二次电池的制造方法

文档序号:6874245阅读:153来源:国知局
专利名称:二次电池的制造方法
技术领域
本发明是与电池有关,特别是指一种二次电池的制造方法,可制造出大电流放电特性极佳的二次电池。
背景技术
传统的二次电池有所谓卷绕式,是将一正极、一隔离膜、一负极以及另一隔离膜依序迭置在一起,并卷绕形成一复层卷体,该正极末端设有一导电极,该负极末端亦设有一导电极,将该复层卷体封装于一外壳内,并于该外壳内注入电解液,即完成一二次电池。
传统二次电池于大电流放电的使用状况时,其放电效率不佳,以2.0安培小时(Ah)容量的电池为例,经过实际测试,当该二次电池以15C(30安培)放电时,其放电效率约仅50%,如图6所示,当该二次电池以20C(40安培)放电时,其放电效率甚至趋近于零,如图7所示,因此,如何提升二次电池于大电流放电时的放电效率,已成为业界努力研发的课题。

发明内容
本发明的一目的在于提供一种二次电池的制造方法,可制出大电流放电时放电效率极佳的二次电池。
为达成前揭目的,本发明所提供二次电池的制造方法是包含有以下步骤(a)制备一正极、一负极以及二隔离膜,其中,该正极具有一铝片以及一正极材料膜覆于该铝片的一表面或二表面,且该正极材料膜的宽度小于该铝片的宽度,使该正极形成一裸铝区,该负极具有一铜片以及一负极材料膜覆于该铜片的一表面或二表面,该负极材料膜的宽度大于或等于该正极材料膜的宽度且小于该铜片的宽度,使该负极具有一裸铜区,该隔离膜的宽度不小于该负极材料膜的宽度,且不大于该铝片或该铜片的宽度;(b)将该正极、一该隔离膜、该负极与另一该隔离膜依序迭置在一起并卷绕形成一复层卷体,其中,该正极的正极材料膜是与该负极的负极材料膜重迭,该正极的裸铝区与该负极的裸铜区则分别位于该复层卷体的顶、底端,该二隔离膜则位于该正极的正极材料膜与该负极的负极材料膜的相对位置;(c)于该复层卷体的正极裸铝区以电性连接各层的方式焊接一导电极,并于该复层卷体的负极裸铜区以电性连接各层的方式焊接一导电极;以及(d)封装该复层卷体于一外壳内,并于该外壳中注入电解液,该正极的导电极与该负极的导电极是延伸至该外壳之外。


为了详细说明本发明的特点,兹举以下三较佳实施例并配合图式说明如后,其中图1是本发明第一较佳实施例的示意图(一);图2是本发明第一较佳实施例的示意图(二);图3是本发明第一较佳实施例的示意图(三);图4是本发明第一较佳实施例的示意图(四);图5是本发明第一较佳实施例所制成的电池与传统电池于10C放电时的放电效率比较图;图6是本发明第一较佳实施例所制成的电池与传统电池于15C放电时的放电效率比较图;图7是本发明第一较佳实施例所制成的电池与传统电池于20C放电时的放电效率比较图;图8是本发明第二较佳实施例的正极正视图;图9是本发明第三较佳实施例的正极正视图。
主要组件符号说明10二次电池20正极21裸铝区 22铝片24正极材料膜 26导电极30负极31裸铜区 32铜片34负极材料膜 36导电极40隔离膜 50复层卷体60外壳62电解液70正极72正极材料膜80正极82正极材料膜具体实施方式
本发明第一较佳实施例所提供者是一二次电池10的制造方法,首先,如图1所示,制备一正极20、一负极30以及二隔离膜40,其中,该正极20具有一狭长的铝片22以及一正极材料膜24覆于该铝片22的二表面,该正极材料膜24是一LiCoO2膜,且该正极材料膜24的宽度w1小于该铝片22的宽度w2,使该正极形成一裸铝区21;该负极30具有一狭长的铜片32以及一负极材料膜34覆于该铜片32的二表面,该负极材料膜34是一介相结晶碳(MCMB)膜,该负极材料膜34的宽度w3约等于该正极材料膜24的宽度w1且小于该铜片32的宽度w4,使该负极30具有一裸铜区31,该负极材料膜34的宽度亦可大于该正极材料膜24的宽度;该隔离膜40则由聚乙烯制成,该隔离膜40的宽度w5约等于该负极材料膜34的宽度w3,且不大于该铝片22的宽度w2或该铜片32的宽度w4,该隔离膜40的宽度亦可大于该负极材料膜34的宽度。该正极20、该负极30以及该二隔离膜40的长度则大致相同。
其中,该正极材料可以其它等效材料替代,例如钒、钛、铬、铜、钼、铌、铁、镍、钴或锰的锂化氧化物、锂化硫化物、锂化硒化物、锂化碲化物、锂铁磷氧化物、锂钒磷氧化物或其混合物均可,该负极材料亦可以其它等效材料替代,例如介相结晶碳(MCMB)、气相成长碳纤维(VGCF)、纳米碳管(CNT)、焦炭、碳黑、石墨、乙炔黑、碳纤维、玻璃质碳或其混合物均可,该隔离膜40则可以聚丙烯或聚酯替代。
接着,如图2所示,将该正极20、一该隔离膜40、该负极30与另一该隔离膜40依序迭置在一起并卷绕形成一复层卷体50,其中,该正极20的正极材料膜24是与该负极30的负极材料膜34重迭,该正极20的裸铝区21与该负极30的裸铜区31则分别位于该复层卷体50的顶、底端,该二隔离膜40则位于该正极20的正极材料膜24与该负极30的负极材料膜34的相对位置,将该正极材料膜24与该负极材料膜34隔离。其中,该复层卷体50的各层顺序亦可为一该隔离膜40、该正极20、另一该隔离膜40与该负极30依序迭置,卷绕的后可形成等效结构。
然后,如图3所示,于该复层卷体50的正极20裸铝区21以电性连接各层的方式焊接一导电极26,并于该复层卷体50的负极30裸铜区31以电性连接各层的方式焊接另一导电极36。
最后,如图4所示,封装该复层卷体50于一外壳60内,并于该外壳60中注入电解液62,即完成本发明的二次电池,该正极20的导电极26与该负极30的导电极36是延伸至该外壳60之外。该电解液62中电解质为1.5M的LiPF6,该电解质亦可采用LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiGaCl4、LiNO3、LiC(SO2CF3)3、LiN(SO2CF3)2、LiSCN、LiO3SCF2CF3、LiC6F5SO3、LiO2CCF3、LiSO3F、LiB(C6H5)4、LiCF3SO3、LiB(C2O4)2或其混合物,该电解质的浓度可为1.1~2.0M;该电解液62中的溶剂则为体积百分比30%的乙二醇碳酸酯(ethylene carbonates)、20%的碳酸丙烯酯(propylene carbonates)与50%的乙酸丙酯(Propyl acetate),事实上,该溶剂亦可采用乙二醇碳酸酯(ethylene carbonates)、碳酸丙烯酯(propylene carbonates)、碳酸丁烯酯(butylene carbonates)、碳酸二丙酯(dipropyl carbonates)、酸酐(acid anhydrides)、正甲基四氢吡咯酮(n-methylpyrrolidone)、正甲基乙醯胺(n-methyl acetamide)、正甲基甲醯胺(n-methylformamide)、二甲基甲醯胺(dimethyl formamide)、γ-丁内酯(γ-butyrolactone)、乙腈(acetonitrile)、二甲基亚砜(dimethyl sulfoxide)、二甲基亚硫酸盐(dimethyl sulfite)、碳酸次亚乙烯酯(vinylene carbonate,VC)、1,2-二乙氧基乙烷(1,2-diethoxyethane)、1,2-二甲氧基乙烷(1,2-dimethoxyethane)、1,2-二丁氧基乙烷(1,2-dibutoxyethane)、四氢呋喃(tetrahydrofuran)、2-甲基四氢呋喃(2-methyl tetrahydrofuran)、环氧丙烷(propylene oxide)、乙酸甲酯(methyl acetate)、乙酸乙酯(ethyl acetate)、乙酸丙酯(propyl acetate)、丁酸甲酯(methyl butyrate)、丁酸乙酯(ethylbutyrate)、丙酸甲酯(methyl propionate)、丙酸乙酯(ethyl propionate)、碳酸二甲酯(Dimethyl Carbonate,DMC)、碳酸二乙酯(Diethyl Carbonate,DEC)、碳酸甲基乙基酯(Ethyl Methyl Carbonate,EMC)或其混合物。
依据本发明所提供方法制成的二次电池,由于该正极20的导电极26是与各层裸铝区21电性导通,且该负极30的导电极36是与各层裸铜区31电性导通,因此,该二次电池10放电时,电子于该正极20或该负极30中移动的距离可大幅缩减,平均移动距离约2公分,传统卷绕式电池中电子平均移动距离则约20公分,通过此,利用本发明方法所制成的二次电池10于大电流放电时具有极高的放电效率,如图5所示,是本发明的二次电池10与传统电池于10C放电时的放电效率比较图,由图中可见本发明的二次电池放电电压可维持在约3.4~3.5V(如曲线A),传统电池的放电电压则仅约3.2V(如曲线B),且本发明的二次电池放电效率可达90%以上,明显优于传统电池。另如图6所示,是本发明的二次电池10与传统电池于15C放电时的放电效率比较图,由图中可见本发明的二次电池放电电压可维持在约3.3V(如曲线C),传统电池的放电电压则低于3V(如曲线D),且本发明的二次电池放电效率约90%,明显优于传统电池的放电效率(约50%)。再如图7所示,是本发明的二次电池10与传统电池于20C放电时的放电效率比较图,由图中可见本发明的二次电池放电电压可维持在约3.2V(如曲线E),放电效率约达80%,传统制作方法的电池则完全无法放电(如直线F)。
依据本发明的精神,正极的正极材料膜仅覆于铝片的其中一表面亦可,相同地,负极的负极材料膜仅覆于铜片的其中一表面亦可,只要正极材料膜与负极材料膜相对即可,除此之外,正、负极材料膜的形状具有多种变化,以正极为例(负极亦同),正极70表面所覆的正极材料膜72亦可如图8所示,该正极材料膜72两端具有留白区域,或者如图9所示,正极80的正极材料膜82以间隔方式排列,举凡此等易于思及变化,均应为本发明申请专利范围所涵盖。
权利要求
1.一种二次电池的制造方法,其特征在于包含有以下步骤a、制备一正极、一负极以及二隔离膜,其中,该正极具有一铝片以及一正极材料膜覆于该铝片的至少一表面,且该正极材料膜的宽度小于该铝片的宽度,使该正极形成一裸铝区,该负极具有一铜片以及一负极材料膜覆于该铜片的至少一表面,该负极材料膜的宽度大于或等于该正极材料膜的宽度且小于该铜片的宽度,使该负极具有一裸铜区,该隔离膜的宽度不小于该负极材料膜的宽度,且不大于该铝片或该铜片的宽度;b、将该正极、一该隔离膜、该负极与另一该隔离膜依序迭置在一起并卷绕形成一复层卷体,其中,该正极的正极材料膜是与该负极的负极材料膜重迭,该正极的裸铝区与该负极的裸铜区则分别位于该复层卷体的顶、底端,该二隔离膜则位于该正极的正极材料膜与该负极的负极材料膜的相对位置;c、于该复层卷体的正极裸铝区以电性连接各层的方式焊接一导电极,并于该复层卷体的负极裸铜区以电性连接各层的方式焊接一导电极;以及d、封装该复层卷体于一外壳内,并于该外壳中注入电解液,该正极的导电极与该负极的导电极是延伸至该外壳之外。
2.如权利要求1所述二次电池的制造方法,其特征在于,所述该正极材料是钒、钛、铬、铜、钼、铌、铁、镍、钴或锰的锂化氧化物、锂化硫化物、锂化硒化物、锂化碲化物、锂铁磷氧化物、锂钒磷氧化物或其混合物。
3.如权利要求1所述二次电池的制造方法,其特征在于,所述该负极材料是介相结晶碳MCMB、气相成长碳纤维VGCF、纳米碳管CNT、焦炭、碳黑、石墨、乙炔黑、碳纤维、玻璃质碳或其混合物。
4.如权利要求1所述二次电池的制造方法,其特征在于,所述该电解液中含有电解质,该电解质是LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiAlCl4、LiGaCl4、LiNO3、LiC(SO2CF3)3、LiN(SO2CF3)2、LiSCN、LiO3SCF2CF3、LiC6F5SO3、LiO2CCF3、LiSO3F、LiB(C6H5)4、LiCF3SO3、LiB(C2O4)2或其混合物。
5.如权利要求1所述二次电池的制造方法,其特征在于,所述该电解液中含有溶剂,该溶剂是乙二醇碳酸酯、碳酸丙烯酯、碳酸丁烯酯、碳酸二丙酯、酸酐、正甲基四氢吡咯酮、正甲基乙醯胺、正甲基甲醯胺、二甲基甲醯胺、γ-丁内酯、乙腈、二甲基亚砜、二甲基亚硫酸盐、碳酸次亚乙烯酯、1,2-二乙氧基乙烷、1,2-二甲氧基乙烷、1,2-二丁氧基乙烷、四氢呋喃、2-甲基四氢呋喃、环氧丙烷、乙酸甲酯、乙酸乙酯、乙酸丙酯、丁酸甲酯、丁酸乙酯、丙酸甲酯、丙酸乙酯、碳酸二甲酯、碳酸二乙酯、碳酸甲基乙基酯或其混合物。
全文摘要
本发明一种二次电池的制造方法,首先制备一正极、一负极以及二隔离膜,正极是于一铝片上覆有一正极材料膜,正极并具有一裸铝区,负极是于一铜片上覆有一负极材料膜,负极并具有一裸铜区,将正极、一隔离膜、负极与另一隔离膜依序叠置并卷绕形成一复层卷体,其中正极材料膜与负极材料膜重迭,裸铝区与裸铜区则分别位于复层卷体的顶、底端,接着将于正极裸铝区与负极裸铜区分别焊接一导电极,最后将复层卷体封装于一外壳内,并于其中注入电解液;经由本发明的方法所制造的二次电池于大电流放电时其放电效率极佳。
文档编号H01M10/04GK101064371SQ20061007945
公开日2007年10月31日 申请日期2006年4月29日 优先权日2006年4月29日
发明者詹益松, 何纶桀 申请人:动能科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1