一种高倍率性能锂离子电池负极材料的制备方法与流程

文档序号:12129965阅读:285来源:国知局
本发明涉及锂离子电池领域,涉及一种锂离子电池负极材料的制备方法,具体是一种高倍率性能锂离子电池负极材料的制备方法。
背景技术
:锂金属电池作为很早就被研究的二次电池,虽然具有高工作电压和高比能量等优点,但是由于容易生成锂枝晶而带来安全隐患,而未被大规模应用。1990年,日本索尼公司推出了第一个商品化锂离子电池,其负极材料为嵌锂焦炭LiXC6,不仅克服了锂电池的安全问题,而且价格低廉,循环性能好,仍然可以提供可观的输出电压和能量密度。因此,在短短的二十年间,锂离子电池已广泛应用于便携式电子设备(如手机、摄像机、数码照相机、笔记本电脑等)和电动工具等领域,并且在电动汽车、新能源储能等领域显现出很大的前景。如今,以石墨为负极材料的锂离子电池占据了主要市场,尤其在电子设备领域已拥有了非常成熟的技术。然而,由于石墨的理论层间距为0.3354nm,嵌锂形变极为微小,这使锂离子在石墨层间的扩散速率受到限制,未改性的石墨负极材料在倍率性能和循环性能上表现出不足。硬炭的层间距明显较石墨大,有利于锂的传输,通过进行表面改性,可以提高锂离子从材料表面嵌入的速率。同时,由于硬炭富含结构稳定的三维键,对石墨具有保护作用,这有利于形成结构更稳定并且面积更大的SEI膜,显著提高了石墨负极材料的倍率性能与循环性能。但是,合适的硬炭包覆量对于某些石墨材料来说有一个比较明确的范围,为2%~5%。包覆量过低,改性的作用不明显,包覆量过高,电池首次充放电效率下降。此外,由于硬炭前驱体掺入量较石墨含量相比很低,在工业化上实现均匀包覆具有很大难度。因此,这些缺陷都限制了采用硬炭包覆石墨进行改性的实际应用。技术实现要素:本发明的目的在于提供一种工艺简单、可行性高的高倍率性能锂离子电池负极材料的制备方法,以解决上述
背景技术
中提出的问题。为实现上述目的,本发明提供如下技术方案:一种高倍率性能锂离子电池负极材料的制备方法,包括如下步骤:(1)将线性酚醛树脂和沥青粉碎并与石墨均匀混合,制得粉体;(2)将步骤(1)获得的粉体在一定气氛以及搅拌状态下进行低热恒温处理,制得包覆物;低热恒温处理温度为60~80℃;(3)对步骤(2)进一步热处理使包覆物炭化,制得粉末;(4)将步骤(3)所得粉末自然冷却后分级,即得高倍率性能锂离子电池负极材料。作为本发明进一步的方案:所述步骤(1)中的沥青为中温沥青,软化点范围为60~90℃。作为本发明进一步的方案:所述步骤(1)中线性酚醛树脂玻璃化温度为60~90℃。作为本发明进一步的方案:所述步骤(1)中石墨为人造石墨或天然石墨,石墨的平均粒径为5~50μm,比表面积≤5m2/g,压实密度≥1.0g/cm3。作为本发明进一步的方案:所述步骤(1)中线性酚醛树脂:沥青:石墨的质量比为3~8:8~12:100。作为本发明进一步的方案:所述步骤(2)中的气氛为氮气气氛或者氩气气氛,低热恒温处理的恒温时间为1h。作为本发明进一步的方案:所述步骤(3)中的热处理条件为以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至700~1200℃。与现有技术相比,本发明的有益效果是:本发明所提供的高倍率性能锂离子电池负极材料在电子产品、动力汽车、风力发电等领域具有潜在应用价值,本发明具有以下特点:本发明制备的锂离子电池负极材料是一种采用由沥青/线性酚醛树脂作为软炭/硬炭复合前驱体包覆人造石墨或天然石墨组成的复合材料。将软化点和玻璃转化温度相近的沥青和线性酚醛树脂粉末混合加热后,使两者处于共溶态,从而利于沥青和线性酚醛树脂两种包覆物实现分子尺度上的混合,通过搅拌使其均匀包覆在石墨颗粒表面。若单纯采用线性酚醛树脂包覆,由于包覆量较少且线性酚醛树脂溶化后在一定温度区间粘度较大不利于流动,易发生包覆不均匀导致的炭化后团聚现象。本发明采用相对较大量的沥青和较少量的线性酚醛树脂混合,沥青不仅起到了分散剂的作用,使线性酚醛树脂均匀分布于共溶态的包覆物前驱体内,而且可以促进线性酚醛树脂的流动,使线性酚醛树脂均匀分布于石墨表面,有效避免了炭化定型后颗粒团聚的现象。本发明采用两种碳材料混合一次热处理的改性方法,具有工艺简单、操作方便,环境温和、生产周期短的优点,显示出较高的工业化可行性。具体实施方式下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例1(1)将0.4kg线性酚醛树脂(玻璃化温度82℃)和0.5kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为16μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.372kg,炭化后包覆量为6.92%。实施例2(1)将0.2kg线性酚醛树脂(玻璃转化温度82℃)和0.5kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为16μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.340kg,炭化后包覆量为6.37%。实施例3(1)将2kg线性酚醛树脂(玻璃转化温度82℃)和2.5kg中温煤沥青(软化点75℃)混合粉碎后与25kg平均粒径为16μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得26.670kg,炭化后包覆量为6.26%。实施例4(1)将0.4kg线性酚醛树脂(玻璃转化温度82℃)和0.5kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为30μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.368kg,炭化后包覆量为6.86%。实施例5(1)将0.4kg线性酚醛树脂(玻璃转化温度82℃)和0.5kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为16μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至700℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.441kg,炭化后包覆量为8.11%。实施例6(1)将0.15kg线性酚醛树脂(玻璃转化温度82℃)和0.6kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为16μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.389kg,炭化后包覆量为7.22%。实施例7(1)将0.15kg线性酚醛树脂(玻璃转化温度82℃)和0.6kg中温煤沥青(软化点75℃)混合粉碎后与5kg平均粒径为30μm的人造石墨粉均匀混合;(2)将步骤(1)获得的粉体在N2氛围以及搅拌状态下以5℃/min的速率升温至70℃,恒温1h;(3)在步骤(2)之后以1℃/min速率升温至150℃,以3℃/min速率升温至300℃,恒温1h,停止搅拌,以3℃/min速率升温至600℃,恒温1h,以3℃/min速率升温至1000℃;(4)将步骤(3)所得粉末自然冷却后分级,即得改性石墨负极材料,称重得5.385kg,炭化后包覆量为7.15%。上述实施例1-7的性能测试如表1所示。表1样品包覆量(%)首次容量(mAh/g,0.1C)5C/1C倍率性能(%)首次效率(%)100次循环容量保持率(%)实施例16.9231891.889.398.8实施例26.3730387.489.998.7实施例36.2630889.189.398.6实施例46.8629082.290.398.9实施例58.1133691.886.198.5实施例67.2229886.789.898.6实施例77.1527781.789.598.8各实施例均相比于实施例1:实施例2中线性酚醛树脂掺入量减半,改性效果减弱,容量和倍率性能降低;实施例3中各原料均放大5倍,包覆量及容量都减少,倍率性能下降;实施例4中石墨粒径接近翻倍,锂离子迁移路径过长,容量和倍率性能明显降低;实施例5中热处理终温降为700℃,容量增大但首次效率降低;实施例6采用少量线性酚醛树脂和较大量沥青,硬炭对容量的提升效果减弱,反而由于软炭过多造成容量下降;实施例7在实施例6的基础上增加了石墨粒径,容量和倍率性能大幅下降。对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1