电池充电连接装置的制作方法

文档序号:14196525阅读:352来源:国知局
电池充电连接装置的制作方法

本发明属于电池充电领域,具体地指一种电池充电连接装置。



背景技术:

目前市面上电动车电池只能显示当前电量信息,无法获取和控制电池的状态,从而导致大量的蓄电池缺乏有效的管理,从而导致电池寿命变短、放电能力变差,给企业造成巨大的财务损失,同时蓄电池的过量使用也会导致环境污染。充电时不能实现快速高效的调节两个连接座之间的间距,并且装置不能实现快速将充电装置快速固定于电池上,从而不方便使用者使用。



技术实现要素:

本发明的目的是为了克服上述不足而提供一种电池充电连接装置。

一种电池充电连接装置,包括第一连接座1和安装于第一连接座1一侧的第二连接座3,所述第一连接座1的一侧四角连接有第一连接管2,所述第二连接座3的一侧四角设有插槽,所述插槽的底部连接有内杆5,所述第一连接管2的一端插设于插槽内,所述内杆5的一端插设于第一连接管2内,所述第一连接座1的一侧中部设有第二连接管6,所述第二连接座3的上方设有转动槽,所述转动槽底部设有第二转动轮9,所述第二转动轮9的一侧连接有螺纹杆7,所述第二连接座3的一侧设有与转动槽连通的插口,所述第二连接管6远离第一连接座1的一端插设于插口内,所述螺纹杆7远离第二转动轮9的一端插设于第二连接管6内,所述转动槽内还转动连接有第一转动轮8,所述第一转动轮8的一侧与第二转动轮9的一侧啮合连接,所述第二连接座3远离第一连接座1的一侧对称滑动连接有夹持板4。

本发明操作方便,结构简单,可以将整个充电装置通过安装杆快速放置于第一连接座上,此时第二连接座可以快速固定于电池上,从而转动第一转动轮,使得第二转动轮被带动转动,进而使得整个螺纹杆可以不断地转动,使得第二连接管可以快速与螺纹杆螺纹连接,从而使得第一连接座和第二连接座之间的间距缩小,还能监控电池的充电饱和度、电池电量下降过快等异常状况,并使用不同的分级式充电方法进行补充电,消除深度亏电蓄电池内部硫化问题,而且通过调校使得谐波干扰小,可以实现输出直流电压灵活的升压和降压输出,满足大范围的不同类型的电池管理,提高蓄电池的使用寿命。

附图说明

图1为本发明结构示意图;

图2为本发明侧面结构示意图;

图3为本发明顶面结构示意图。

图4为本发明中充放电管理系统示意图。

具体实施方式

下面结合附图及实施例进一步说明本发明。

实施例:本发明是一种电池充电连接装置包括第一连接座1和安装于第一连接座1一侧的第二连接座3,所述第一连接座1的一侧四角连接有第一连接管2,所述第二连接座3的一侧四角设有插槽,所述插槽的底部连接有内杆5,所述第一连接管2的一端插设于插槽内,所述内杆5的一端插设于第一连接管2内,所述第一连接座1的一侧中部设有第二连接管6,所述第二连接座3的上方设有转动槽,所述转动槽底部设有第二转动轮9,所述第二转动轮9的一侧连接有螺纹杆7,所述第二连接座3的一侧设有与转动槽连通的插口,所述第二连接管6远离第一连接座1的一端插设于插口内,所述螺纹杆7远离第二转动轮9的一端插设于第二连接管6内,所述转动槽内还转动连接有第一转动轮8,所述第一转动轮8的一侧与第二转动轮9的一侧啮合连接,所述第二连接座3远离第一连接座1的一侧对称滑动连接有夹持板4。所述第二连接座3的一侧设有限位槽,所述限位槽内转动连接蜗杆11,所述蜗杆11的两端与限位槽的内壁之间转动连接。所述夹持板4的一端设有移动环10,所述移动环10螺纹连接于蜗杆11上。所述第二连接座3的一侧设有与限位槽连通的安装槽,所述安装槽内转动连接有蜗轮12,所述蜗杆11的一侧与蜗轮12螺纹连接。所述夹持板4的一侧转动连接有夹持机构,所述夹持机构包括两个夹持爪,两个所述夹持爪之间通过转轴转动连接,所述转轴上套接有扭力弹簧,所述扭力弹簧的两端分别连接在夹持爪上。所述第一连接座1上设有穿插口,所述穿插口的内壁上通过弹性装置连接有卡接环,所述卡接环的一侧设有海绵层。

所述第一连接座1上安装有充电装置,所述第二连接座3上安装有电池,所述充电装置内置有充放电管理模块,所述充放电管理模块具体包括:数据检测单元、中央处理器中、整流单元、升降压单元、判断单元和驱动单元,数据检测单元与电池状态监测节点相连,中央处理器同时与数据检测单元、判断单元和驱动单元相连,整流单元同时与升降压单元和驱动单元相连,升降压单元同时与判断单元和负载相连。

所述中央处理器同时与数据检测单元之间还连接有调校单元,用于通过以下调校函数对电压信号进行调校:

其中,f(|x(t)|)为输入电压信号的动态幅值,tan(·)为双曲正切函数,|x|max为输入的最大瞬时电压值,|x(t)|为t时刻的瞬时输入电压值。

使用者使用该装置时,转动第一转动轮8,使得第二转动轮9被带动转动,进而使得整个螺纹杆7可以不断地转动,使得第二连接管6可以快速与螺纹杆7螺纹连接,从而使得第一连接座1和第二连接座3之间的间距缩小。

管理电动车电池的方法包括以下步骤:

步骤1:识别每个电池的身份信息;

步骤2:使用多个电池状态监测节点监测电池状态,得到监测数据并通过无线网络传输至数据检测单元;

步骤3:数据检测单元将数据传送到中央处理器,中央处理器根据得到检测数据,对电池进行充放电管理。

所述步骤1具体包括以下步骤:

步骤11:在电池上贴上身份识别二维码;

步骤12:利用手机微信上的扫一扫功能获取电池身份信息;

步骤13:在电动车上贴上身份识别二维码,利用手机微信上的扫一扫功能获取电动车身份信息。

所述步骤2和3之间还包括:将数据检测单元与各个电池状态监测节点进行组网。

所述将数据检测单元与各个电池状态监测节点进行组网步骤中,如果电池状态监测节点持续且按固定频率向数据检测单元发送信息,则电池状态监测节点与数据检测单元之间的组网通信符合要求;数据检测单元检测到电池状态监测节点持续且按固定频率发出的信息后,向电池状态监测节点反馈接收到的每条信息的间隔周期,电池状态监测节点对数据检测单元反馈的每条信息的间隔周期进行辨别核对,如果数据检测单元反馈的每条信息的间隔周期与节点自身的预设周期一致,则组网通信符合要求,电池状态监测节点按预设周期向数据检测单元发送电池参数信息,数据检测单元收到电池参数信息后停止向电池状态监测节点反馈接收到的每条信息的间隔周期;如果数据检测单元反馈的每条信息的间隔周期与节点自身的预设周期不一致,则电池状态监测节点停止向数据检测单元发送信息,并将电池状态监测节点重新初始化重复上述步骤直到,组网通信符合要求为止。所述步骤3具体包括:

步骤301,系统上电,进行系统初始化;

步骤302,数据检测单元将检测的电压、电流和剩余电量输入到中央处理器中;

步骤303,在判断单元中设置剩余电量为零时对应的电池电压阀值u0为12v;

步骤304,中央处理器判断系统自身是否需要进行预充电,若需要则转下一步,若不需要则转步骤306;

步骤305,中央处理器输出占空比可变的脉冲波至整流单元,通过整流单元进行进行不控整流,对升降压单元中的电容进行预充电,达到设定值则转下一步;

步骤306,判断单元判断剩余电量是否为0,当剩余电量为0时转下一步,当剩余电量为不0时,转步骤312;

步骤307,中央处理器将接收的电压值和电流值,通过坐标系变换和dpll处理得到电压角频率和相位;

步骤308,在零与12v之间根据电池电压大小平均划成三等份,依次设置2个平均临界点4v和8v,将电池的消耗程度分为三个层次即严重消耗:0<u<4v;中等消耗:4v<u<8v;轻微消耗:8v<u<12v;当电池为严重消耗时,电池没有再利用价值不进行充电;当电池为中等消耗时:分两阶段进行充电,以电流4.5a和限压18v充电10小时,然后以限流22.5a和电压16.2v充电20小时;当电池为轻微消耗时:分两阶段进行充电,以电流4.5a和限压18v充电6小时,然后以限流22.5a和电压16.2v充电20小时;

步骤309,在此充电控制模式下,判断单元将充电时的输出电流输入到中央处理器中;

步骤310,通过svpwm计算得出占空比,生成脉冲波;

步骤311,将脉冲波输入驱动单元中,产生驱动信号用于发送至整流单元控制其和升降压单元通断,进行充电;

步骤312,在零与10.8v之间根据电池电压大小平均划成三等份,依次设置2个平均临界点3.6v和7.2v,将电池的消耗程度分为三个层次即次严重消耗:0<u<3.6v;次中等消耗:3.6v<u<7.2v;次轻微消耗:7.2v<u<10.8v;当电池为次严重消耗时,以限流9a和电压16.2v充电18小时;当电池为次中等消耗时,以限流9a和电压16.2v充电14小时;当电池为次轻微消耗时以限流9a和电压16.2v充电10小时;

步骤313,在此充电控制模式下,判断单元将充电时的输出电压输入到中央处理器中;

步骤314,通过svpwm计算得出占空比,生成脉冲波;

步骤315,将脉冲波输入驱动单元中,产生驱动信号用于发送至整流单元控制其和升降压单元通断,进行充电;

步骤316,中央处理器判断是否结束工作,当需要继续工作时,转步骤313;步骤317,中央处理器将占空比置零,驱动单元即刻输出负压驱动信号,关断整流单元停止工作。

所述步骤步骤307中接收电压值和电流值之间通过调校单元对电压信号进行调校,所述调校函数为:

其中,f(|x(t)|)为输入电压信号的动态幅值,tan(·)为双曲正切函数,|x|max为输入的最大瞬时电压值,|x(t)|为t时刻的瞬时输入电压值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1