一种基于二维半导体材料的低压场效应晶体管的制作方法

文档序号:7050913阅读:1022来源:国知局
一种基于二维半导体材料的低压场效应晶体管的制作方法
【专利摘要】本发明涉及一种基于二维半导体材料的低压场效应晶体管,包括:栅区、源区、漏区、沟道区和衬底。所述栅介质为对电子绝缘、对离子导电的无机多孔材料,所述栅介质同时含有正、负两种离子。本发明采用对离子导电、对电子绝缘的固态多孔材料作为栅介质层,栅介质与沟道区的界面形成一个理论厚度只有1nm的双电层电容,使得器件工作电压大大减低,同时采用少层二维半导体材料作为沟道区材料,使得器件可以同时实现电子导电和空穴导电。
【专利说明】一种基于二维半导体材料的低压场效应晶体管

【技术领域】
[0001]本发明涉及微电子领域,具体涉及一种基于二维半导体材料的低压场效应晶体管。

【背景技术】
[0002]过去五十多年里,以集成电路为基础的信息技术突飞猛进,引发了人类生产和生活方式的巨大变革。但是随着半导体器件的尺寸逐渐走向量子极限,传统硅材料集成电路技术在未来二十年内可能走到尽头。因此寻找硅材料的替代品成为了全世界范围内的一个热门研究课题。近年来,以MoS2为代表的二维层状半导体材料作为沟道材料的场效应晶体管正受到越来越多的关注和研究,被认为是非常具有潜力的后硅时代材料。MoS2的宽带隙(块体为1.2eV,单层为1.8eV)为低静态功耗、高开关比提供了可能。其次MoS2的二维平面性在与传统半导体工艺兼容的基础上,可以有效的抑制尺寸缩小引起的短沟道效应。
[0003]国际专利号:W02012/093360A1,“Semiconductordevice”(半导体器件),该技术公开了以一种单层、双层MoS2等二维半导体材料为沟道材料的场效应晶体管,该器件的电子迁移率达到200。!!^—、开关比达到108,其缺点是栅极工作电压比较高(接近10V),同时该器件只能实现η型导电。近来,一种以双电层材料为栅介质的MoS2场效应晶体管引起了广泛关注,这类器件的栅介质与沟道区的界面形成双电层电容,该电容的厚度理论上仅为lnm,产生的电容比较大,通常比常规栅介质材料高出数倍甚至数十倍。由于其电容值很大,这类器件的工作电压很低(1V-3V),因此在低功耗、便携式电子产品领域具有很大的应用前景。例如:Yijin Zha ng 等研究人员在题为 Ambipolar MoS2Thin Flake Transistors (Nanolettersl2, n0.3 (2012): 1136-1140)的文献中提出了一种以少层MoS2为沟道材料,离子液体为栅介质的双极型场效应晶体管,该器件的工作电压小于3V,且可以同时实现η型和P型导电。Jiang Pu 等研究人员在题为 Highly Flexible MoS2Thin-Film transistor with1n Gel Dielectrics.(Nano lettersl2.8 (2012): 4013-4017)的文献中提出了一种以少层MoS2为沟道材料,离子凝胶为栅介质的柔性场效应晶体管,该器件的工作电压小于2V,开关比达到105。上述文献中均采用离子液体或有机聚合物作为栅介质层,其缺点是不能与传统半导体工艺兼容,器件的稳定性差,同时器件的迁移率也比较低。


【发明内容】

[0004]针对现有技术存在的上述缺陷,本发明提供了一种与现有半导体工艺兼容的以无机固态双电层材料为栅介质的基于二维半导体材料的低压场效应晶体管。
[0005]本发明通过以下技术方案实现,本发明所述基于二维半导体材料的低压场效应晶体管,包括栅区、源区、漏区、沟道区和衬底,所述栅区位于所述沟道区的下方,所述栅区包括栅介质和栅电极,所述栅电极位于所述栅介质之下,所述源区和所述漏区位于所述沟道区的两侧,所述源区、所述漏区和所述栅区设置在所述衬底之上。所述栅介质为对电子绝缘、对离子导电的无机多孔材料,所述栅介质同时含有正、负两种离子。
[0006]优选地,所述正离子为锂离子、钠离子、镁离子、钾离子、钙离子中一种或多种。
[0007]优选地,所述负离子为氯离子、氢氧根离子中的一种或多种。
[0008]优选地,所述离子可以在电场作用下移动到栅介质与沟道区、栅介质与栅电极界面形成两个双电层电容。
[0009]优选地,所述离子可以在制备栅介质层过程中引入,也可以在制备好栅介质层之后引入。
[0010]优选地,所述无机多孔材料包括:Si02、A1203、WO3>Ta2O5, HfO2, ZnO2, Ti02。
[0011]优选地,所述沟道区采用二维层状半导体材料,包括=MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2λ GeS2、GeSe2、GeTe2、SnS2Λ SnSe2Λ SnTe2Λ PbS2、PbSe2、PbTe2、GaSΛ GaSeΛ GaTeΛ InS、InSe、InTe0
[0012]优选地,所述二维层状半导体材料的层数I层到10层。二维半导体材料的层数选为1-10层是因为层数太多,会造成静电屏蔽栅电极无法有效调控沟道区。
[0013]本发明采用的栅介质材料可以使栅极工作电压变低,同时沟道区采用单层二维半导体晶体,可以同时实现η型和P型导电。当栅电极电压为正时,栅介质中的正离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出电子;栅介质中的负离子移动到栅介质与栅电极界面形成双电层。当栅电极电压为负时,栅介质中的负离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出空穴;栅介质中的正离子移动到栅介质与栅电极界面形成双电层。
[0014]与现有技术相比,本发明具有如下的有益效果:
[0015]本发明的基于二维半导体材料的低压场效应晶体管在具备传统双电层低电压、高载流子浓度优点的前提下,结合二维层状半导体薄层电荷屏蔽能力差的优点,区别于基于块体材料双电层晶体管,可以使得器件同时呈现η型导电和P型导电。同时本发明的栅介质材料采用无机材料,与传统半导体工艺兼容,同时器件的稳定性大大提高。

【专利附图】

【附图说明】
[0016]通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
[0017]图1是本发明一较优实施例的场效应晶体管的结构剖面图;
[0018]图2a和图2b说明本发明场效应晶体管分别在正栅压和负栅压情况下工作原理图;
[0019]图3为本发明场效应晶体管的转移特性曲线。

【具体实施方式】
[0020]下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
[0021]如图1所示,一种基于二维半导体材料的低压场效应晶体管包括栅区20、源区40、漏区50、沟道区30和衬底10,栅区20位于沟道区30的下方,栅区包括栅介质22和栅电极21,栅电极21位于栅介质22之下,源区40和漏区50位于沟道区30的两侧,源区40、漏区50和栅区30均设置在所述衬底10之上。
[0022]所述衬底材料为绝缘材料,包括硅片、玻璃、石英、陶瓷、塑料、聚亚酰胺、聚对苯二甲酸乙二酯或特殊纸制材料。在本实施例中衬底10采用硅片。
[0023]所述栅介质为对电子绝缘、对离子导电的无机多孔材料,所述栅介质同时含有正、负两种离子。所述正离子为锂离子、钠离子、镁离子、钾离子、钙离子中一种或多种。所述负离子为氯离子、氢氧根离子中的一种或多种。所述无机多孔材料包括:Si02、A1203、WO3>Ta205、Hf02、ZnO2、T12。在本实施例中,栅介质22采用多孔二氧化硅。
[0024]所述的源区、漏区和所述栅电极材料为导体材料,包括Au、Pt、T1、ΙΤ0。在本实施例中,源区40、漏区50和栅电极21均采用ΙΤ0。
[0025]所述沟道区采用二维层状半导体材料,包括:MoS2、MoSe2, MoTe2, WS2、WSe2、WTe2、GeS2、GeSe2、GeTe2、SnS2Λ SnSe2Λ SnTe2、PbS2、PbSe2、PbTe2、GaS、GaSe、GaTe、InS、InSe、InTe0在本实施例中,沟道区30采用单层MoS2。
[0026]所述二维层状半导体材料的层数I层到10层。
[0027]本实施例中,所述离子可以在电场作用下移动到栅介质与沟道区、栅介质与栅电极界面形成两个双电层电容。所述离子可以在制备栅介质层过程中引入,也可以在制备好栅介质层之后引入。
[0028]如图2a和图2b所示,当栅电极电压为正时,栅介质中的正离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出电子;栅介质中的负离子移动到栅介质与栅电极界面形成双电层。当栅电极电压为负时,栅介质中的负离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出空穴;栅介质中的正离子移动到栅介质与栅电极界面形成双电层。
[0029]本实例中基于二维半导体材料的低压场效应晶体管的制备方法为:
[0030]首先在硅片上采用直流溅射的方法沉积ITO薄膜作为栅电极,在真空度为10_5量级反应腔内通入Hsccm流量的氩气,反应腔体压强稳定在2-3Pa,在溅射功率为100W的条件下派射200nm厚的ITO薄膜。
[0031]然后采用PECVD方法沉积4um多孔二氧化硅层作为栅介质层,当腔体压强低于1Pa时,通过氧气18sccm、硅烷5sccm、lS气45sccm,使腔体压强维持在20Pa,打开射频电源,功率为100W,时间在10分钟左右。透射电镜电镜表征结果表明,沉积得到的栅介质层由直径30nm左右的二氧化硅颗粒组成的稀疏的薄膜,这样的结构对于实现双电层电容非常重要,后面将会详细介绍。
[0032]随后在栅介质层能引入正负离子,将得到的样品,整体泡在浓度为I %的LiCl溶液中,两小时之后样品在60度的真空环境下干燥。
[0033]将制备好的单层MoS2采用类似转移石墨烯的办法转移到栅介质上,MoS2单层可以采用机械剥离、溶液剥离、化学气相沉积、分子束外延等方法制备。
[0034]最后制作源漏电极:甩5um后的光刻胶并图形化,?贱射200nm ITO薄膜,采用lift-off工艺去光刻胶,至此器件制备完成。
[0035] 当栅电极上施加正电压时(如图2a)多孔二氧化硅栅介质中的Cl-1离子被吸引到栅电极与栅介质界面形成一个双电层电容,Li 1+离子移动到栅介质与沟道区的界面形成一个双电层电容,在单层MoS2中感应出电子。
[0036]当栅电极上施加负电压时(如图2b)多孔二氧化硅栅介质中的Lil+离子被吸引到栅电极与栅介质界面形成一个双电层电容,Cl-1离子移动到栅介质与沟道区的界面形成一个双电层电容,在单层MoS2中感应出空穴。
[0037]如图3所示的器件转移特性曲线,本发明晶体管的工作电压非常低(〈1.5V),且同时可以实现电子与空穴导电。
[0038]本实施例中,器件尺寸不受限制,可以根据实际情况进行设计。
[0039]本实施例中采用的上述各种材料实现本发明的目的,同样的,上述其他无机多孔材料、导体材料、绝缘材料、正负离子等,因为材料的性质类似,因此本领域技术人员是完全能够实现的。
[0040]本发明采用对离子导电、对电子绝缘的固态多孔材料作为栅介质层,栅介质与沟道区的界面形成一个理论厚度只有Inm的双电层电容,使得器件工作电压大大减低,同时采用少层二维半导体材料作为沟道区材料,使得器件可以同时实现电子导电和空穴导电。
[0041]以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。
【权利要求】
1.一种基于二维半导体材料的低压场效应晶体管,包括栅区、源区、漏区、沟道区和衬底,其特征在于:所述栅区位于所述沟道区的下方,所述栅区包括栅介质和栅电极,所述栅电极位于所述栅介质之下,所述源区和所述漏区位于所述沟道区的两侧,所述源区、所述漏区和所述栅区设置在所述衬底之上;所述栅介质为对电子绝缘、对离子导电的无机多孔材料,所述栅介质同时含有正、负两种离子。
2.根据权利要求1所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述正离子为锂离子、钠离子、镁离子、钾离子、钙离子中的一种或多种。
3.根据权利要求1所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述负离子为氯离子、氢氧根离子中的一种或多种。
4.根据权利要求1所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述离子在电场作用下移动到栅介质与沟道区、栅介质与栅电极界面形成两个双电层电容。
5.根据权利要求1所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述离子在制备栅介质层过程中引入,或者在制备好栅介质层之后引入。
6.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:当栅电极电压为正时,栅介质中的正离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出电子;栅介质中的负离子移动到栅介质与栅电极界面形成双电层。
7.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:当栅电极电压为负时,栅介质中的负离子移动到栅介质与沟道区界面形成双电层,在沟道区中感应出空穴;栅介质中的正离子移动到栅介质与栅电极界面形成双电层。
8.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述无机多孔材料为Si02、Al203、W03、Ta205、Hf02、Zn02、Ti02中的任一种。
9.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述的源区、漏区和所述栅电极材料为导体材料,所述导体材料为Au、Pt、T1、ITO中的任一种。
10.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述衬底材料为绝缘材料,包括硅片、玻璃、石英、陶瓷、塑料、聚亚酰胺、聚对苯二甲酸乙二酯中的任一种。
11.根据权利要求1-5任一项所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述沟道区采用二维层状半导体材料。
12.根据权利要求11所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述二维层状半导体材料为 MoS^ MoSe2, MoTe2, WS2, WSe2、WTe2, GeS2, GeSe2, GeTe2, SnS2,SnSe2, SnTe2、PbS2、PbSe2、PbTe2、GaS、GaSe、GaTe、InS、InSe、InTe 中的任一种。
13.根据权利要求11所述的基于二维半导体材料的低压场效应晶体管,其特征在于:所述二维层状半导体材料的层数I层到10层。
【文档编号】H01L29/778GK104078501SQ201410265041
【公开日】2014年10月1日 申请日期:2014年6月13日 优先权日:2014年6月13日
【发明者】刘景全, 郭杰 申请人:上海交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1