一种由隧穿场效应晶体管组成的光探测器及其制造方法

文档序号:6998941阅读:83来源:国知局
专利名称:一种由隧穿场效应晶体管组成的光探测器及其制造方法
技术领域
本发明属于光互连技术领域,具体涉及一种光探测器,尤其涉及一种由隧穿场效应晶体管组成的光探测器。
背景技术
与传统的铝相比,铜具有以下优点第一,铜的电阻率更小(Cu: 1.7yQ/cm, Al: 3μΩ/(:πι)。第二,铜互连线的寄生电容比铝互连线小。第三,铜互连线的电阻小,使得铜互连线上功耗比铝互连小。第四,铜的抗电迁移率比铝好(Cu<107A/Cm2,Al<106A/Cm2),不会因为电迁移产生连线空洞,从而提高了器件可靠性。因此,采用铜互连的器件能满足高频、高集成度、大功率、大容量、使用寿命长的要求,传统的铝互连工艺也逐渐被铜互连工艺所取代。随着集成电路器件技术的进一步发展,铜互连的功耗及延迟性能逐渐不能满足发展的需求,寻求更低的功耗和更快的互连技术是未来发展的趋势。光互连与铜互连相比较, 具有带宽高、损耗低,基本不存在串扰、匹配和电磁兼容等优点,现在单芯片光互连已经得到了广泛应用,未来光互连很有可能代替铜互连。在光互连技术中,发挥主要作用的是把光信号转化成电信号的光探测器。通常光探测器由p-i-n 二极管组成,其基本结构如图1所示它是在普通光电二极管的P区IOOa 和η区IOOc之间加入一层耗尽层(本征层):i层100b,光通过增透膜(抗反射膜)104到达 P区。添加保护膜102和电极101、103后,当对pn结施加一个高的反向偏压时,pn结的耗尽层受到光的照射产生光生载流子,在外部偏压的作用下,光生载流子定向漂移产生光生电流。由于具有较厚的耗尽层,使得p-i-n 二极管的结电容变小,耗尽电场厚度增加,增大了对光吸收和光变换的区域,使得量子效率得以提高,同时增加了波长灵敏度。但是,耗尽层厚度的增加,极大程度上影响了光探测器的响应速度,而且使得P-i-n 二极管需要较高偏压才能使二极管中有电离碰撞产生,增加了功耗。

发明内容
本发明的目的在于提出一种产品能耗低、响应速度快的光探测器。为达到本发明的上述目的,本发明提出一种由隧穿场效应晶体管组成的光探测器。该光探测器的结构包括
一个半导体衬底;
在所述半导体衬底上形成的隧穿场效应晶体管; 在所述隧穿场效应晶体管之上形成的光纤和反射层。进一步地,所述的隧穿场效应晶体管采用垂直沟道结构,包括在所述垂直沟道之下形成的具有第一种掺杂类型的漏区、在所述垂直沟道之上形成的具有第二种掺杂类型的源区和在所述垂直沟道的两侧形成的栅区。
更进一步地,所述的反射层与所述半导体衬底的表面成30-60度夹角,所述光纤中的光线经反射层反射后能够到达所述隧穿场效应晶体管的源区,从而可以产生光生载流子。本法还提出上述由隧穿场效应晶体管组成的光探测器的制造方法,其步骤为 提供一个半导体衬底;
进行离子注入,在所述半导体衬底内形成具有第一种掺杂类型的掺杂区; 形成一层硬质掩膜; 形成第一层光刻胶;
掩膜、曝光、刻蚀形成器件的垂直沟道结构; 剥除所述的第一层光刻胶; 形成第一层绝缘薄膜; 形成第一层导电薄膜; 形成第二层光刻胶
掩膜、曝光、刻蚀所述第一层导电薄膜形成栅电极; 进行离子注入,形成具有第二种掺杂类型的漏区; 剥除所述的第二层光刻胶;
刻蚀部分第一层绝缘薄膜,并刻蚀掉剩余的硬质掩膜; 形成第二层绝缘薄膜,并对所述第二层绝缘薄膜进行回刻; 形成第三层绝缘薄膜,并刻蚀所述第三层绝缘薄膜形成接触孔; 形成第二层导电薄膜,并刻蚀所述第二层导电薄膜形成电极; 形成光纤的下包层; 形成光纤的芯层; 形成光纤的上包层;
刻蚀所述光纤的上包层、芯层和下包层形成一个45度角的斜坡; 形成反光层。进一步地,所述的半导体衬底为单晶硅、多晶硅或者为绝缘体上的硅(S0I)。所述的硬质掩膜为氮化硅。所述的第一层绝缘薄膜为Si02、Hf02、HfSiO、HfSiON、SiON或Al2O3, 或者为它们之中几种的混合物。所述的第二层、第三层绝缘薄膜为二氧化硅或者为氮化硅。 所述的第一层导电薄膜为TiN、TaN、Ru02、Ru等金属或者为掺杂的多晶硅。所述的第二层导电薄膜为铝、钨或者为其它金属材料。所述的反光层由铝或银等金属材料构成
更进一步地,所述的第一种掺杂类型为η型,第二种掺杂类型为P型。或者,所述的第一种掺杂类型为P型,第二种掺杂类型为η型。本发明将隧穿场效应晶体管(TFET)和光纤整合在一起,采用垂直沟道的隧穿场效应晶体管作为探测器来对光进行检测,所需偏压低,降低了能耗,并且提高了光探测器的输出电流和灵敏度。同时,本发明还采用自对准工艺来制造由隧穿场效应晶体管组成的光探测器,使得制程更加稳定,降低了生产成本。


图1为现有技术的一种p-i-n光探测器的剖面图。
图2为本发明所提供的一种光探测器的实施例的剖面图。图3至图15为制造如图2所示光探测器的一个实施例工艺流程图示。
具体实施例方式下面结合附图与具体实施方式
对本发明作进一步详细的说明,在图中,为了方便说明,放大或缩小了层和区域的厚度,所示大小并不代表实际尺寸。尽管这些图并不能完全准确的反映出器件的实际尺寸,但是它们还是完整的反映了区域和组成结构之间的相互位置,特别是组成结构之间的上下和相邻关系。参考图是本发明的理想化实施例的示意图,本发明所示的实施例不应该被认为仅限于图中所示区域的特定形状,而是包括所得到的形状,比如制造引起的偏差。例如刻蚀得到的曲线通常具有弯曲或圆润的特点,但在本发明实施例中,均以矩形表示,图中的表示是示意性的,但这不应该被认为是限制本发明的范围。同时在下面的描述中,所使用的术语衬底可以理解为包括正在工艺加工中的半导体衬底,可能包括在其上所制备的其它薄膜层。图2为本发明所提供的一个由隧穿场效应晶体管组成的光探测器的实施例,它是沿该器件沟道长度方向的截面图。如图2所示,该光探测器形成于硅衬底201之上,包括隧穿场效应晶体管部分、光纤部分和反光层214。隧穿场效应晶体管包括源区202、漏区207、 栅介质层205和栅电极206,并且源区202处连接有金属电极210。光纤包括下包层211、芯层212和上包层213。所示208、209为绝缘介质层,比如为二氧化硅。光纤中的光线经反光层214反射后能够到达隧穿场效应晶体管的源区202,从而产生光生载流子,当对隧穿场效应晶体管施加合适电压后下,隧穿晶体管导通,光生载流子定向漂移产生光生电流。隧穿场效应晶体管的栅极电压使沟道内电场上升,从而使光生载流子产生进一步碰撞电离。这个现象就使光生电流得到放大,从而在这种器件源漏电压较低的情况下依然有很高的对光的灵敏度。本发明所提出的由隧穿场效应晶体管组成的光探测器可以通过很多方法制造,以下所叙述的是制造如图2所示光探测器的一个实施例的工艺流程。首先,提供一个硅衬底201,然后进行η型离子注入在硅衬底201内形成η型掺杂区202,如图3所示。接下来,淀积一层硬质掩膜203,比如为氮化硅,再淀积一层光刻胶,然后掩膜、曝光、显影形成所需要的图形,并刻蚀所述硬质掩膜203和硅衬底201形成器件的垂直沟道结构,剥除光刻胶后如图4所示。接下来,依次淀积绝缘薄膜205、导电薄膜206和一层光刻胶,然后掩膜、曝光、刻蚀导电薄膜206形成器件的栅电极,剥除光刻胶后如图5所示,绝缘薄膜为205为二氧化硅、高k材料层中的一层或两层,导电薄膜206比如为掺杂的多晶硅。接下来,进行ρ型离子注入,形成器件的漏区207,如图6所示。漏区207形成以后,刻蚀掉部分绝缘薄膜205,并刻蚀掉剩余的硬质掩膜203形成如图7所示的结构。图8为图7所示结构中的一个隧穿场效应晶体管结构部分200的俯视图示意图。接下来,淀积一层绝缘薄膜208,比如为二氧化硅,然后对二氧化硅薄膜208进行回刻,如图9所示。图10为图9所示结构中的隧穿场效应晶体管结构部分200的俯视图示意图。
在接下来的描述中,本发明以图3f所示结构中的隧穿场效应晶体管结构部分200 为基础来描述本发明所提出的光探测器的制备过程。首先,淀积一层绝缘薄膜209,比如为二氧化硅,然后刻蚀二氧化硅薄膜形成接触孔,再淀积一层导电薄膜210,比如为铝,然后刻蚀导电薄膜210形成金属电极,如图11所接下来,依次形成光纤的下包层211、芯层212和上包层213,其中上包层213和下包层211的折射率需略低于芯层212的折射率,如图12所示。图13为图12所示结构的俯视图示意图。最后,刻蚀光纤的上包层213、芯层212和下包层211形成一个45度角的斜坡,然后淀积一层金属银,并刻蚀银层形成器件的反光层214,如图14所示。图15为图14所示结构的俯视图示意图。如上所述,在不偏离本发明精神和范围的情况下,还可以构成许多有很大差别的实施例。应当理解,除了如所附的权利要求所限定的,本发明不限于在说明书中所述的具体实例。
权利要求
1.一种由隧穿场效应晶体管组成的光探测器,包括 一个半导体衬底;在所述半导体衬底上形成的隧穿场效应晶体管; 在所述隧穿场效应晶体管之上形成的光纤和反射层; 其特征在于,所述的隧穿场效应晶体管采用垂直沟道结构,包括在所述垂直沟道之下形成的具有第一种掺杂类型的漏区、在所述垂直沟道之上形成的具有第二种掺杂类型的源区和在所述垂直沟道的两侧形成的栅区;所述反射层与所述半导体衬底的表面成30-60度的夹角,所述光纤中的光线经反射层反射后到达所述隧穿场效应晶体管的源区,以产生光生载流子。
2.根据权利要求1所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的半导体衬底为单晶硅、多晶硅或者绝缘体上的硅。
3.根据权利要求1所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的第一种掺杂类型为η型,第二种掺杂类型为ρ型;或者,所述的第一种掺杂类型为P型,第二种掺杂类型为η型。
4.根据权利要求1所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的栅区包括一层导体层以及将所述导体层和所述垂直沟道区域隔离的绝缘层。
5.根据权利要求4所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的导体层由TiN、TaN, RuO2, Ru或者掺杂的多晶硅材料构成。
6.根据权利要求4所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的绝缘层为Si02、HfO2, HfSiO、HfSiON、SiON或Al2O3,或者为它们之中几种的混合物。
7.根据权利要求1所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的光纤包括一层芯层以及位于所述芯层上下两侧的包层,所述包层的折射率略低于所述芯层的折射率。
8.根据权利要求1所述的由隧穿场效应晶体管组成的光探测器,其特征在于,所述的反射层由银或铝金属材料构成。
9.一种如权利要求1一8之一所述的由隧穿场效应晶体管组成的光探测器的制造方法,其特征在于具体步骤为提供一个半导体衬底;进行离子注入,在所述半导体衬底内形成具有第一种掺杂类型的掺杂区; 形成一层硬质掩膜;对所述硬质掩膜和衬底进行刻蚀形成器件的垂直沟道结构; 形成第一层绝缘薄膜; 形成第一层导电薄膜; 刻蚀所述第一层导电薄膜形成栅电极; 进行离子注入,形成具有第二种掺杂类型的漏区; 刻蚀部分所述第一层绝缘薄膜,并刻蚀掉剩余的硬质掩膜; 形成第二层绝缘薄膜,并对所述第二层绝缘薄膜进行回刻; 形成第三层绝缘薄膜,并刻蚀所述第三层绝缘薄膜形成接触孔;形成第二层导电薄膜,并刻蚀所述第二层导电薄膜形成电极; 形成光纤的下包层; 形成光纤的芯层; 形成光纤的上包层;刻蚀所述光纤的上包层、芯层和下包层形成一个45度角的斜坡; 形成反光层。
10.根据权利要求9所述的制造方法,其特征在于,所述的第二层、第三层绝缘薄膜为二氧化硅或氮化硅;所述的第二层导电薄膜为铝或钨;所述的反光层由铝或银金属材料构成。
全文摘要
本发明属于光互连技术领域,具体涉及一种由隧穿场效应晶体管(TFET)组成的光探测器。本发明将隧穿场效应晶体管和光纤整合在一起,采用垂直沟道的隧穿场效应晶体管作为探测器来对光进行检测,所需偏压低,降低了能耗,并且提高了光探测器的输出电流和灵敏度。同时,本发明还公开了一种采用自对准工艺来制造由隧穿场效应晶体管组成的光探测器的方法,使得制程更加稳定,降低了生产成本。
文档编号H01L31/105GK102185003SQ201110094530
公开日2011年9月14日 申请日期2011年4月15日 优先权日2011年4月15日
发明者刘晓勇, 张卫, 林曦, 王玮, 王鹏飞 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1