件12的外缘端部。因此,相同的标号表示与图12相同的部件,并省略对其的详细描述。
图15是图14所示的半导体元件的外缘结构在去除表面保护膜31、并经过树脂16的密封后的的截面图。除了去除了表面保护膜31并提供了树脂16以外,该结构基本上与图14所示的结构相同,所以相同的标号表示与图14相同的部件,并省略对其的详细描述。
(修改)本发明并不限于上述实施例。尽管在上述实施例中描述了P-BGA封装的例子,但是本发明并不限于这一实例,而是可以应用到如图16-18所示的其它类型的封装中。图16是用于说明根据本发明的实施例的一种修改的截面图,其中将半导体元件设置成E-BGA型安装结构,图17是用于说明根据本发明的实施例的另一种修改的截面图,其中将半导体元件设置成FC-BGA型安装结构,以及图18是用于说明根据本发明的实施例的又一种修改的截面图,其中将半导体元件设置成T-BGA型安装结构。本发明可以应用于其它类型的封装中,例如图16所示的E-BGA封装、图17所示的FC-BGA封装、以及图18所示的T-BGA封装。相同的标号用于表示与图1相同的部件,标号17表示加强板,标号18表示凸起。本发明还可以应用于另外类型的封装,只要半导体元件的表面或者整个半导体元件是使用树脂封装的。
根据实施例,对层叠膜的外缘部分的去除或者对沟槽的处理是在半导体元件的整个外缘上进行的。然而,并不需要在整个外缘进行去除或处理。只要在封装中作用在半导体元件上的高热应力发生的半导体元件的拐角部分进行去除或处理就是有效的。在密封树脂和硅衬底之间具有高热应力的区域中,只需要沿着切割线连续去除至少500μm或更多的层叠膜。
衬底并不总是局限于硅,也可以使用GaAs或者其它半导体衬底。此外,密封树脂并不限于环氧基或硅基树脂,也可以使用其它树脂,只要该树脂与半导体衬底或其氧化物膜之间具有足够强的粘合性。
根据本发明的实施例,去除半导体元件的外缘部分上的层叠膜,以暴露出元件外缘部分上的衬底表面,这样可以用由硅或类似物形成的半导体或者其氧化物膜来构成元件的外缘部分,从而可以增强与密封树脂的粘合强度。因此,即使在用树脂密封半导体元件的表面时有应力作用在元件表面的外缘部分,也不会发生树脂剥离,从而防止了内部绝缘层的剥离,从而可以提高半导体元件的可靠性。
对于本领域的技术人员来说,其它优点和修改将是容易发生的。因此,本发明更广泛的方面并不限于这里所示和描述的特定细节和代表性实施例。因此,在不脱离由所附权利要求书及其等效物所限定的本发明总构思的精神或范围下,可以进行各种修改。
权利要求
1.一种半导体器件,包括半导体元件,其中在半导体衬底的表面上形成有由包括绝缘膜的多个膜层构成的层叠膜,并且所述层叠膜的部分被从所述半导体衬底的所述表面上去除,从而所述半导体衬底在所述部分被暴露出;安装衬底,其上安装有所述半导体元件;以及树脂层,其利用树脂密封所述半导体元件的至少一个表面。
2.如权利要求1所述的半导体器件,其中所述衬底的所述暴露部分是包括其外缘端部的所述衬底的外缘部分的部分。
3.如权利要求1所述的半导体器件,其中所述衬底的所述暴露部分沿所述衬底的所述外缘端部,并位于距离所述外缘端部一定距离的内侧。
4.如权利要求1所述的半导体器件,其中所述层叠膜的暴露表面和通过去除所述层叠膜的所述部分而产生的所述衬底的暴露表面的表面粗糙度为1μm或更小。
5.如权利要求1所述的半导体器件,其中在所述半导体衬底的所述暴露部分上形成有氧化物膜。
6.如权利要求1所述的半导体器件,其中所述层叠膜的所述去除部分的宽度为1至300μm。
7.如权利要求6所述的半导体器件,其中所述层叠膜的所述去除部分的宽度为5至10μm。
8.如权利要求1所述的半导体器件,其中所述衬底的所述暴露部分被从所述衬底的所述表面去除1μm或更深。
9.如权利要求1所述的半导体器件,其中所述衬底的所述暴露部分的表面粗糙度为3μm或更大。
10.如权利要求1所述的半导体器件,其中当通过elepso测量仪利用波长为365nm的光束测量时,折射率大于1.5的膜被提供在所述层叠膜的上方。
11.如权利要求10所述的半导体器件,其中所述折射率大于1.5的膜是保护膜,其用于防止在去除所述层叠膜时散布的半导体成分的粘合。
12.如权利要求11所述的半导体器件,其中当通过elepso测量仪利用波长为365nm的光束测量时,折射率为1.5或更小的绝缘膜被形成于所述保护膜和所述层叠膜之间的下层,折射率大于1.5的绝缘膜被形成于所述保护膜和所述层叠膜之间的上层。
13.一种半导体器件的制造方法,包括对半导体元件进行反应离子蚀刻,以从半导体衬底的表面上去除层叠膜的部分,从而在所述部分暴露出所述半导体衬底,在所述半导体元件中,在所述半导体衬底的所述表面上形成有由包括绝缘膜的多个膜层构成的所述层叠膜;将所述半导体元件安装在安装衬底上;以及使用树脂密封所述半导体元件的至少一个表面。
14.如权利要求13所述的半导体器件的制造方法,其中反应离子蚀刻的条件是,使所述层叠膜的暴露表面和通过去除所述层叠膜的所述部分而产生的所述衬底的暴露表面的表面粗糙度为1μm或更小。
15.一种半导体器件的制造方法,包括对半导体元件应用激光束,以从半导体衬底的表面上去除层叠膜的部分,从而在所述部分暴露出所述半导体衬底,在所述半导体元件中,在所述半导体衬底的所述表面上形成有由包括绝缘膜的多个膜层构成的所述层叠膜;将所述半导体元件安装在安装衬底上;以及利用树脂密封所述半导体元件的至少一个表面。
16.如权利要求15所述的半导体器件的制造方法,其中在所述半导体衬底的所述暴露部分上形成氧化物膜。
17.如权利要求15所述的半导体器件的制造方法,其中应用激光束将所述衬底的所述暴露部分从所述衬底的所述表面去除1μm或更深。
18.如权利要求15所述的半导体器件的制造方法,其中应用激光束使所述衬底的所述暴露部分的表面粗糙度为3μm或更大。
19.如权利要求15所述的半导体器件的制造方法,其中所述层叠膜的所述去除部分的宽度为1至300μm。
20.如权利要求15所述的半导体器件的制造方法,其中所述层叠膜的所述去除部分的宽度为5至10μm。
21.如权利要求17、18、19和20中任一权利要求所述的半导体器件的制造方法,其中使用YAG激光束的三次谐波作为激光束。
22.如权利要求15所述的半导体器件的制造方法,其中当通过elepso测量仪利用波长为365nm的光束测量时,在所述层叠膜上提供折射率大于1.5的膜。
23.如权利要求22所述的半导体器件的制造方法,其中所述折射率大于1.5的膜是保护膜,其用于防止在去除所述层叠膜时散布的半导体成分的粘合。
24.如权利要求23所述的半导体器件的制造方法,其中当通过elepso测量仪利用波长为365nm的光束测量时,在所述保护膜和所述层叠膜之间的下层形成折射率为1.5或更小的绝缘膜,在所述保护膜和所述层叠膜之间的上层形成折射率大于1.5的绝缘膜。
全文摘要
一种半导体器件,其包括半导体元件,在所述半导体元件中,在半导体衬底的表面上形成有由包括绝缘膜的多个膜层构成的层叠膜,并且层叠膜的部分被从半导体衬底的表面上去除,从而在该部分暴露出半导体衬底;安装衬底,在其上安装半导体元件;以及树脂层,其利用树脂密封半导体元件的至少一个表面。
文档编号H01L21/00GK1674223SQ200510069718
公开日2005年9月28日 申请日期2005年3月25日 优先权日2004年3月25日
发明者井本孝志, 田窪知章, 细川隆治, 井守义久, 佐藤隆夫, 黑泽哲也, 桐谷美佳 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1