半导体装置及半导体装置的制造方法与流程

文档序号:11586723阅读:181来源:国知局
半导体装置及半导体装置的制造方法与流程

本说明书公开的技术涉及一种半导体装置及半导体装置的制造方法,例如,涉及各种功率电子设备所使用的半导体装置及半导体装置的制造方法。



背景技术:

关于半导体装置,作为基本构造,在俯视观察时呈长方形的壳体的内部具有多个半导体芯片。另外,具有用于将多个半导体芯片产生的热与外部的散热单元进行热交换的散热面。散热面具有绝缘功能。并且,在与散热面大致相对的位置具有与外部的电路进行电连接的端子。

为了与外部的电路进行电连接而露出的端子作为由导体构成的电极而被引导至内部。在内部的散热面的附近配置导体板,该导体板接合于由陶瓷等绝缘材料构成的绝缘基板之上。通过将该导体板局部地进行分离,从而形成电路图案。

利用兼具导电和导热的接合单元,将半导体芯片接合至电路图案,该半导体芯片的与接合面相反的面通过键合导线等而与电路图案或者电极电连接。

例如,如专利文献1所公开的那样,上述的基板之上的电路图案由薄的导体箔形成。在该情况下,为了流过主电流,图案宽度设定为壳体的窄边方向(短边方向)的图案有效全宽的大致将近一半。沿壳体的长边方向大致设置2个流过主电流的电路图案,沿壳体的窄边方向(短边方向)架设键合导线而将半导体芯片和电路图案进行连接。利用它们的间隙而复杂地进行主电极与电路图案的连接。

专利文献1:日本特开2003-243610号公报

在导线键合装置中进行导线键合的臂部由于机械强度的关系,臂长受到限制。并且,关于比键合点高出(远离)一定程度以上的部分的臂部,在几何学上,这部分的臂部变粗。该臂部的粗的部分会与作业对象物的周边部分等相干涉,因此,例如对深且窄的壳体内的导线键合作业的制约多。特别地,如果模块宽度小于或等于50mm左右,则该制约变得显著。

为了避免这样的状况,考虑在将壳体与基板嵌合之前预先完成尽可能多的导线键合。然而,在壳体设置的电极未必能够采用这样的方法。

即,如果在将壳体与基板嵌合之前,将在壳体设置的电极与电路图案进行连接,则在将壳体进行嵌合时,会对该电极与电路图案之间的接合部施加力,增加故障的可能性。因此,难以选择焊接等脆弱的接合方法。

然而,在例如选择了超声波(ultra-sonic,即us)接合的情况下,因为电极接合部的形状等的制约而难以提高频率,由于工具(焊头;horn)变大,因此对深且窄的壳体内的接合仍然存在配置上的限制。



技术实现要素:

本说明书公开的技术就是为了解决上述的问题而提出的,涉及能够对导线键合作业的制约进行抑制的半导体装置及半导体装置的制造方法。

本说明书公开的技术的一个方案涉及的半导体装置具有:多个半导体芯片,它们在俯视观察时由外框所包围的壳体内配置于电路图案之上;键合导线,其将所述电路图案与多个所述半导体芯片之间电连接;以及主电极,其配置于所述壳体内,多个所述半导体芯片沿所述壳体的长边方向而排列,所述键合导线沿所述壳体的长边方向而架设,所述主电极配置于所述壳体的长边方向的一个边的附近,所述主电极与所述电路图案之间的连接为超声波接合、焊接(soldering)、或者钎焊(brazing)。

在本说明书公开的技术的一个方案涉及的半导体装置的制造方法中,在俯视观察时由外框所包围的壳体内的、所述壳体的长边方向的一个边的附近,将主电极超声波接合于电路图案之上,在将所述主电极接合之后,利用沿所述壳体的长边方向架设的键合导线,将在所述壳体内的所述电路图案之上沿所述壳体的长边方向排列而配置的多个半导体芯片与所述电路图案电连接。

发明的效果

本说明书公开的技术的一个方案涉及的半导体装置具有:多个半导体芯片,它们在俯视观察时由外框所包围的壳体内配置于电路图案之上;以及键合导线,其将所述电路图案与多个所述半导体芯片之间电连接,多个所述半导体芯片沿所述壳体的长边方向而排列,所述键合导线沿所述壳体的长边方向而架设。

根据这样的结构,能够在宽度窄、且深度深的壳体内,对导线键合作业的制约进行抑制。

在本说明书公开的技术的一个方案涉及的半导体装置的制造方法中,在俯视观察时由外框所包围的壳体内的、所述壳体的长边方向的一个边的附近,将主电极超声波接合于电路图案之上,在将所述主电极接合之后,利用沿所述壳体的长边方向架设的键合导线,将在所述壳体内的所述电路图案之上沿所述壳体的长边方向排列而配置的多个半导体芯片与所述电路图案电连接。

根据这样的结构,能够在宽度窄、且深度深的壳体内,对导线键合作业的制约进行抑制。另外,由于导线键合工序进行1次即可,因此能够实现制造成本的削减或者节拍时间的缩短。

本说明书公开的技术涉及的目的、特征、技术方案、以及优点通过下面所示的详细的说明和附图会变得更加清楚。

附图说明

图1是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图2是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图3是概略地例示实施方式涉及的用于实现半导体装置的结构之中的、壳体内的半导体芯片及其周边的构造的俯视图。

图4是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图5是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图6是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图7是概略地例示实施方式涉及的主电极的弯曲部附近的构造的剖视图。

图8是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

图9是概略地例示实施方式涉及的用于实现半导体装置的结构之中的、壳体内的半导体芯片及其周边的构造的俯视图。

图10是概略地例示实施方式涉及的用于实现半导体装置的结构的俯视图。

标号的说明

32、62键合点,33、34、65、66、93、94、113、114复合元件,35、67、95、115中转电路图案,71凹部,73壳体,81、82、104、200、201、202、203半导体芯片,91驱动电位基准,100电极,101信号端子,102外框,103键合导线,105绝缘基板,106、106a、204、205、206主电极,107信号电极,108信号配线。

具体实施方式

下面,一边参照附图,一边对实施方式进行说明。此外,附图是概略地示出的,在不同的附图分别示出的图像的大小和位置的相互关系未必记载得准确,可以适当地进行变更。另外,在下面所示的说明中,对相同的结构要素标注相同的标号而进行图示,它们名称和功能也都相同。因此,有时省略针对它们的详细说明。

另外,在下面所示的说明中,有时使用“上”、“下”、“侧”、“底”、“表”或者“背”等代表特定的位置和方向的用语,但这些用语是为了使实施方式的内容容易理解,出于方便而使用的,与实际实施时的方向无关。

<第1实施方式>

下面,对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。为了便于说明,首先,对如专利文献1所公开的那样键合导线的架设方向沿壳体的外框的短边方向的情况进行说明。

图10是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图10所例示的那样,在壳体的由外框102所包围的内部配置半导体芯片200、半导体芯片201、半导体芯片202、以及半导体芯片203。并且,将电路图案和各半导体芯片连接的键合导线103是沿壳体的外框102的短边方向而架设的。另外,在电路图案之上分别配置主电极204、主电极205、以及主电极206。此外,电路图案形成于绝缘基板105之上。另外,在壳体的外框102设置电极100和信号端子101。

<关于半导体装置的结构>

图2是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图2所例示的那样,在俯视观察时壳体的由外框102所包围的内部,在电路图案之上配置多个半导体芯片104。多个半导体芯片104沿壳体的外框102的长边方向而排列。并且,键合导线103沿壳体的外框102的长边方向而架设,该键合导线103将多个半导体芯片104与电路图案连接。此外,键合导线103的架设方向与壳体的外框102的长边方向所夹的角度优选在20°左右以内。另外,在壳体的外框102设置电极100和信号端子101。

在这里,上述的壳体例如为,长边方向的长度大于或等于短边方向的长度的2倍。另外,短边方向的长度例如小于或等于50mm左右。

根据上述的构造,全部键合导线103沿壳体的外框102的长边方向而架设,因此能够在宽度窄、且深度深的壳体内,仅在移动自由度最高的长边方向进行键合作业。因此,即使在将壳体与基板嵌合之后,在壳体的内部配置的半导体芯片与在壳体的内部配置的电路图案之间的接合也变得容易进行。进而,在壳体的外框102配置的电极与在壳体的内部配置的电路图案之间的接合变得容易进行。

在这里,在实现上述的结构的情况下,需要从半导体芯片104间向在壳体的外框102配置的电极形成电路图案,但为了流过大电流而需要与之相匹配的图案宽度。然而,如果使图案宽度变大,则半导体芯片104彼此的间隔相应地变大。作为结果,由于成为长边方向长的模块,因此电流值受到限制。

因此,能够应用将形成电路图案的导体箔例如铜箔的厚度设为大于或等于0.4mm左右的、所谓的厚铜基板。

通过应用厚铜基板,从而每单位图案宽度的图案剖面积变大。因此,即使图案宽度窄也能够流过大电流,对于在宽度窄的图案方向也流过电流这一点不存在限制。

根据该结构,关于以将半导体芯片104与电路图案之间进行电连接为目的的导线键合,能够实现向铅垂方向的窄幅图案、即电路图案的侧面的安装。作为结果,由于导线键合或者导线键合间隔变短,因此能够减少对于将多个半导体芯片104的导线键合大致直列地进行配置的限制。

<第2实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图3是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图3所例示的那样,在壳体的内部,在电路图案之上配置多个半导体芯片。

如图3所例示的那样,从绝缘栅型双极晶体管(insulatedgatebipolartransistor,即igbt)半导体芯片的发射极引出的键合导线103、从二极管芯片的阳极引出的键合导线103与共通的电路图案连接。然而,在将它们分别进行连接的情况下,图案面积的消耗、即占有面积变大,从装置的小型化及制造成本的角度来看并不优选。

在这里,在应用上述的厚铜基板的情况下,沿宽度窄的图案方向流过电流这点不会成为制约。因此,能够设置宽度窄的中转电路图案35,经由中转电路图案35而将从igbt半导体芯片的发射极引出的键合导线103、从二极管芯片的阳极引出的键合导线103在键合点32进行连接,其中,中转电路图案35配置于俯视观察时由这2个半导体芯片所夹着的位置。

另一方面,在壳体内配置2个复合元件、即各自均由igbt半导体芯片和二极管芯片构成的2个复合元件的情况下(串联、共集电极、共发射极、或者ac开关等),用于将2个复合元件连接的电路图案的绕引会造成浪费。为了消除该浪费,一个复合元件33是经由宽度窄的中转电路图案35而与反向并联二极管连接。另一个复合元件34是以不经由宽度窄的中转电路图案35的状态与反向并联二极管连接。

这是因为,如果将双方的复合元件都经由中转电路图案而反向并联连接,或者,将双方的复合元件都以不经由中转电路图案的状态反向并联连接,则例如2个igbt半导体芯片的间隔变宽,或者,2个igbt半导体芯片的发射极相对,因此电路图案的路径变长。

<第3实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图4是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图4所例示的那样,在壳体的由外框102所包围的内部配置绝缘基板105。另外,在绝缘基板105之上配置多个主电极106。此外,为了简化,省略半导体芯片104的图示。

对于宽度窄的模块,为了提高与主电极106接合的接合部分的图案面积效率,或者,为了提高散热性,通常主电极106的端子与绝缘基板105之上的电路图案之间的接合部分被分散地配置、或者配置于两侧的侧方。然而,对于这样的配置,存在电感增加、电极成本增加、并且用于消除与信号线的互感等的设计变得复杂等问题。

在这里,在应用上述的厚铜基板的情况下,能够期待由电路图案实现的热扩散。因此,如果确保了图案面积,则能够确保散热性。

另外,关于名片大小(例如85.60mm×53.98mm)的比较小的厚铜基板,制造成本得到了抑制的基板尺寸的选项少,在上述的通常的配置方法中优势小。因此,不如将图案面积和无效面积视作热扩散单元,从而特意使主电极106的端子与电路图案的接合部聚集于壳体的长边方向的一边附近,使作为磁通产生源的电极集中而提高磁阻,由此降低电感,其中,该图案面积是使主电极106的端子与电路图案的接合并非采用导线键合而是采用例如由us接合、焊接、或者钎焊等实现的接合所产生的,无效面积是使主电极106的端子与电路图案的接合部聚集于壳体的长边方向的一边附近所产生的。另外,与此同时,将与信号线的距离拉开而减少互感。在这里,壳体的长边方向的一边附近例如为壳体的短边方向的一边的1/3左右以内的范围。

为了使主电极106的端子与电路图案的接合部作为散热单元而有效地发挥作用,需要沿这些接合部配置尽可能多的半导体芯片,因此,优选为细长的壳体。

<第4实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图5是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图5所例示的那样,在壳体的由外框102所包围的内部配置绝缘基板105。另外,在绝缘基板105之上配置多个主电极106。

另外,在绝缘基板105之上配置多个半导体芯片104。并且,在绝缘基板105之上配置多个信号电极107。各半导体芯片104通过键合导线103而与信号电极107接合。另外,各信号电极107分别配置于壳体的外框102的短边方向的边的附近,通过信号配线108而与信号端子101电连接。信号端子101配置于壳体的短边方向的一侧的外框102处。在这里,壳体的外框102的短边方向的边的附近例如为壳体的长边方向的一边的1/3左右以内的范围。

如果信号配线108受到来自主电路的互感,则会发生诸如引起反馈等问题。当前,为了避免该问题,采用在尽可能靠近信号端子101的部位将信号电极107和电路图案电连接的构造。然而,在壳体的外形在俯视观察时为长方形的情况下,由于一个igbt半导体芯片位于远离信号端子101处,因此位于远离信号端子101处的igbt半导体芯片与信号端子101之间的信号配线108会经过电路构造密集的区域。这样,设计变得复杂,并且并未得到理想的配置。

作为其他方法,也有使信号端子自身配置得远的例子,但只不过是将问题转移至外部配线侧,大多并未根本性地解决问题。

根据本实施方式中的构造,主电极106的端子仅集中于壳体的长边的其中一个长边而配置。因此,在与配置主电极106的端子的边相反侧的边,不易受到互感。因此,通过将配置于远离信号端子101的位置处的信号电极107与信号端子101之间的信号配线108,配置在与配置主电极106的端子的边相反侧的边的附近,从而不易受到由主电极106的端子引起的互感,并且实现将电路构造密集的区域避开的配线。

此外,各连接既可以为直接形成于半导体芯片104之上,也可以为经由电路图案或者其他半导体芯片之上而形成。

另外,在与图2或图3所例示的构造进行组合的情况下,通过将2个复合元件的信号电极配置于相对的短边,从而能够得到包含复合元件与信号电极的导线键合在内的导线键合的直线性。另外,能够使导线键合终点位于壳体的长边方向的中央附近,减轻向复合元件与信号端子之间的信号配线108的互感。

<第5实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图6是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图6所例示的那样,在壳体的由外框102所包围的内部配置绝缘基板105。另外,在绝缘基板105之上配置多个主电极106。

另外,在绝缘基板105之上配置复合元件65及复合元件66。

igbt模块的igbt半导体芯片和反向并联的二极管芯片不同时地进行通电,但在将igbt半导体芯片置换为二极管芯片而形成并联2个二极管的芯片的情况下,同时地进行通电。

在该情况下,如果某一方的导线键合经由其他半导体芯片,则在经由部分流过2倍的电流,因此需要使导线键合数量很大,根据二极管芯片的尺寸,也会发生无法形成充足的数量的键合导线的情况。然而,如果使各二极管芯片独立地与电路图案连接,则会大幅地消耗图案面积,对于壳体的尺寸或者制造成本而言是不利的。

在这里,在应用上述的厚铜基板的情况下,沿宽度窄的图案方向流过电流这点不会成为制约。因此,能够设置宽度窄的中转电路图案67,经由中转电路图案67而将从igbt半导体芯片的发射极引出的键合导线103、从二极管芯片的阳极引出的键合导线103在键合点62进行连接,其中,该中转电路图案67配置于俯视观察时由2个半导体芯片所夹着的位置。

然而,在配置2个复合元件的情况下,用于将2个复合元件连接的电路图案的绕引会造成浪费。为了消除该浪费,一个复合元件65是经由宽度窄的中转电路图案67而与并联二极管连接。另一个复合元件66是以不经由宽度窄的中转电路图案67的状态与并联二极管连接。

<第6实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图7是概略地例示主电极的弯曲部附近的构造的剖视图。在图7中,以虚线例示的部分是例示主电极弯曲之前的状态的部分。

如图7所例示的那样,主电极106a的端部从壳体73的上表面处的凹部71伸出一部分而配置。另外,主电极106a的端子在壳体73的上表面的凹部71处向远离壳体73的外框的方向、即壳体73的俯视观察时的内侧方向弯曲。在这里,凹部71在主电极106a被弯曲的内侧方向为c面。另外,在主电极106a以被弯曲的状态配置时,凹部71在与主电极106a被弯曲的内侧方向相反的外侧方向形成间隙。

在主电极106a与电路图案接合后被弯曲的构造中,在试图确保模块内部空间尽可能宽阔的情况下,优选主电极106a被弯曲前的主电极106a的端子在尽可能靠近外框的位置进行配置。然而,如果主电极106a的端子以接近于外框的状态而配置,则有时沿面距离不足。

因此,在本实施方式中,将主电极106a的端子的曲率半径r设定得比较大,且主电极106a的端子在相对于壳体的上表面来说被埋没的位置处弯曲。根据这样的构造,在主电极106a被弯曲前的主电极106a的端子配置于靠近外框102的位置的情况下,也能够充分地确保主电极106a被弯曲后的主电极106a的端子的从外框102起的沿面距离。

此外,例如,如图6所例示的那样,在形成多个主电极的情况下,除去加工精度的波动,各主电极的弯曲部与相邻的壳体的外框的距离大致相等。

<第7实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图8是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。

如图8所例示的那样,在壳体的由外框102所包围的内部配置半导体芯片81及半导体芯片82。

工序的节拍时间(takttime)中所包含的导线键合时间相对于导线键合装置的折旧费而言,成为无法忽视的成本。

另外,在多个工厂平行生产多种导线键合结构的产品的情况下,复杂的键合导线配线会使导线键合程序中的装置停止时间变长,对初始成本造成影响。另外,复杂的导线键合也会使初始检验变得复杂,容易产生由于针对疏漏进行设计返工而造成的多余的成本。

根据本实施方式,同种的半导体芯片81排列的方向与半导体芯片81处的键合导线103的架设的方向之间的角度在20度以内。另外,同种的半导体芯片82排列的方向与半导体芯片82处的键合导线103的架设的方向之间的角度在20度以内。因而,由于能够形成对称性、连续性以及周期性高的导线键合,因此能够消除上述的课题。

<第8实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图9是概略地例示本实施方式涉及的用于实现半导体装置的结构之中的、壳体内的半导体芯片及其周边的构造的俯视图。在图9中,仅图示了与复合元件94相对应的信号配线108,省略了与复合元件93相对应的信号配线108的图示。

如果将从igbt半导体芯片的发射极引出的键合导线103经由二极管芯片而与电路图案连接,则从igbt半导体芯片的发射极引出的键合导线103变长。这样,需要增加键合导线的根数来应对发热。从加工时间或者制造成本的角度来看,这样是不利的。然而,如果将从igbt半导体芯片的发射极引出的键合导线103以不经由二极管芯片的状态与电路图案连接,则驱动发射极的导线的连接会变得局促。

因此,在本实施方式中,在均由igbt半导体芯片和二极管芯片构成的复合元件93及复合元件94之中,在不经由中转电路图案95的复合元件94处,使igbt半导体芯片的驱动电位基准91即发射极驱动线经由二极管芯片而与电路图案或者信号电极进行连接。

<第9实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。

通常,在不存在壳体或者电极等的物理性故障的范围内,尽可能地形成导线键合。然后,将主电极进行us接合等,然后,进一步地利用键合导线将壳体的信号电极和绝缘基板之上的电路图案电连接。

在该方法中,需要在us接合的前后进行导线键合,导线键合工序成为2次。然而,为了进行us接合而使用的工具大,对于内部空间狭小的模块而言,难以将信号电极与电路图案进行us接合。因而,通过us接合工序对信号电极进行连接而削减第2次导线键合工序这一点成为大的设计阻碍。

因此,在尚未实施任何将半导体芯片和电路图案进行连接的导线键合的状态下,进行电极的全部us接合,然后,形成将半导体芯片和电路图案进行连接的导线键合。

<第10实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。

如果应用厚铜基板,则电流的通电似然度过高,对于通常的si半导体芯片设备来说,在由热损失散热造成的限制下,不能充分地有效利用该优势。因此,采用使用了宽带隙半导体的半导体芯片。

作为宽带隙半导体,例如具有碳化硅(sic)、氮化镓(gan)、c(金刚石)、ga2o3、aln、c3n4、si3n4、ge3n4、sn3n4、al4c3、ga4c3、或者gec等。在这里,宽带隙半导体通常是指大致具有大于或等于2ev的禁带宽度的半导体,已知氮化镓(gan)等3族氮化物、氧化锌(zno)等2族氧化物、硒化锌(znse)等2族硫属化物、金刚石以及碳化硅等。

与使用了si半导体的设备相比,使用了上述这样的宽带隙的半导体的开关设备通常每单位面积的热损失量较低。因此,在使用了厚铜基板的情况下,也会缓和由热损失散热造成的限制。

<第11实施方式>

对本实施方式涉及的半导体装置及半导体装置的制造方法进行说明。在下面,对与上述的实施方式中所说明的结构相同的结构标注相同的标号而进行图示,适当地省略其详细说明。

<关于半导体装置的结构>

图1是概略地例示本实施方式涉及的用于实现半导体装置的结构的俯视图。在图1中,将在上述的各实施方式中所说明的结构组合而进行例示。

如图1所例示的那样,在壳体的由外框102所包围的内部配置绝缘基板105。并且,在绝缘基板105之上配置复合元件113及复合元件114。并且,将各复合元件与电路图案连接的键合导线103是沿壳体的外框102的长边方向而架设的。

另外,在壳体的外框102设置电极100和信号端子101。

另外,在应用厚铜基板作为电路图案的情况下,沿宽度窄的图案方向流过电流这点不会成为制约。因此,在复合元件113的各半导体芯片间设置宽度窄的中转电路图案115,能够经由中转电路图案115而将从igbt半导体芯片的发射极引出的键合导线103、从二极管芯片的阳极引出的键合导线103进行连接。

另外,在绝缘基板105之上配置多个主电极106。主电极106聚集于壳体的外框102的长边方向的一边的附近而配置。

另外,在绝缘基板105之上配置多个信号电极107。各信号电极107分别配置于壳体的外框102的短边方向的边的附近,通过信号配线108而与信号端子101连接。在这里,配置于远离信号端子101的位置处的信号电极107与信号端子101之间的信号配线108被配置在与配置主电极106的端子的边相反侧的边的附近。

<关于由上述的实施方式实现的效果>

下面,例示由上述的实施方式实现的效果。此外,下面记载了基于上述的实施方式所例示的具体结构的效果,但在产生相同的效果的范围内,也可以置换为本说明书所例示的其他的具体结构。另外,该置换也可以横跨多个实施方式而进行。即,也可以是将在不同的实施方式中所例示的各结构组合而产生相同的效果。

根据上述的实施方式,半导体装置具有键合导线103和多个半导体芯片104。并且,在俯视观察时由外框102所包围的壳体内,多个半导体芯片104配置于电路图案之上。另外,键合导线103将电路图案与多个半导体芯片104之间电连接。另外,多个半导体芯片104沿壳体的长边方向而排列。另外,键合导线103沿壳体的长边方向而架设。

根据这样的结构,能够在宽度窄、且深度深的壳体内,对导线键合作业的制约进行抑制。

此外,除了这些结构以外的本说明书所例示的其他结构能够适当地进行省略。即,仅利用这些结构就能够产生上述的效果。然而,在将本说明书所例示的其他结构之中的至少1个适当地追加至上述的结构的情况下,即,在将未作为上述的结构而记载的、本说明书所例示的其他结构追加至上述的结构的情况下,也能够相同地产生上述的效果。

另外,根据上述的实施方式,电路图案由厚度大于或等于0.4mm的铜箔构成。根据这样的结构,每单位图案宽度的图案剖面积变大。因此,即使为窄的图案宽度也能够流过大电流,对于在宽度窄的图案方向也流过电流这一点不存在限制。

另外,根据上述的实施方式,半导体装置具有2个将2个半导体芯片反向并联连接的第1复合元件。在这里,复合元件33及复合元件34对应于第1复合元件。并且,在一个复合元件33处,经由第1中转电路图案而将2个半导体芯片反向并联连接,该第1中转电路图案配置于俯视观察时由2个半导体芯片所夹着的位置。在这里,中转电路图案35对应于第1中转电路图案。在另一个复合元件34处,直接将2个半导体芯片反向并联连接,而不经由中转电路图案35。根据这样的结构,能够减少用于将2个复合元件进行连接的电路图案的绕引的浪费,抑制壳体的尺寸或者制造成本。

另外,根据上述的实施方式,半导体装置具有信号电极,该信号电极配置于壳体内,且与各半导体芯片104电连接。并且,2个第1复合元件之中的另一个第1复合元件由igbt半导体芯片和二极管芯片构成。在这里,复合元件93及复合元件94对应于第1复合元件。另外,复合元件94对应于另一个第1复合元件。另外,igbt半导体芯片的驱动电位基准91经由二极管芯片而与电路图案或者信号电极连接。根据这样的结构,从igbt半导体芯片的发射极引出的键合导线103不会变长,因此无需增加键合导线的根数来应对发热。因此,能够减少加工时间或者制造成本。

另外,根据上述的实施方式,半导体装置具有2个将2个二极管芯片即半导体芯片并联连接的第2复合元件。在这里,复合元件65及复合元件66对应于第2复合元件。并且,在一个复合元件65处,经由第2中转电路图案而将2个半导体芯片并联连接,该第2中转电路图案配置于俯视观察时由2个半导体芯片所夹着的位置。在这里,中转电路图案67对应于第2中转电路图案。另外,在另一个复合元件66处,直接将2个半导体芯片并联连接,而不经由中转电路图案67。根据这样的结构,能够减少用于将2个复合元件进行连接的电路图案的绕引的浪费,抑制壳体的尺寸或者制造成本。

另外,根据上述的实施方式,多个半导体芯片104为使用了宽带隙半导体的半导体芯片。与使用了si半导体的设备相比,使用了宽带隙的半导体的开关设备通常每单位面积的热损失量较低。因此,在使用了厚铜基板的情况下,也会缓和由热损失散热造成的限制。

另外,根据上述的实施方式,半导体装置具有在壳体内配置的主电极106。并且,主电极106配置于壳体的长边方向的一个边的附近。另外,主电极106与电路图案之间的连接为超声波接合、焊接、或者钎焊。根据这样的结构,通过使作为磁通产生源的电极集中于一个边的附近而提高磁阻,能够降低电感。另外,能够降低电极的制造成本。另外,用于消除与信号配线108之间的互感等的设计变得容易。

另外,根据上述的实施方式,半导体装置具有多个信号电极107和与信号电极107电连接的信号端子101。并且,多个信号电极107配置于壳体内,且与各半导体芯片104电连接。另外,信号电极107分别配置于壳体的短边方向的边的附近。另外,信号端子101配置于壳体的短边方向的一侧的外框102处。另外,将信号端子101与下述的信号电极107之间连接的信号配线108经过与对主电极106进行配置的壳体的长边方向的一个边相反侧的壳体的长边方向的另一个边的附近而进行配线,该信号电极107配置于与配置信号端子101的外框102相反侧的壳体的短边方向的边的附近。根据这样的结构,信号配线108不易受到由主电极106引起的互感的影响。另外,能够在电路图案之上的远离其他电路的位置配置信号配线。

另外,根据上述的实施方式,壳体在上表面具有凹部71。另外,主电极106a的端部从凹部71凸出,且在凹部71处向壳体的俯视观察时的内侧方向弯曲而形成。根据这样的结构,在主电极106a被弯曲前的主电极106a的端子配置于靠近外框102的位置处的情况下,也能够充分地确保主电极106a被弯曲后的主电极106a的端子的从外框102起的沿面距离。

另外,根据上述的实施方式,彼此为同种半导体芯片的多个半导体芯片沿壳体的长边方向而排列。另外,多个半导体芯片排列的方向与该半导体芯片处的键合导线103的架设方向之间的角度在20度以内。根据这样的结构,由于能够形成对称性、连续性以及周期性高的导线键合,因此能够削减制造成本。

另外,根据上述的实施方式,在半导体装置的制造方法中,在俯视观察时由外框102所包围的壳体内的、壳体的长边方向的一个边的附近,将主电极106超声波接合于电路图案之上,在将主电极106接合之后,利用沿壳体的长边方向架设的键合导线103,将在壳体内的电路图案之上沿壳体的长边方向排列而配置的多个半导体芯片104与电路图案电连接。

根据这样的结构,能够在宽度窄、且深度深的壳体内,对导线键合作业的制约进行抑制。另外,由于进行1次导线键合工序即可,因此能够实现制造成本的削减或者节拍时间的缩短。

此外,除了这些结构以外的本说明书所例示的其他结构能够适当地进行省略。即,仅利用这些结构就能够产生上述的效果。然而,在将本说明书所例示的其他结构之中的至少1个适当地追加至上述的结构的情况下,即,在将未作为上述的结构而记载的、本说明书所例示的其他结构追加至上述的结构的情况下,也能够相同地产生上述的效果。

<关于上述的实施方式的变形例>

在上述的实施方式中,有时对各结构要素的材质、材料、尺寸、形状、相对配置关系或者实施条件等也进行了记载,但这些在全部的方面均仅为例示,并不限于本说明书所记载的内容。因此,在本说明书公开的技术的范围内,可以设想出未例示的无数的变形例。例如包含下述情况,即:将至少1个结构要素进行变形的情况、进行追加的情况、或者进行省略的情况,以及提取出至少1个实施方式中的至少1个结构要素而与其他实施方式的结构要素进行组合的情况。

另外,在未产生矛盾的范围内,在上述的实施方式中记载为具有“1个”的结构要素也可以具有“大于或等于1个”。并且,各结构要素为概念上的单位,包含1个结构要素由多个构造物构成的情况、1个结构要素对应于某个构造物的一部分的情况、以及1个构造物具有多个结构要素的情况。另外,在发挥相同的作用的范围内,各结构要素包含具有其他构造或者形状的构造物。

另外,关于本说明书中的说明,是为了本技术涉及的全部的目的而参阅的,均未承认是现有技术。

另外,在上述的实施方式中,在记载了材料名等而未特别地进行指定的情况下,在未产生矛盾的范围内,视作包括该材料含有其他添加物的情况,例如包括合金等。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1