一种铒掺杂的硫化钼薄膜及其制备方法与流程

文档序号:11679748阅读:644来源:国知局
一种铒掺杂的硫化钼薄膜及其制备方法与流程

本发明涉及一种提供硫化钼薄膜发光特性的方法,特别涉及一种铒掺杂的硫化钼薄膜及其制备方法。



背景技术:

mos2,又称为辉钼,为常温下呈金属光泽的黑色固体物质,具有优异的化学稳定性、热稳定性(熔点1185℃)和润滑性,通常用于机械、切削工具的表面涂层或润滑剂。块体mos2为间接带隙(1.2ev)半导体,结构上,mos2呈六方密堆积的石墨层状结构,层与层间由弱相互作用的范德瓦耳斯力相结合。与石墨容易剥离为单原子层的石墨烯相似,通过微机械剥离辉钼也容易成为单层mos2膜(参见文献:s.bertolazzi,j.brivio,a.kis,stretchingandbreakingofultrathinmos2,acsnano,v.5(12):9703-9709,2011.)。单层mos2为s-mo-s三原子共价键结合的正六边形平面结构,厚度仅为0.65nm。单层mos2不仅具有与石墨烯材料相似的网状结构,还具有较大的1.8ev直接带隙和相近的光电磁特性。单层mos2可用于制造场效应晶体管、光探测器件等光电子器件。然而,单层mos2一般需要机械剥离法才能精确获得,人工生长的硫化钼二维材料大多含有几个及几十个原子层,研究人员发现,随硫化钼层数的增加,其电子带隙又趋向于体材料,变成间接带隙半导体。由于间接带隙半导体材料的电子跃迁几率低,致使辐射复合发光效率低,限制了其在光学及光电子器件方面的广泛应用。硫化钼薄膜需要在太阳能电池、光探测器及发光器件中发挥作用的话,还需要有效提高其发光性能。



技术实现要素:

本发明针对多原子层硫化钼薄膜发光性能弱的特点,提供一种能有效提高硫化钼薄膜发光强度的铒掺杂的硫化钼薄膜及其制备方法。

实现本发明目的技术方案是提供一种铒掺杂的硫化钼薄膜的制备方法,采用化学气相沉积方法,以er(no3)3作为er掺杂剂对mos2进行掺杂;包括如下步骤:

(1)衬底清洗:以n-si(111)片为衬底,用稀hf酸浸泡去除si表面的二氧化硅,再依次用丙酮、乙醇、去离子水超声波清洗,去除硅片上的有机物,用氮气吹干,放入石英管进行沉积处理;石英管的真空度为10-2pa,加热到300℃,去除硅片表面的水汽;

(2)稀土铒掺杂的mos2薄膜制备:将石英管加热到500~600℃,以氩气作为携载气体,在以稀硫酸为溶剂的mos2溶液中加入er(no3)3溶液,按质量比,mos2:er(no3)3为5:1~1:1,气携载mos2和er(no3)3进入石英管在n-si(111)片进行吸附、成核和生长处理5~10分钟,再将石英管升温到700~950℃进行退火处理,退火时间为10~40分钟,得到铒掺杂的mos2薄膜。

本发明技术方案还包括按上述制备方法得到的一种铒掺杂的硫化钼薄膜。

本发明的原理:由于稀土元素具有未充满的4f电子层,在紫外光辐照下4f电子在f-f组态之内或f-d组态之间的跃迁,可在7个4f轨道之间任意排布,因此产生了各种能级和光谱项,可以吸收或发射从紫外光区,可见光区到红外光区的各种波长的电磁波辐射。对于一般发光性能不好的物质添加一些稀土元素离子,物质将被激活发光,其发光性能将显著提高。稀土离子在其中主要起到发光激活剂的作用。稀土元素铒可以发射蓝光、绿光和红光,在663nm处发射的红光与硫化钼发射波段相一致,可有效起到发光激活中心作用。本专利选用稀土元素铒作为激活中心,掺杂mos2薄膜,提高刘桦木的发光性能。铒原子作为激活原子,一方面可有效吸收光能量,并将能量传递给硫化钼,促进其吸收光能量。另一方面,金属中自由电子吸收可见光形成表面等离子体共振现象,可极大改变mos2的发光特性,从而提高硫化钼薄膜的发光性能。

稀土元素具有良好的发光特性,与现有技术相比,本发明的有益效果在于:本发明提供的铒掺杂的硫化钼薄膜,以稀土元素铒作为激活中心,掺杂多层硫化钼薄膜,在mos2薄膜中作为激活元素起到发光中心的作用,激活硫化钼薄膜的发光,提高mos2薄膜的光吸收和辐射发光的几率,有效提高了硫化钼薄膜发光强度。

附图说明

图1是未掺杂的硫化钼的原子力显微镜表面形貌图;

图2是本发明实施例提供的一种铒掺杂的硫化钼薄膜的表面形貌图;

图3是本发明实施例提供的未掺杂与铒掺杂的硫化钼薄膜的x-射线衍射对比图;

图4是本发明实施例提供的未掺杂与铒掺杂的硫化钼薄膜的光吸收对比图;

图5是本发明实施例提供的未掺杂与铒掺杂的硫化钼薄膜的荧光光谱对比图。

具体实施方式

下面结合附图和实施例对本发明技术方案作进一步的阐述。

实施例1

本实施例利用化学气相沉积方法在n-型硅片(111)上生长超薄mos2薄膜(几个原子层),并在其生长过程中利用er原子进行掺杂。

本实施例所采用的化学气相沉积(cvd)法制备mos2薄膜的装置由四部分构成:石英管构成的反应沉积室、真空抽气系统、气体质量流量计和温度控制系统。衬底材料采用电阻率为3~5ω•cm、晶向(111)的n型硅(si)片,尺寸为12×12mm2×500μm。

制备方法包括如下步骤:

1、衬底清洗:首先用稀hf酸浸泡15分钟去除si表面的二氧化硅,再依次用丙酮、乙醇、去离子水超声波清洗,去除硅片上的有机物,最后用氮气吹干,然后放入石英管。沉积之前,将石英管真空抽至10-2pa,加热到300℃维持10分钟,以去除硅片表面的水汽。

2、铒掺杂mos2薄膜制备:将石英管加热到500℃(适用范围为500~600℃),用ar气作为携载气体,通入分析纯mos2溶液(稀硫酸为溶剂),并以分析纯er(no3)3作为er掺杂剂对mos2进行掺杂。为了在mos2薄膜生长的同时进行掺杂,在mos2溶液以5:1的质量比(mos2:er(no3)3的范围可以为5:1~1:1)加入er(no3)3溶液。氩气携载mos2和er(no3)3进入石英管在n-si(111)片进行吸附、成核和生长10分钟(适用范围为5~10分钟),然后将石英管升到950℃(适用范围为700~950℃)进行退火处理,退火时间30分钟(适用范围为20~40分钟)。

将制备得到的er掺杂的硫化钼薄膜进行表面形貌、结构和光学特性测量,利用原子力显微镜分析薄膜表面形貌。薄膜结构应用x-射线分析,并用紫外-可见光(uv-vis)分光光度计(shimadzuuv-3600)分析样品的吸收谱,最后测量铒掺杂硫化钼的发光光谱。

参见附图1,为一张n-si片上制备的未掺杂铒原子的mos2薄膜的原子力显微镜照片。可以看出,许多mos2量子点分布在衬底表面。mos2薄膜的平均厚度大约25nm,量子点突起的最高高度为50nm.

图2为相同时间制备的铒掺杂的mos2薄膜的表面形貌图。可以看出,在相同的生长时间,铒掺杂后,硫化钼量子点的成核密度显著增加;硫化钼薄膜的平均厚度比未掺杂样品增加一倍,最高厚度达到100nm.稀土元素铒具有催化作用,可加速硫化钼薄膜的成核与生长。

图3为所制备的未掺杂与铒掺杂硫化钼样品的x-射线衍射对比谱图。由图可看出,未掺杂样品在14.7°,47.8°,54.6°,和56.4°的2θ角度处有4个较强的衍射峰,与mos2晶体的xrd标准卡片对比,分别对应硫化钼的(002),(105),(106)和(110)晶面。对于掺杂样品,在29.5°and44.8°角度处增加了两个衍射峰,分别对应mos2的(104)(110)晶面。说明铒掺杂可增加mos2薄膜的结晶性。

图4为所制备的未掺杂与铒掺杂样品的mos2薄膜的可见光吸收对比谱图。利用uv-3600分光光度计测量了所制备的mos2薄膜样品的吸收谱。可以看出,铒掺杂后,硫化钼薄膜的吸收率显著增强。硫化钼对300~700nm波段的可见光有很强的吸收,这表明硫化钼可用作良好的光吸收材料。大于732nm时,吸收强度迅速减小。则732nm为硫化钼薄膜的吸收限,根据半导体材料带隙宽度与波长间的关系:eg=1.24/λ(ev)可以得到所制备的硫化钼薄膜的带隙宽度为1.69ev。由于硫化钼的带隙宽度随层数的增加而减小,因此该带隙宽度小于单层硫化钼直接带隙的宽度(1.8ev),与典型的多层膜的带隙宽度相对应。

图5为所制备未掺杂与掺杂样品的mos2薄膜的可见光荧光光谱对比图。室温下在360nm光激发下,未掺杂mos2样品在693nm处有一个光致发光峰,与数原子层的mos2的本征辐射发光。对于铒掺杂的硫化钼样品有2个很强的发光峰,除了693nm处的本征发光峰外,在394nm处增加了一个蓝色的发光峰。显然掺铒样品在693nm处的本征发光峰强度比未掺杂样品的发光强度增加了一倍。这是因为铒离子具有活性中心的作用,可以起到激活中心的作用,激活硫化钼薄膜的发光。在394nm处的蓝色发光峰主要来自于铒离子的发光,是从其2h11/2能级向4i1/5能级辐射跃迁的结果。

本实施例提供的铒掺杂的硫化钼薄膜,通过掺杂稀土元素铒,硫化钼薄膜在693nm处的本征发光强度增强了一倍,证明稀土元素铒具有提升硫化钼薄膜发光性能的作用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1