阵列基板及其制造方法

文档序号:7035914阅读:95来源:国知局
专利名称:阵列基板及其制造方法
技术领域
本发明是有关于一种阵列基板及其制造方法,特别是一种应用于显示器的阵列基板及其制造方法。
背景技术
显示器中的阵列基板主要包含有薄膜晶体管以及其它电子组件。一般是使用5道以上光罩制程来制造阵列基板。其中薄膜晶体管结构中的半导体层大多为非晶硅。绝缘层多为无机氧化物,例如氧化硅或氮化硅。然而,由于一般需使用化学气相沉积法来制造半导体层及绝缘层,故制程温度较高。因此必须选用耐高温的材料。故基板多为耐热的玻璃材质,使得阵列基板不具有可挠性。但由于目前对于显示器轻、薄与可挠折的需求,使得软性显示器的开发越来越重要。然而制造软性显示器的阵列基板也需要使用5-6道光罩制程。因此,需要一种可以减少制程所需光罩及制程步骤的制造方法以降低制程成本与击是倉泛。

发明内容
本发明的一方面是在提供一种阵列基板及其制造方法,能以4道光罩制程来制作阵列基板。在本发明一或多个实施方式中,制造方法包括下列步骤。提供一基材。在基材上形成源极以及漏极。依序形成半导体层、有机绝缘层以与栅极层来覆盖基材、源极及漏极。在栅极层上形成图案化光阻层。移除暴露出的栅极层及其下方的有机绝缘层与半导体层,以形成栅极。在栅极、源极及漏极上形成有机保护层,其中有机保护层具有接触窗以露出部分的漏极。在有机保护层以及露出部分的漏极上形成像素电极。在本发明一或多个实施方式中,制造方法包括下列步骤。在基材上形成源极以及漏极。形成半导体层覆盖基材、源极及漏极。在半导体层上形成图案化有机绝缘层,以定义半导体层的通道层。在图案化有机绝缘层以及半导体层上形成栅极层。在栅极层上形成图案化光阻层,其中图案化光阻层位于图案化有机绝缘层的上方。移除露出的栅极层及其下方的半导体层,以形成栅极及通道层。在栅极、源极及漏极上形成有机保护层,其中有机保护层具有接触窗以露出一部分的漏极。在有机保护层以及露出部分的漏极上形成像素电极。本发明的另一方面是在提供一种阵列基板,包含基材、源极与漏极、作为通道层的半导体层、作为栅绝缘层的有机绝缘层、栅极、有机保护层以及像素电极。源极与漏极设置于基材上。半导体层设置于源极、漏极以及位于源极与漏极间的基材上。有机绝缘层设置于半导体层上。栅极设置于有机绝缘层上。有机保护层覆盖栅极、源极、漏极及基材,其中有机保护层中具有接触窗以露出一部分的漏极。像素电极设置于露出部分的漏极及有机保护层上。
因此,本发明上述实施方式具有下列优点:(I)能以4道光罩制程制作显示器阵列基板,可提高产能与节省运作成本。(2)有机绝缘层及有机保护层不需在高温下制作,因此可节省运作成本。(3)有机绝缘层、有机保护层及半导体层的结构可使薄膜晶体管具有较高的电子移动度。


为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,所附附图的说明如下:图1A-1D是绘示依照本发明一实施方式的阵列基板的制造方法的各制程阶段剖面示意图;图2A-2D是绘示依照本发明另一实施方式的阵列基板的制造方法的各制程阶段剖面示意图。主要组件符号说明100a、200a:像素区100b、200b:走线区

110、210:刚性基板120、220:可挠性高分子层130a、230a:源极130b、230b:漏极130c,230c:第一连接垫140,240:氧化物半导体层140a、240a:通道层150:有机绝缘层150a:栅绝缘层160,260:栅极层160a、260a:栅极160b、260b:第二连接垫170a、170b、270a、270b:图案化光阻层180,280:有机保护层182,282:接触窗184、284:第一开口186、286:第二开口190a、290a:像素电极190b、290b:透明导电层250a:图案化有机绝缘层
具体实施例方式图1A-1D是绘示依照本发明一实施方式的阵列基板的制造方法的各制程阶段剖面示意图。在本实施例中,阵列基板可为应用于显示器的阵列基板,但不以此为限。首先,提供一基材100,如图1A所示。基材100包含有像素区IOOa以及走线区IOOb0走线区IOOb的电路是用以连接其它电子组件,例如驱动芯片(driver 1C)。在一实施例中,基材100包含刚性基板110以及可挠性高分子层120。可挠性高分子层120形成在刚性基板110上。刚性基板110可为玻璃基板。可挠性高分子层120可例如为聚酸亚胺(Polyimide)、聚对苯二甲酸乙二醇酉旨(Polyethylene Terephthalate, PET)、聚萘二甲酸乙二酯(Polyethylene Naphthalate, PEN)或聚甲基丙烯酸甲酯(Poly(methylmethacrylate),PMMA)。在另一实施例中,基材100仅为玻璃基板,而不包含上述可挠性高分子层120。然后,在基材100上形成源极130a与漏极130b,如图1A所示。源极130a与漏极130b可形成在可挠性高分子层120上。源极130a电性连接一信号线(未绘示),例如源极130a可为信号线的一部分。源极130a与漏极130b的材料可为铬、铝、铜、钥、钛或其它导电材料。可使用溅镀制程及光学微影制程来形成源极130a与漏极130b。在一实施方式中,在形成源极130a与漏极130b的同时,可在走线区IOOb中形成第一连接垫130c。第一连接垫130c用以连接驱动芯片(图未示),且第一连接垫130c电性连接源极130a。在形成源极130a与漏极130b后,依序形成氧化物半导体层140、有机绝缘层150以与栅极层160,以覆盖基材100、源极130a以及漏极130b,如第IB图所示。上述氧化物半导体层140的材质可例如为氧化锌(ZnO)、氧化锌锡(ZnSnO)、氧化铬锡(CdSnO)、氧化镓锡(GaSnO)、氧化钛锡(TiSnO)、氧化铟镓锌(InGaZnO)、氧化铜铝(CuAlO)、氧化银铜(SrCuO)或硫氧化镧铜(LaCuOS)。可使用派镀制程来形成氧化物半导体层140。上述氧化物半导体层140可在室温下以溅镀方式形成,因此,在一实施方式中,氧化物半导体层140可直接形成在可挠性高分子层120上。上述有机绝缘层150的材质可为聚酰亚胺(Polyimide)或聚硅氧烷(polysiloxane)等。可使用任何已知的涂布方式来形成有机绝缘层150。相较于无机绝缘层的制程温度,有机绝缘层150可以在较低温的条件下制作。因此,可适用于耐热性较差的可挠性高分子层120。上述栅极层160的材料可与源极130a与漏极130b的材料相同或不同。栅极层160与氧化物半导体层140之间设置有机绝缘层150,用以避免栅极层160直接接触氧化物半导体层140。接着,在栅极层160上形成图案化光阻层170a,如图1B所示。上述图案化光阻层170a用以定义栅极的位置,因此图案化光阻层170a设置在欲形成栅极位置的正上方。可使用任何已知的光学微影制程来形成图案化光阻层170a。在一实施方式中,在形成图案化光阻层170a的同时,可在走线区IOOb中形成图案化光阻层170b。图案化光阻层170b用以定义第二连接垫160b,下文中将更详细叙述。在形成图案化光阻层170a后,移除暴露出图案化光阻层170a外的栅极层160及其下方的有机绝缘层150和氧化物半导体层140,以形成栅极160a、栅绝缘层150a以及通道层140a,如图1C所示。上述栅极160a电性连接扫描线(未绘示),例如,栅极160a可为扫描线的一部分。
承上所述,可使用湿式酸蚀刻制程或干式蚀刻制程来移除暴露出的栅极层160及其下方的有机绝缘层150及氧化物半导体层140。具体来说,可使用相同的蚀刻剂来移除栅极层160、有机绝缘层150与氧化物半导体层140,以减少制程步骤。或者,可先用湿式酸蚀刻制程来移除暴露出的栅极层160,接着使用干式蚀刻制程或显影液来移除露出的有机绝缘层150,再使用湿式酸蚀刻制程来溶解露出的氧化物半导体层140。因此,可通过一道光罩制程来形成栅极160a、栅绝缘层150a以及通道层140a,使通道层140a、栅绝缘层150a与栅极160a具有大致相同的上视轮廓,并节省制造成本。在完成上述步骤后,移除图案化光阻层170a。在一实施方式中,在移除上述栅极层160、有机绝缘层150和氧化物半导体层140的同时,可在走线区IOOb中形成第二连接垫160b。换言之,第二连接垫160b是与栅极160a、栅绝缘层150a以及通道层140a同时形成。在本实施方式中,第二连接垫160b用以连接一驱动芯片,且第二连接垫160b电性连接栅极160a (图未示)。在形成上述栅极160a、栅绝缘层150a以及通道层140a之后,在栅极160a、源极130a与漏极130b上形成有机保护层180,如第ID图所示。有机保护层180具有接触窗182,以露出一部分的漏极130b。有机保护层180的材质可与有机绝缘层150的材质相同或不同。有机保护层180的材质可为聚酰亚胺(Polyimide)或聚娃氧烧(Polysiloxane)等。可使用任何已知的光学微影制程来形成有机保护层180。在一实施方式中,走线区IOOb中的有机保护层180可具有第一开口 184及第二开口 186,以分别露出第二连接垫160b及第一连接垫130c。在形成有机保护层180后,形成像素电极190a于有机保护层180及露出部分的漏极130b上。像素电极190a透过接触窗182与漏极130b电性连接。像素电极190a的材质可为氧化铟锡、氧化铟锌或其它透明导电材料。在一实施方式中,在形成像素电极190a时,可同时在露出的第二连接垫160b及第一连接垫130c上形成透明导电层190b。因此,透明导电层190b可透过第一开口 184连接驱动扫描线的芯片(scan driver IC),并可透过第二开口 186连接驱动信号线芯片(datadriver IC)。在一实施方式中,在完成上述步骤后,将刚性基板110与可挠性高分子层120分离,而得到形成在可挠性高分子层120上的软性显示器阵列基板。举例来说,可使用准分子激光的方法来分离刚性基板110与可挠性高分子层120,而得到软性显示器阵列基板。图2A-2D是绘示依照本发明另一实施方式的显示器阵列基板的各制程阶段剖面示意图。在本实施例中,阵列基板可为应用于显示器的阵列基板,但不以此为限。首先,在基材200上形成源极230a与漏极230b,如图2A所示。基材200包含有像素区200a以及走线区200b。走线区200b的电路是用以连接其它电子组件。基材200、源极230a、漏极230b的材质及其制造方法可参考第IA图中的基材100、源极130a与漏极130b的叙述。在一实施方式中,可于形成源极230a、漏极230b时,于走线区200b中同时形成第一连接垫230c。然后,在基材200、源极230a与漏极230b上形成氧化物半导体层240,如图2A所示。上述氧化物半导体层240的材质及其制造方法可参考图1B中的氧化物半导体层140的叙述。接着,在氧化物半导体层240上形成图案化有机绝缘层250a以定义氧化物半导体层240的通道层240a,如图2A所示。具体来说,可先在氧化物半导体层240上涂布一层感旋光性的有机绝缘材料,然后再进行烘烤。接着进行曝光及显影制程,而形成图案化有机绝缘层250a。上述曝光制程所选用的光波长需搭配有机绝缘层250a的材料来调整。通常,光波长可为可见光或紫外光范围,例如波长为436nm的G-line、波长为405nm的H-1ine或波长为365nm的I_line。有机绝缘层250a材料可为感光的有机材料,例如聚酰亚胺(Polyimide)或聚娃氧烧(Polysiloxane)等。在形成上述图案化有机绝缘层250a后,形成栅极层260覆盖图案化有机绝缘层250a及氧化物半导体层240,如图2B所示。上述栅极层260的材质及其制造方法可参考图1B中的栅极层160的叙述。然后,在栅极层260上形成图案化光阻层270a,如图2B所示。图案化光阻层270a可位于图案化有机绝缘层250a的正上方,并用以定义栅极的位置。上述图案化光阻层270a的材质及其制造方法可参考图1B中的图案化光阻层170a的叙述。在一实施方式中,在形成图案化光阻层270a的同时,可在走线区200b中形成图案化光阻层270b。图案化光阻层270b可用以定义第二连接垫,下文中将更详细叙述。在形成图案化光阻层270a后,选择性地移除暴露出图案化光阻层270a外的栅极层260及其下方的氧化物半导体层240,以形成栅极260a及通道层240a,如图2C所示。例如,可使用相同的蚀刻剂来移除栅极层260及氧化物半导体层240,以减少制程步骤。在上述蚀刻过程中,图案化有机绝缘层250a定义通道层240a的区域,因此,通道层240a与图案化有机绝缘层250a具有大致相同的上视轮廓。在一实施例中,栅极260a的面积略小于有机绝缘层250a的面积。在完成上述步骤后,移除图案化光阻层270a。在一实施方式中,在移除上述栅极层260及氧化物半导体层240的同时,可在走线区200b中形成第二连接垫260b。在形成上述栅极260a及通道层240a之后,在栅极260a、源极230a及漏极230b上形成有机保护层280,如图2D所示。有机保护层280具有接触窗282,以露出漏极230b。上述有机保护层280的材质及其制造方法可参考图1D中有机保护层180的叙述。在一实施方式中,走线区200b中的有机保护层280可具有第一开口 284及第二开口 286,以分别露出第二连接垫260b及第一连接垫230c。在形成有机保护层280后,形成像素电极290a于有机保护层280及露出部分的漏极230b上,以使像素电极290a透过接触窗282与漏极230b电性连接,如图2D所示。上述像素电极290a的材质及其制造方法可参考图1D中像素电极190a的叙述。在一实施方式中,在形成像素电极290a时,可同时形成透明导电层290b于露出的第二连接垫260b及第一连接垫230c上。因此,透明导电层290b可透过第一开口 284连接驱动扫描线的芯片(scan driver IC),并可透过第二开口 286连接驱动信号线芯片(datadriver IC)。上述实施方式的一特点在于,先形成图案化有机绝缘层250a,用以定义通道层240a。因此,若选择使用耐酸蚀刻的有机绝缘层材料,则可在移除步骤中以相同的蚀刻剂来移除栅极层260及氧化物半导体层240。所以可减少制程步骤。
根据本发明的另一方面,是提供一种应用于显示器的阵列基板。请参照图1D,显示器阵列基板包含基材100、源极130a、漏极130b、氧化物半导体层(即通道层140a)、有机绝缘层(即栅绝缘层150a)、栅极160a、有机保护层180以及像素电极190a。源极130a与漏极130b设置于基材100上。氧化物半导体层(即通道层140a)设置于源极130a、漏极130b以及位于源极130a与漏极130b间的基材100上。有机绝缘层(即栅绝缘层150a)设置于通道层140a上。栅极160a设置于有机绝缘层上。有机保护层150a覆盖栅极160a、源极130a、漏极130b及基材100,其中有机保护层150a具有接触窗182以露出一部分的漏极130b。像素电极190a设置于露出部分的漏极130b及有机保护层180上,使像素电极190a透过接触窗182与漏极130b电性连接。由此可知,上述实施方式能以4道光罩制程制作显示器阵列基板,可以减少制程步骤以提高产能与节省运作成本。另外,上述实施方式结合有机绝缘层、有机保护层及氧化物半导体层的结构,可以使阵列基板具有较高的电子移动度特性。上述显示器阵列基板也可应用软性显示器上,如有机发光二极管显示器或电泳显示器。举例来说,可应用本发明实施方式并结合有机发光二极管组件或电泳组件,来设计有机发光二极管显示器或电泳显示器的结构及其制造方法,以提高产能与节省运作成本。虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟悉此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。
权利要求
1.一种阵列基板的制造方法,其特征在于,包含: 提供一基材; 形成一源极以及一漏极于该基材上; 依序形成一半导体层、一有机绝缘层以及一栅极层覆盖该基材、该源极及该漏极; 形成一图案化光阻层于该栅极层上; 移除暴露出该图案化光阻层外的该栅极层及其下方的该有机绝缘层与该半导体层,以形成一栅极; 形成一有机保护层于该栅极、该源极及该漏极上,其中该有机保护层具有一接触窗以露出一部分的该漏极;以及 形成一像素电极于该有机保护层上,以使该像素电极透过该接触窗与该漏极电性连接。
2.根据权利要求1所述的阵列基板的制造方法,其特征在于,提供该基材的步骤包含: 提供一刚性基板;以及 形成一可挠性高分子层于该刚性基板上,其中该源极以及该漏极形成于该可挠性高分子层上。
3.根据权利要求2所述的阵列基板的制造方法,其特征在于,在形成该像素电极于该有机保护层上的步骤后,还包含移除该刚性基板。
4.根据权利要求2所述的阵列基板的制造方法,其特征在于,该可挠性高分子层的材质为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二酯或聚甲基丙烯酸甲酯。
5.根据权利要求1所述的阵列基板的制造方法,其特征在于,移除暴露出该图案化光阻层外的该栅极层及其下方的该有机绝缘层与该半导体层的步骤包含使用一湿式酸蚀刻制程。
6.根据权利要求1所述的阵列基板的制造方法,其特征在于,移除暴露出该图案化光阻层外的该栅极层及其下方的该有机绝缘层与该半导体层的步骤包含使用一干式蚀刻制程。
7.根据权利要求1所述的阵列基板的制造方法,其特征在于,该半导体层的材质包含一材料是选自由氧化锌、氧化锌锡、氧化铬锡、氧化镓锡、氧化钛锡、氧化铟镓锌、氧化铜铝、氧化锶铜以及硫氧化镧铜所组成的群组。
8.根据权利要求1所述的阵列基板的制造方法,其特征在于,该有机绝缘层的材质包含聚酰亚胺或聚硅氧烷。
9.一种阵列基板的制造方法,其特征在于,包含: 提供一基材; 形成一源极以及一漏极于该基材上; 形成一半导体层覆盖该基材、该源极及该漏极; 形成一图案化有机绝缘层于该半导体层上,以定义该半导体层的一通道层; 形成一栅极层于该图案化有机绝缘层以及该半导体层上; 形成一图案化光阻层于该栅极层上,其中该图案化光阻层位于该图案化有机绝缘层上方; 移除暴露出该图案化光阻层外的该栅极层及其下方的该半导体层,以形成一栅极以及该通道层; 形成一有机保护层于该栅极、该源极及该漏极上,其中该有机保护层具有一接触窗以露出一部分的该漏极;以及 形成一像素电极于该有机保护层上,以使该像素电极透过该接触窗与该漏极电性连接。
10.根据权利要求9所述的阵列基板的制造方法,其特征在于,移除暴露出该图案化光阻层外的该栅极层及其下方的该有机绝缘层与该半导体层的步骤包括:使用相同的一蚀刻剂蚀刻该栅极层以及该半导体层。
11.根据权利要求9所述的阵列基板的制造方法,其特征在于,该图案化光阻层的一面积小于该图案化有机绝缘层的一面积。
12.根据权利要求9所述的阵列基板的制造方法,其特征在于,该有机绝缘层的材质包含聚酰亚胺或聚硅氧烷。
13.一种阵列基板,其特征在于,包含: 一基材; 一源极及一漏极,设置于该基材上; 一半导体层,设置于该源极、该漏极以及该基材上; 一有机绝缘层,设置于该半导体层上; 一栅极,设置于该有机绝缘层上; 一有机保护层,覆盖该栅极、该源极、该漏极及该基材,其中该有机保护层中具有一接触窗以露出一部分该漏极;以及 一像素电极,设置于该有机保护层上,并透过该接触窗与该漏极电性连接。
14.根据权利要求13所述的阵列基板,其特征在于,该半导体层、该有机绝缘层及该栅极具有相同的一轮廓。
15.根据权利要求13所述的阵列基板,其特征在于,该半导体层的材质包含一材料是选自由氧化锌、氧化锌锡、氧化铬锡、氧化镓锡、氧化钛锡、氧化铟镓锌、氧化铜招、氧化银铜以及硫氧化镧铜所组成的群组。
16.根据权利要求13所述的阵列基板,其特征在于,该有机绝缘层的材质包含聚酰亚胺或聚硅氧烷。
17.根据权利要求13所述的阵列基板,其特征在于,该有机保护层的材质包含聚酰亚胺或聚硅氧烷。
18.根据权利要求13所述的阵列基板,其特征在于,该基材包含一可挠性高分子层,且该可挠性高分子层为聚酰亚胺、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二酯或聚甲基丙烯酸甲酯。
全文摘要
本发明在此揭露一种阵列基板及其制造方法。此制造方法包括下列步骤。提供一基材。在基材上形成源极以及漏极。依序形成半导体层、有机绝缘层以与栅极层来覆盖基材、源极及漏极。在栅极层上形成图案化光阻层。移除暴露出的栅极层及其下方的有机绝缘层与半导体层,以形成栅极。在栅极、源极及漏极上形成有机保护层,其中有机保护层具有接触窗以露出部分的漏极。在有机保护层以及露出部分的漏极上形成像素电极。
文档编号H01L21/77GK103094203SQ20121000525
公开日2013年5月8日 申请日期2012年1月6日 优先权日2011年11月2日
发明者蓝纬洲, 辛哲宏, 王裕霖, 叶佳俊 申请人:元太科技工业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1