电介质陶瓷组合物和电子元件的制作方法

文档序号:7212908阅读:155来源:国知局
专利名称:电介质陶瓷组合物和电子元件的制作方法
技术领域
本发明涉及电介质陶瓷(誘電体磁器)组合物、叠层陶瓷电容器和电子元件,更具体地说,涉及即使使构成电介质陶瓷组合物的电介质粒子微粒化,介电常数、容量温度特性和高温负荷寿命也都良好的电介质陶瓷组合物。
背景技术
近年来,电子设备的小型化和高性能化快速发展,对于安装在电子设备中的电子元件,也要求小型化和高性能化。对于作为电子元件的一个例子的叠层陶瓷电容器,同样要求小型化并且大容量。
此外,为了根据用途将这些电子设备用于各种各样的环境,要求温度特性、寿命等具有高可靠性。
为了满足这些要求,作为必要的特性,高介电常数自不必说,还列举出稳定的容量温度变化率和在严酷条件下的长寿命等。
因此,为了解决这些课题,如特开2005-104772号公报所示,本申请人对电介质陶瓷组合物的副成分进行研究,开发了在电容率、容量温度变化率和高温负荷寿命的平衡方面优异电容器。
但是,为了进一步提高性能,本申请人得出了这样的认识,即,为了推进电介质层的薄层、多层化,必须使构成电介质陶瓷组合物的电介质粒子微粒化。实际上,特开2005-104772号公报公开了曾试验电介质陶瓷组合物的电介质粒子的微粒化,发现当电介质粒子的平均粒径比0.35μm小时,电容率急剧下降。
即,在将电介质粒子制成微粒时,特别是在电介质粒子的平均粒径为0.35μm或以下时,显示出用于提高特性的现有的方案没有发挥效果。

发明内容
鉴于以上现状完成本发明,其目的是提供一种电介质陶瓷组合物,即使电介质粒子的平均粒径为0.35μm或以下,其电容率、容量温度变化率和高温负荷寿命也全都良好。本发明的另一个目的是提供一种具有由上述电介质陶瓷组合物构成的电介质层的电容器。
为了达到上述目的,本发明人反复专心研究的结果,又得到了如下新的认识。即,认为当电介质粒子的平均粒径为0.35μm或以下时,作为电介质陶瓷组合物的副成分的钇氧化物容易产生偏析,暗示缺陷的增加,其结果是,成为电容率下降的主要原因。
在本发明中发现,通过减少钇氧化物的添加量,进一步调整电介质粒子的平均粒径,能够提高电容率、容量温度变化率和高温负荷寿命等特性。
即,本发明的电介质陶瓷组合物含有包含钛酸钡的主成分;包含镁氧化物的第1副成分;包含钇氧化物的第2副成分;包含钒氧化物的第3副成分;以氧化硅作为主成分的玻璃成分,其中相对于100摩尔的钛酸钡主成分,各副成分的比率是第1副成分0.1~3摩尔;第2副成分0.01~0.5摩尔(但不包含0.5);第3副成分0.01~0.2摩尔玻璃成分0.5~10摩尔,实质上不含有锰氧化物和铬氧化物,构成所述电介质陶瓷组合物的电介质粒子的平均粒径为0.35μm或以下。
根据本发明,即使将电介质粒子制成平均粒径为0.35μm或以下的微粒,通过使电介质陶瓷组合物的副成分和玻璃成分全部满足上述组成范围,特别是通过减少以往被认为如果不添加一定量(0.5摩尔)以上就不能提高特性的钇氧化物的添加量,也可以提供既能够维持高介电常数、容量温度变化率和高温负荷寿命又良好的电介质陶瓷组合物。
优选玻璃成分可以用化学式MxSiO3表示,上述式中的M包含Ba、Ca、Sr、Li、B中的至少1种,x在2/3~2的范围。
优选表示钛酸钡中的Ba和Ti的摩尔比的Ba/Ti为0.985~1.033,更优选为0.990~1.030,进一步优选为1.011~1.030。当Ba/Ti过小时,电容率、容量温度变化率和高温负荷寿命都趋于恶化。当Ba/Ti过大时,电容率和高温负荷寿命也趋于恶化。
优选上述电介质陶瓷组合物的(111)面的峰值的半宽度为0.143度或以下,更优选为0.140度或以下,进一步优选为0.135度或以下。半宽度过大,则有结晶性恶化、高温负荷寿命趋于恶化。此外,还会出现晶粒异常生长的情况。
优选上述电介质陶瓷组合物中实质上不含有锰氧化物,具体地说,相对于100摩尔钛酸钡,锰氧化物的含量为0.01摩尔或以下。当含有锰氧化物时,在镍内部电极附近,锰氧化物偏析,镍电极氧化,发生电极短路。
优选上述电介质陶瓷组合物中实质上不含有铬氧化物,具体地说,相对于100摩尔钛酸钡,铬氧化物的含量为0.01摩尔或以下。从环境方面考虑,希望不使用铬氧化物。
本发明的电子元件具有由上述电介质陶瓷组合物构成的电介质层。
本发明的电子元件的一个例子是叠层陶瓷电容器,其具有由上述电介质陶瓷组合物构成的电介质层和内部电极层交替叠层的电容器元件主体。
优选在以温度20℃、施扣电压0V时的静电容量作为基准的情况下,在温度85℃、施加电场强度1V/μm的直流电压状态下的容量温度变化率(ΔC/C20)为±10%以内。
优选上述电介质层的厚度为3μm或以下。
优选在通过保持在试验温度200℃、30V/μm直流电压状态下进行测定的高温负荷寿命测定中,在上述直流电压的施加状态下,从施加上述直流电压开始到检测电流的电流值变成2mA以上的时间为25小时或以上,优选35小时或以上,更优选为50小时或以上。


下面基于附图详细说明本发明的实施方式,其中图1是本发明一个实施方式的叠层陶瓷电容器的截面示意图。
图2是本发明实施例和比较例的电容率和电介质粒子平均粒径之间的关系图。
图3是本发明实施例的电容率和Ba/Ti之间的关系图。
图4是本发明实施例的高温负荷寿命和Ba/Ti之间的关系图。
图5是本发明实施例的85℃下容量温度变化率和Ba/Ti之间的关系图。
图6是本发明实施例的-25℃下容量温度变化率和Ba/Ti之间的关系图。
具体实施例方式
如图1所示,本发明一个实施方式的叠层陶瓷电容器2具有电介质层10和内部电极12交替叠层的结构的电容器元件体4。交替叠层的一方内部电极层12与在电容器元件体4的第1端部4a外侧形成的第1端子电极6的内侧电连接。此外,交替叠层的另一方内部电极层12与在电容器元件体4的第2端部4b的外侧形成的第2端子电极8的内侧电连接。
电容器元件体4的形状并不特别限制,可以根据目的和用途适当选择,但是形状通常是长方形。尺寸也不限制,根据目的和用途适当选择,通常为长(0.4~5.6mm)×宽(0.2~5.0mm)×高(0.2~1.9mm)左右。
电介质层10具有本发明的电介质陶瓷组合物。
本实施方式的电介质陶瓷组合物含有包含钛酸钡的主成分;包含镁氧化物的第1副成分;包含钇氧化物的第2副成分;包含钒氧化物的第3副成分;以氧化硅作为主成分的玻璃成分,实质上不含有锰氧化物和铬氧化物,构成所述电介质陶瓷组合物的电介质粒子的平均粒径为0.35μm或以下,优选为0.27μm或以下。电介质粒子的平均粒径大时,电容率趋于恶化。
第1副成分优选MgO,相对于100摩尔的钛酸钡,含量为0.1~3摩尔,优选为0.5~2摩尔。含量过少时,耐还原性和高温负荷寿命趋于恶化,过多时,烧结性趋于恶化,电容率趋于降低。
第2副成分优选Y2O3,相对于100摩尔的钛酸钡,含量为0.01~0.5摩尔(但不包含0.5),优选为0.2~0.4摩尔。含量过少时,高温负荷寿命趋于恶化,过多时,电容率趋于降低。
第3副成分优选V2O5,相对于100摩尔的钛酸钡,含量为0.01~0.2摩尔,优选为0.01~0.15摩尔。含量过少时,使容量温度特性平坦化的效果降低,IR寿命趋于恶化。过多时,IR趋于显著降低。
玻璃成分优选可以用化学式MxSiO3表示,上述式中的M含有Ba、Ca、Sr、Li、B中的至少1种,x在2/3~2的范围。更优选为BaαCa(1-α)SiO3,相对于100摩尔的钛酸钡,含量为0.5~10摩尔,优选为0.5~3摩尔。含量过少时,烧结性趋于恶化,过多时,电容率趋于降低。
此外,由于复合氧化物BaαCa(1-α)SiO3因熔点低而与主成分的反应性良好,因此,与分别添加单独的氧化物BaO和CaO相比,本发明中,优选以上述复合氧化物的形式添加BaO和/或CaO。
此外,表示Ba和Ca的组成摩尔比的符号α是任意的(0≤α≤1),可以仅含有一种,但优选0.3≤α≤0.7。
在作为电介质陶瓷组合物主成分的钛酸钡中,表示Ba和Ti的摩尔比的Ba/Ti为0.985~1.033,更优选为0.990~1.030,进一步优选为1.011~1.030。Ba/Ti过小时,电容率、容量温度变化率和高温负荷寿命全都趋于恶化。Ba/Ti过大时,电容率和高温负荷寿命趋于恶化。
电介质陶瓷组合物的(111)面的峰值的半宽度为0.143度或以下,更优选为0.140度或以下,进一步优选为0.135度或以下。半宽度过大时,结晶性趋于恶化,高温负荷寿命趋于恶化。此外,还会出现晶粒异常生长的情况。
锰氧化物主要是MnO,如果实质上不含有MnO,就不会有特别的问题,相对于100摩尔的钛酸钡,含量优选0.01摩尔以下,更优选0.005摩尔以下,进一步优选0.0001摩尔以下。
铬氧化物主要是Cr2O3,如果实质上不含有Cr2O3,就不会有特别的问题,相对于100摩尔的钛酸钡,含量优选0.01摩尔以下,更优选0.005摩尔以下,进一步优选0.0001摩尔以下。
对在内部电极层12中包含的导电材料并不特别限制,由于电介质层10的构成材料具有耐还原性,因此可以使用贱金属。作为导电材料使用的贱金属,优选是Ni或者Ni合金。作为Ni合金,优选是从Mn、Cr、Co和Al中选择的1种或1种以上元素和Ni的合金,合金中Ni含量优选为95重量%或以上。
此外,在Ni或者Ni合金中,可以0.1重量%左右以下的量包含P等各种微量成分。
内部电极层的厚度可以根据用途等适当决定,通常为0.5~5μm,特别优选为0.5~1.5μm左右。
端子电极6和8中含有的导电材料并不特别限制,在本发明中,可以使用便宜的Ni、Cu和它们的合金。此外,端子电极6和8的厚度可以根据用途等适当决定,通常优选为10~50μm左右。
与现有的叠层陶瓷电容器一样,使用本发明的电介质陶瓷组合物的叠层陶瓷电容器也通过下列方法制造通过使用糊料的常规印刷法或者薄片法(シ一ト法)制作生片,将其烧结之后,印刷或者转印、然后烧结端子电极。下面,具体说明制造方法。
首先,准备在电介质层用糊料中包含的电介质陶瓷组合物粉末,将其制成涂料,制备电介质层用糊料。电介质层用糊料可以是混练电介质陶瓷组合物粉末和有机介质(ビヒクル)而得到有机涂料,也可以是水系涂料。
作为电介质陶瓷组合物粉末,可以使用上述氧化物或其混合物、复合氧化物,另外,也可以从例如碳酸盐、草酸盐、硝酸盐、氢氧化物、有机金属化合物等通过烧结变成上述氧化物或复合化物的各种化合物中适当选择并混合使用。电介质陶瓷组合物粉末中各种化合物的含量可以根据烧结之后成为上述电介质陶瓷组合物的组成来决定。在制成涂料之前的状态下,电介质陶瓷组合物粉末的粒径通常为平均粒径0.1~1.0μm左右。
有机介质为在有机溶剂中溶解了黏合剂的物质。在有机介质中使用的黏合剂并不特别限制,可以从乙基纤维素、聚乙烯醇缩丁醛等常规的各种黏合剂中适当选择。此外,使用的有机溶剂也不特别限制,可以根据印刷法或薄片法等使用的方法,从松油醇、丁基卡必醇、丙酮、甲苯等各种有机溶剂中适当选择。
此外,电介质层用糊料为水系涂料的情况下,可以混练在水中溶解了水溶性黏合剂和分散剂等的水系介质和电介质原料。水系介质中使用的水溶性黏合剂并不特别限制,例如可以使用聚乙烯醇、纤维素、水溶性丙烯酸树脂等。
内部电极层用糊料通过混练由上述各种导电性金属或合金构成的导电材料、或者烧结之后成为上述导电材料的各种氧化物、有机金属化合物、树脂等和上述有机介质而制备。此外,端子电极用糊料可以与上述内部电极层用糊料同样地制备。
上述各糊料中的有机介质的含量并不特别限制,通常的含量例如可以是黏合剂1~5重量%左右,溶剂10~50重量%左右。此外,在各糊料中,根据需要可以含有从各种分散剂、增塑剂、电介质、绝缘体等中选择的添加物,其总含量优选为10重量%或以下。
在使用印刷法的情况下,在PET等基板上叠层印刷电介质层用糊料和内部电极用糊料,按规定形状切断之后,从基板上剥离得到生芯片。
此外,使用薄片法的情况下,使用电介质层用糊料形成生片,在其上印刷内部电极层用糊料之后,将其叠层得到生芯片。
烧结之前,对生芯片实施脱黏合剂处理。可以根据内部电极层糊料中的导电材料的种类适当决定脱黏合剂处理,但使用Ni或Ni合金等贱金属作为导电材料的情况下,优选脱黏合剂氛围气体中的氧分压为10-45~105Pa。氧分压过低,脱黏合剂的效果不好,过高则内部电极层趋于氧化。
此外,作为其它的脱黏合剂条件,升温速度优选为5~300℃/小时,更优选10~100℃/小时,保持温度优选为180~400℃,更优选为200~350℃,温度保持时间优选为0.5~24小时,更优选为2~20小时。此外,脱黏合剂的氛围气体优选为空气或者还原性气氛,作为还原性气氛的氛围气体,优选使用例如加湿的N2和H2的混合气体。
生芯片烧结时的氛围气体可以根据内部电极层用糊料中的导电材料的种类适当决定,在使用Ni或Ni合金等贱金属作为导电材料的情况下,烧结氛围气体中氧分压优选为10-12~10-11Pa。氧分压过低,会引起内部电极层的导电材料异常烧结,导致短路。此外,过高则内部电极层趋于氧化。
此外,烧结时的保持温度优选为1100~1400℃,更优选为1200~1350℃。保持温度过低,致密化不充分,过高则容易产生由于内部电极层异常烧结而使电极短路,或由于内部电极层的构成材料的扩散导致容量温度特性恶化,电介质陶瓷组合物的还原。
作为其它的烧结条件,升温速度优选为50~500℃/小时,更优选200~300℃/小时,温度保持时间优选为0.5~8小时,更优选为1~3小时,冷却速度优选为50~500℃/小时,更优选200~300℃/小时。此外,烧结气氛优选为还原性气氛,作为氛围气体,优选使用例如加湿的N2和H2的混合气体。
在还原性气氛中烧结的情况下,优选对电容器元件主体进行退火。退火是为了使电介质层再氧化的处理,由于通过退火可以显著延长IR寿命,因此可靠性提高。
退火气氛中的氧分压优选为10-8Pa或以上,特别优选为10-7~10-6Pa。氧分压过低,电介质层再氧化困难,过高则内部电极层趋于氧化。
退火时的保持温度优选为1100℃或以下,特别优选为500~1100℃。退火温度过低,则通常因电介质层的氧化不充分,导致IR低,此外,IR寿命也容易缩短。另一方面,退火保持温度过高,则内部电极层氧化,不仅容量降低,内部电极层还会和电介质主体反应,容易产生容量温度特性恶化、IR下降、IR寿命下降。
此外,退火也可以仅由升温过程和降温过程构成。即,温度保持时间可以为零。在这种情况下,保持温度和最高温度意义相同。作为除此以外的退火条件,温度保持时间优选为0~20小时,更优选为2~10小时,冷却速度优选为50~500℃/小时,更优选为100~300℃/小时。此外,作为退火氛围气体,优选使用加湿的N2气等。
在上述脱黏合剂处理、烧结和退火中,在给N2气或混合气体等加湿时,可以使用例如加湿器等。在这种情况下,水温优选5~75℃。
脱黏合剂处理、烧结和退火既可以连续进行,也可以独立进行。在连续进行的情况下,优选脱黏合剂处理之后,不冷却而变更氛围气体,继续升温至烧结时的保持温度进行烧结,然后冷却,在达到退火的保持温度时变更氛围气体进行退火。
对根据上述方法得到的电容器元件主体通过例如滚筒抛光或者喷砂等实施端面研磨,通过印刷或者转印并烧结端子电极用糊料,形成端子电极6和8。端子电极用糊料的烧结优选例如在N2和H2的混合气体中、在本实施方式中在600~800℃进行烧结处理,时间约为10分钟~1小时。根据需要,在端子电极6和8的表面通过电镀等形成被覆层。
如上制造的本发明的叠层陶瓷电容器通过钎焊等安装在印刷基板上等、用于各种电子设备等中。
本实施方式的叠层陶瓷电容器即使在电介质层的厚度减薄至3μm或以下的情况下,在施加高电场强度的直流电压的状态下也具有优异的温度特性和高温负荷寿命。
例如,在以温度20℃、施加电压0V时的静电容量为基准的情况下,在温度85℃、施加1V/μm的电场强度的直流电压的状态下的容量温度变化率(ΔC/C20)优选为±10%以内。
此外,关于高温负荷寿命特性,例如保持在试验温度200℃、施加30V/μm直流电压的状态的条件下,在上述直流电压的施加状态下,从施加上述直流电压开始直到检测电流的电流值变成2mA或以上的时间优选为25小时或以上,更优选为35小时或以上,进一步优选为50小时或以上。
上面虽然说明了本发明的实施方式,但是本发明并不限于这样的实施方式,在不脱离本发明精神的范围内,可以各种方式实施。
例如,在上述实施方式中,作为本发明的电子元件虽然列举了叠层陶瓷电容器,但是本发明的电子元件并不限于叠层陶瓷电容器,可以是任何具有由上述组成的电介质陶瓷组合物构成的电介质层的元件。
实施例下面基于实施例更详细地说明本发明,但本发明并不限于这些实施例。
实施例1首先,为了制作电介质材料,作为起始原料,准备作为主成分的BaTiO3和第1~第3副成分和玻璃成分。起始原料的平均粒径分别在0.15~1.0μm的范围选择。此外,作为玻璃成分MxSiO3,使用BaαCa(1-α)SiO3。α值为0.58。
在第1副成分MgO的原料中使用碳酸盐MgCO3,在其它原料中使用氧化物(第2副成分Y2O3,第3副成分V2O5,玻璃成分Ba0.58Ca0.42SiO3)。此外,玻璃成分Ba0.58Ca0.42SiO3如下制备按规定比例称量BaCO3、CaCO3和SiO2,用球磨机进行16小时湿式混合,干燥后,在1150℃空气中烧结,然后,用球磨机进行100小时湿式粉碎从而制备玻璃成分。
此外,主成分BaTiO3使用通过分别称量BaCO3和TiO2,使用球磨机湿式混合约16小时,然后干燥,在1100℃的温度下在空气中烧结,将烧结物用球磨机湿式粉碎约16小时所得到的物质也能够得到同样的特性。此外,主成分BaTiO3使用通过水热合成法、草酸盐法等制备的物质也可以得到同样的特性。
这些原料烧结之后的组成变成相对于100摩尔的主成分BaTiO3,MgO为0.81摩尔,V2O5为0.1摩尔,Ba0.58Ca0.42SiO3为1摩尔,Y2O3为0.2摩尔或者1.04摩尔,通过球磨机按照这样的配比湿式混合16小时,干燥后得到电介质材料。
将得到的电介质材料100重量份、丙烯酸树脂6重量份、甲苯6重量份、甲基乙基甲酮3.5重量份、矿油精6重量份、丙酮4重量份用球磨机混合、浆化,得到电介质层用糊料。
利用3辊辊筒混练平均粒径为0.2μm的Ni粒子100重量份、有机介质(在92重量份的丁基卡必醇中溶解乙基纤维素8重量份的物质)40重量份、丁基卡必醇10重量份,浆化,得到内部电极用糊料。
使用得到的电介质层用糊料,在PET薄膜上,通过刮刀法进行片成型,干燥后得到生片。这时,生片的厚度为2.5μm。在其上印刷内部电极用糊料之后,从PET薄膜剥离该片。然后,叠层这些生片和保护用生片(没有印刷内部电极用糊料的片),压粘,得到生芯片。
然后,按照规定的尺寸切断生芯片,在下述条件下进行脱黏合剂处理、烧结和退火,制作叠层陶瓷烧结体。
脱黏合剂处理升温速度30℃/小时、保持温度275℃、保持时间8小时、气氛空气中。
烧结升温速度200℃/小时、保持温度1180~1210℃、保持时间2小时、氧分压5×10-12Pa、气氛H2-N2-H2O气体。
退火升温速度200℃/小时、保持温度900~1100℃、保持时间2小时、氧分压1×10-6Pa、气氛加湿的N2气。
此外,烧结和再氧化处理时氛围气体的加湿采用水温为35度的加湿器。
在得到的烧结体的两面上,涂布In-Ga作为外部电极,得到电容器的样品。
得到的电容器尺寸为3.2mm×1.6mm×0.6mm,内部电极层中所夹的电介质层的数量为100层,每1层电介质层的厚度(层间厚度)为2.0μm,内部电极层的厚度为1.5μm。
对得到的电容器测定其电容率εr。测定方法如下。
在基准温度25℃下,利用数字LCR测试仪(YHP公司4274A)在频率1kHz、输入信号电平(测定电压)1Vrms的条件下,测定静电容量。由得到的静电容量、电容器样品的电极尺寸和电极间的距离算出电容率(εr)。电容率为2800或以上为良好,3000或以上更好。结果示于图2。
图2示出了在电介质粒子的平均粒径从0.15m变化到1.0μm的情况下,Y2O3为0.2摩尔的样品和Y2O3为1.04摩尔的样品的电容率的值。此外,在Y2O3为0.2摩尔的样品中,电介质粒子的平均粒径为0.35μm或以下的样品为实施例,平均粒径比0.35μm大的样品为比较例。
由图2可知,在Y2O3为1.04摩尔的样品(比较例)中,电介质粒子的平均粒径比0.40μm小时,可以看到电容率急剧降低。但是,在Y2O3为0.2摩尔的样品(实施例+比较例)中,即使电介质粒子的平均粒径变小,也几乎没有见到电容率降低。由此可知,电介质粒子的平均粒径变小的情况下,特别是0.35μm或以下的情况下,减少Y2O3的含量,可以维持高介电常数。
实施例2此外,与在专利文献1的第0105段的表2中比较例记载的样品号7的组成相同,与实施例1同样制作改变了电介质粒子的平均粒径的样品,进行特性评价。组成仍然在本发明的范围内。作为电介质粒子的平均粒径,专利文献1中记载的样品为0.40μm,本实施例的样品为0.25μm。此外,对电介质陶瓷组合物的(111)面的峰值的半宽度进行测定。X射线衍射的测定条件为电压30kV、电流30mA下,2θ=10°~80°的范围,扫描速度1/16deg/分钟,积分时间1秒。
作为特性评价,除电容率外,还测定容量温度变化率(ΔC/C20)和高温负荷寿命(绝缘电阻的加速寿命/HALT)。容量温度变化率和高温负荷寿命的测定方法如下。
在温度-25℃和+85℃下,对电容器样品施加电场强度为1V/μm的直流电压,在施加直流电压的状态下测定静电容量,以温度20℃、施加电压0V的静电容量为基准,算出各温度下的容量温度变化率(ΔC/C20)。各温度下都在±10%以内是良好的。
通过保持在200℃、施加30V/μm的直流电压的状态,对电容器的样品测定高温负荷寿命(HALT)。该高温负荷寿命在电介质层变薄时特别重要。在本实施例中,在施加直流电压的状态下,将从开始施加到检出电流的电流值变成2mA以上的时间定义为寿命,25小时以上为良好,35小时以上更好,50小时以上更好。结果示于表1。
表1

从表1可以看出,组成和半宽度在本发明的范围内、电介质粒子的平均粒径在本发明范围外的样品1体现出特性差。
因此,从图2和表1可以看出,电介质粒子的平均粒径为0.35μm或以下的情况下,通过增加Y2O3的添加量来提高高温负荷寿命的现有方案中,不仅电容率低,而且高温负荷寿命也低。
实施例3下面,使电介质粒子的平均粒径为0.25μm,改变电介质陶瓷组合物的副成分的组成,除如表2所示的组成之外,与实施例1相同地制作样品,和实施例2同样地测试。结果示于表2。
表2

从表2可以看出,在副成分的组成在本发明范围内的样品3~18中,得到了电容率、容量变化率和高温负荷寿命都良好的结果。
实施例4其次,改变电介质陶瓷组合物的主成分BaTiO3中Ba和Ti的摩尔比Ba/Ti,除副成分的组成为表3所示的组成之外,与实施例1同样地制作样品,与实施例2同样地测试。结果示于表3、图3~6。
表3

从表3可以看出,样品19~30的全部样品都满足特性。此外,由表3和图3可知Ba/Ti在0.990~1.030范围时,半宽度也为0.140度以下,电容率为3000以上,为良好。特别是,Ba/Ti在1.011~1.030范围时,得到了更好的结果。
从表3和图4可以看出,Ba/Ti在0.990~1.030范围时,高温负荷寿命是35小时以上,为良好。特别是,Ba/Ti在1.011~1.030范围时,得到了更好的结果。
从表3、图5和图6可以看出,随着Ba/Ti变大,容量温度变化率变得良好。关于电容率和高温负荷寿命,由于Ba/Ti过大时特性恶化,因此考虑到电容率、容量温度变化率和高温负荷寿命的平衡,优选Ba/Ti在0.990~1.030范围,半宽度为0.140度或以下。
如上所述,在电介质粒子的平均粒径变小的情况下,特别是变成0.35μm或以下的情况下,原来的产品特性差。以往是通过增加Y2O3的添加量来提高高温负荷寿命,但是,在本发明中,反过来,减少Y2O3的添加量,适当设定其它副成分的组成,可以全部满足电容率、容量温度变化率和高温负荷寿命各种特性。此外,可以确认通过使BaTiO3中Ba/Ti和电介质陶瓷组合物的(111)面的峰值的半宽度在一定值的范围内,表现出良好的特性。
权利要求
1.一种电介质陶瓷组合物,其含有包含钛酸钡的主成分;包含镁氧化物的第1副成分;包含钇氧化物的第2副成分;包含钒氧化物的第3副成分;以氧化硅作为主成分的玻璃成分,其中,相对于100摩尔的钛酸钡主成分,各副成分的比率是第1副成分0.1~3摩尔;第2副成分0.01~0.5摩尔(但不包含0.5);第3副成分0.01~0.2摩尔;玻璃成分0.5~10摩尔,实质上不含有锰氧化物和铬氧化物,构成所述电介质陶瓷组合物的电介质粒子的平均粒径为0.35μm或以下。
2.根据权利要求1所述的电介质陶瓷组合物,上述玻璃成分可以用化学式MxSiO3表示,上述式中的M包含Ba、Ca、Sr、Li、B中的至少1种,x在2/3~2的范围。
3.根据权利要求1或2所述的电介质陶瓷组合物,其中表示上述钛酸钡中的Ba和Ti的摩尔比的Ba/Ti为0.985~1.033。
4.根据权利要求1或2所述的电介质陶瓷组合物,上述电介质陶瓷组合物的(111)面的峰值的半宽度为0.143度或以下。
5.根据权利要求1或2所述的电介质陶瓷组合物,其特征在于,相对于100摩尔上述主成分钛酸钡,上述电介质陶瓷组合物中锰氧化物的含量为0.01摩尔或以下。
6.根据权利要求1或2所述的电介质陶瓷组合物,其特征在于,相对于100摩尔的上述主成分钛酸钡,上述电介质陶瓷组合物中铬氧化物的含量为0.01摩尔或以下。
7.一种电子元件,具有由权利要求1或2所述的电介质陶瓷组合物构成的电介质层。
8.一种叠层陶瓷电容器,具有由权利要求1或2所述的电介质陶瓷组合物构成的电介质层与内部电极层交替层叠的电容器元件主体。
9.根据权利要求8所述的叠层陶瓷电容器,在以温度20℃、施加电压0V时的静电容量作为基准的情况下,在温度85℃、施加电场强度1V/μm的直流电压状态下的容量温度变化率(ΔC/C20)为±10%以内。
10.根据权利要求8所述的叠层陶瓷电容器,其特征在于,上述电介质层的厚度为3μm或以下。
11.根据权利要求8所述的叠层陶瓷电容器,在通过保持在试验温度200℃、施加30V/μm直流电压状态下进行测定的高温负荷寿命测定中,在上述直流电压的施加状态下,从施加上述直流电压开始到检测电流的电流值变为2mA以上的时间为25小时或以上。
全文摘要
一种电介质陶瓷组合物,含有包含钛酸钡的主成分100摩尔,相对于100摩尔主成分,包含镁氧化物的第1副成分0.1~3摩尔,包含钇氧化物的第2副成分0.01~0.5摩尔(但不包含0.5),包含钒氧化物的第3副成分0.01~0.2摩尔,以氧化硅作为主成分的玻璃成分0.5~10摩尔,实质上不含有锰氧化物和铬氧化物,电介质粒子的平均粒径为0.35μm或以下。
文档编号H01G4/12GK1978380SQ20061014444
公开日2007年6月13日 申请日期2006年9月29日 优先权日2005年9月30日
发明者野中智明, 佐佐木洋, 小田岛努, 原田崇浩, 渡边松巳, 高石哲男, 桥木晋亮 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1