半导体装置及半导体装置的制造方法与流程

文档序号:15740210发布日期:2018-10-23 22:10阅读:157来源:国知局

本发明涉及半导体装置及半导体装置的制造方法。



背景技术:

近年来,以IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极型晶体管)为中心,功率半导体模块被广泛用于电力转换装置。功率半导体模块为内置一个或多个功率半导体芯片而构成转换连接的一部分或整体,并且具有功率半导体芯片与底板或冷却面之间被电绝缘的结构的功率半导体器件。

图11是示出现有结构的功率半导体模块的散热器安装前的构成的剖视图。图12是示出现有结构的功率半导体模块的散热器安装后的构成的剖视图。如图11、图12所示,功率半导体模块具备:功率半导体芯片1、层叠基板2、底板3、壳体4、金属端子5、金属线6、盖体7、封装材料8和散热器11。

功率半导体芯片1为IGBT或二极管等功率半导体芯片,搭载于层叠基板2上。应予说明,层叠基板2为在陶瓷基板等绝缘基板21的正面和背面具备铜等导电性板22的基板。层叠基板2焊料接合于底板3。在底板3利用粘接剂粘接有壳体4。壳体4由聚苯硫醚(PPS:Poly Phenylene Sulfide)等热塑性树脂成形。金属端子5焊接固定于层叠基板2上,并贯通盖体7而突出到外部。金属线6将功率半导体芯片1与金属端子5电连接。盖体7由与壳体4相同的热塑性树脂构成。封装材料8作为对层叠基板2的沿面和搭载了功率芯片的基板上的功率半导体芯片1进行绝缘保护的封装材料而被填充到壳体4内。该封装材料8通常使用环氧树脂。环氧封装树脂的尺寸稳定性、耐水性、耐化学性及电绝缘性强,适合作为封装材料。

散热器11用于将在功率半导体芯片1产生的热经由层叠基板2、底板3而释放到外部。以往,在电气化铁路等使用的IGBT功率半导体模块与一般工业用的IGBT功率半导体模块相比,要求高可靠性。该要求之一有相对于温度波动的可靠性评价。作为可靠性评价有例如ΔTc功率循环。ΔTc功率循环是以直到壳体温度(Tc)达到任意的温度为止进行通电,在壳体温度达到任意的温度的时刻停止通电,并直到壳体温度返回到通电前的状态为止的周期为一个循环反复进行的试验。

因此,在一般工业用的IGBT功率半导体模块中,底板3使用廉价且导热性高的铜(Cu)和铜合金,但是在电气化铁路用等要求高可靠性的IGBT功率半导体模块中,底板3使用AlSiC(在铝或铝合金中含有碳化硅的复合材料)。以下,将使用了AlSiC的底板3记为AlSiC底板。

由于AlSiC与铜相比,热膨胀系数低,所以相对于温度波动的形状变化良好。由于工艺的制约,如图11所示,AlSiC底板的最外表面被200μm左右的软质铝(Al)金属层10覆盖。另一方面,如图11所示,散热器11存在因表面粗糙引起的凹凸9。由于散热器11的表面进行了固化处理,所以即使在例如散热器11由Al形成的情况下,也难以因底板3的挤压而被压垮。然而,AlSiC底板具有软质Al金属层10。因此,如果将散热器11安装于使用了AlSiC底板的功率半导体模块,则如图12所示,因底板3的挤压,软质Al金属层10被压垮,由此,能够填埋因凹凸9产生的间隙。由此,散热器11与功率半导体模块的紧密贴合性变好。

此外,存在如下技术:在功率半导体模块中,在因螺钉固定而产生了翘曲的散热板与散热器的间隙,插入金属箔并且填充高导热性的油脂,并将金属箔配置在由Si(硅)芯片产生的热的流路中,从而减小散热板与散热器间的热阻(例如,参照专利文献1)。

现有技术文献

专利文献

专利文献1:日本特开2003-86745号公报



技术实现要素:

技术问题

如上所述,AlSiC底板基于温度波动的形状变化良好。然而,AlSiC底板存在导热率大幅低于铜的缺点。近年来,作为改进了该缺点的材料,提出了MgSiC(在镁或镁合金中含有碳化硅的复合材料)。以下,将使用了MgSiC的底板3记为MgSiC底板。MgSiC底板为热膨胀系数等机械特性与AlSiC底板为相同程度,导热率比AlSiC底板提高了20%左右的材料。

图13是示出使用了MgSiC底板的现有结构的功率半导体模块的散热器安装前的构成的剖视图。图14是示出使用了MgSiC底板的现有结构的功率半导体模块的散热器安装后的构成的剖视图。如图13所示,MgSiC底板仅由MgSiC材料构成,在表面不存在软质金属层。进一步地,MgSiC底板由于SiC粉末露出在表面,所以最外表面为硬质,如图14所示,MgSiC底板不会被压垮。

因此,无法填埋散热器11的因凹凸9产生的间隙,如果使用MgSiC基底,则与AlSiC基底相比,在底板3与散热器11之间间隙形成得多。如果间隙形成得多,则由于功率半导体芯片1的发热,导热膏(未图示)发生热膨胀,而使得导热膏从间隙被挤出到外侧(泵出)。因此,由于功率半导体芯片1的反复发热,存在导热膏枯竭的可能性。导热膏是在油脂那样高黏度的液体中混入导热性高的粒子而成的导热油脂。导热膏用于填埋发热体例如底板3与散热器例如散热器11间的微小的间隙,提高导热性。因此,如果导热膏枯竭,则存在从底板3向散热器11的热传导无法充分进行,功率半导体芯片1因热而产生故障的情况。

本发明为了解决上述现有技术的问题,其目的在于提供一种能够抑制导热膏因泵出而枯竭,并抑制功率半导体芯片因热而产生故障的半导体装置及半导体装置的制造方法。

技术方案

为了解决上述课题,实现本发明的目的,本发明的半导体装置具有如下特征。具备:底板,接合有搭载了半导体芯片的层叠基板;以及散热器,隔着导热膏和金属环安装于所述底板。

此外,本发明的半导体装置的特征在于,在上述发明中,所述金属环的中间孔设置于隔着所述底板与所述半导体芯片相对的部分,并在所述中间孔的部分填充有所述导热膏。

此外,本发明的半导体装置的特征在于,在上述发明中,所述金属环由硬度与所述散热器为相同程度的材料或硬度比所述散热器低的材料形成。

此外,本发明的半导体装置的特征在于,在上述发明中,所述金属环由铜、铝或含有铜和铝中的一种以上金属的合金形成。

此外,本发明的半导体装置的特征在于,在上述发明中,所述底板包含在镁或镁合金中含有碳化硅的复合材料。

此外,本发明的半导体装置的特征在于,在上述发明中,所述底板在与所述金属环接触的部分设置有不间断的突起。

此外,本发明的半导体装置的特征在于,在上述发明中,所述底板在与所述金属环接触的部分设置有不间断的沟槽。

此外,本发明的半导体装置的特征在于,在上述发明中,所述金属环在与所述底板接触的部分和与所述散热器接触的部分中的任一方或双方设置有不间断的突起。

此外,本发明的半导体装置的特征在于,在上述发明中,所述金属环的剖面为椭圆形。

为了解决上述课题,实现本发明的目的,本发明的半导体装置的制造方法,具有如下特征。首先,进行第一工序,将搭载了半导体芯片的层叠基板接合于底板。接下来,进行第二工序,在所述底板或散热器涂布导热膏。接下来,进行第三工序,在所述底板或散热器安装厚度为所述导热膏的厚度以下的金属环。接下来,进行第四工序,在所述底板与散热器之间夹着所述导热膏和所述金属环安装所述散热器。

此外,本发明的半导体装置的制造方法的特征在于,在上述发明中,所述金属环具有突起,所述突起的高度为所述金属环的没有突起的部分的厚度的一半以下,所述金属环的包含所述突起的厚度为所述导热膏的厚度的1.5倍以下。

根据上述发明,散热器隔着导热膏和金属环安装于底板。金属环因散热器的表面的凹凸被压垮,由此填埋由凹凸产生的间隙,使散热器与底板的紧密贴合性变好。因此,能够抑制导热膏因泵出而枯竭,并抑制功率半导体芯片因热而产生故障。

技术效果

根据本发明的半导体装置及半导体装置的制造方法,具有能够抑制导热膏因泵出而枯竭,并抑制功率半导体芯片因热而产生故障的效果。

附图说明

图1是示出实施方式的功率半导体模块的构成的剖视图。

图2是示出实施方式的功率半导体模块的底板与金属环的立体图。

图3是实施方式的功率半导体模块的金属环的图2的A-A’部分的剖视图。

图4是示出实施方式的功率半导体模块的底板的背面的立体图。

图5是实施方式的功率半导体模块的图4中的B-B’部分的剖视图(之一)。

图6是实施方式的功率半导体模块的图4中的B-B’部分的剖视图(之二)。

图7是实施方式的功率半导体模块的金属环的图2的A-A’部分的其他剖视图。

图8是示出实施方式的功率半导体模块的制造过程中的状态的剖视图(之一)。

图9是示出实施方式的功率半导体模块的制造过程中的状态的剖视图(之二)。

图10是示出实施方式的功率半导体模块的制造过程中的状态的剖视图(之三)。

图11是示出现有结构的功率半导体模块的散热器安装前的构成的剖视图。

图12是示出现有结构的功率半导体模块的散热器安装后的构成的剖视图。

图13是示出使用了MgSiC底板的现有结构的功率半导体模块的散热器安装前的构成的剖视图。

图14是示出使用了MgSiC底板的现有结构的功率半导体模块的散热器安装后的构成的剖视图。

符号说明

1:功率半导体芯片

2:层叠基板

21:绝缘基板

22:导电性板

3:底板

31:突起

32:沟槽

4:壳体

5:金属端子

6:金属线

7:盖体

8:封装材料

9:凹凸

10:软质Al金属层

11:散热器

12:金属环

121:突起

13:导热膏涂布区域

16:导热膏

具体实施方式

以下,参照附图详细说明本发明的半导体装置及半导体装置的制造方法的优选实施方式。图1是示出实施方式的功率半导体模块的构成的剖视图。

(实施方式)

如图1所示,功率半导体模块具备:功率半导体芯片1、层叠基板2、底板3、壳体4、金属端子5、金属线6、盖体7、封装材料8、散热器11和金属环12。

功率半导体芯片1为IGBT、MOS-FET或二极管等。层叠基板2包括确保绝缘性的陶瓷基板等绝缘基板21、和形成在绝缘基板21的正面(功率半导体芯片1侧)和/或背面(底板3侧)的由铜(Cu)板等构成的导电性板22。应予说明,将在绝缘基板21的至少一面设置导电性板22而成的基板作为层叠基板2。在导电性板22上通过焊料等接合材料(未图示)接合功率半导体芯片1。在背面的导电性板22上通过焊料等接合材料(未图示)接合底板3。底板3为由MgSiC基底构成的散热用的冷却体。

此外,在功率半导体芯片1的上表面(与导电性板22接触的面的相反一侧的面)作为电气连接用的布线而接合金属线6的一端。金属线6的另一端与固定有金属端子5的导电性板22接合。在图1中,使用金属线6来连接功率半导体芯片1与导电性板22,但也可以使用引线框架来连接。

在底板3利用粘接剂粘接有壳体4。壳体4为由PPS等热塑性树脂形成的树脂壳体,粘接剂使用环氧树脂和/或硅树脂等。此外,由环氧树脂和/或硅树脂等构成的封装材料8被填充到壳体4内。并且,设置有保护封装材料8的盖体7。

散热器11用于将在功率半导体芯片1产生的热释放到外部。散热器11能够通过生长出被称为散热片的板和/或棒而成的剑山状和/或蛇腹状,来形成表面积增大那样的形状以使得能够释放多的热量。散热器11例如通过SUS(Steel Use Stainless:不锈钢)、铝(Al)、Al合金、铜或Cu合金形成。在散热器11存在因表面粗糙引起的凹凸9。

在实施方式中,散热器11隔着导热膏(未图示)和金属环12安装于底板3。导热膏是为了在底板3与散热器11之间渗透扩散并填埋微小的间隙,提高导热性而设置的。导热膏是在硅油等高黏度的液体中混入银(Ag)、铜(Cu)或氧化铝等导热性高的粒子而成的油脂。金属环12是为了通过底板3与散热器11的挤压而沿着散热器11的表面的凹凸9被压垮,从而填埋由凹凸9产生的间隙,提高紧密贴合性而设置的。这样,能够通过金属环12来填埋利用硬度高、变形小的MgSiC基底的底板3无法填埋的散热器11的由起因于表面粗糙的凹凸9产生的间隙。通过填埋间隙导热膏被密封在底板3与散热器11之间,能够防止导热膏因泵出而枯竭。

金属环12由于要通过散热器11的因表面粗糙引起的凹凸9来被压垮,所以由硬度与散热器11为相同程度的材料或硬度比散热器11低的材料形成。这里,硬度与散热器11为相同程度是指硬度为散热器11的维氏硬度的1.0倍以上且1.5倍以下。如果比该硬度硬,则金属环12无法沿着散热器11的因表面粗糙引起的凹凸9被压垮,而产生导热膏的泵出。此外,为了传导热,金属环12优选为导热率高的金属。例如,在散热器11由维氏硬度为150Hv左右的SUS形成的情况下,金属环12优选由比散热器11柔软且导热率高的维氏硬度为46Hv左右的Cu或Cu合金、维氏硬度为25Hv左右的Al或Al合金来形成。在散热器11由Cu或Cu合金形成的情况下,金属环12优选由硬度为相同程度或比散热器11柔软且导热率高的Cu、Cu合金、Al或Al合金来形成。此外,在散热器11由Al或Al合金形成的情况下,金属环12优选由硬度为相同程度或比散热器11柔软且导热率高的Al或Al合金来形成。金属环12只要硬度比散热器11低且导热率高,则也可以是其他金属例如银(Ag)、金(Au)或含有这些金属中的一种以上金属的合金。

图2是示出实施方式的功率半导体模块的底板与金属环的立体图。如图2所示,金属环12具有与底板3的外周相同程度的外周。通过具有与底板3的外周相同程度的外周,能够防止在金属环12之外导热膏因泵出而枯竭,并在该部分散热性变差的情况。此外,通过将金属环12的外周设置得宽大,能够将以下所示的导热膏涂布区域13设置得宽大。

此外,金属环12的中间孔设置在功率半导体芯片1的正下方(功率半导体芯片1的正下侧,即散热器11侧),该中间孔成为涂布导热膏的导热膏涂布区域13。即,与功率半导体芯片1相对的部分成为导热膏涂布区域13。因此,能够将来自功率半导体芯片1的热通过导热膏高效地传递到散热器11。应予说明,在图2中,金属环12的中间孔是一个,但也可以是多个。此外,在图2中,金属环12的中间孔是四边形,但也可以是圆形或椭圆形。无论哪种情况,只要至少在功率半导体芯片1的正下方设置金属环12的中间孔即可。

图3是实施方式的功率半导体模块的金属环的图2的A-A’部分的剖视图。金属环的剖面不仅可以是四边形、圆形,还可以是各种形状。如图3所示,金属环12的剖面更优选为椭圆形。通过设置为椭圆形,金属环12变得容易被压垮,导热膏的遮挡性变高。

此外,金属环12的厚度w优选为与涂布的导热膏的厚度相同或比导热膏的厚度薄。例如,由于导热膏的厚度为50~100μm,所以金属环12的厚度w为50~100μm以下。这是因为,如果金属环12的厚度w过厚,则涂布的导热膏的量变多,导热性下降。如果金属环12的厚度w过薄,则由于无法吸收散热器11的凹凸9,在金属环12与散热器11之间形成间隙,所以金属环12的厚度w优选为比散热器11的凹凸9的高度大。

图4是示出实施方式的功率半导体模块的底板3的背面的立体图。如图4所示,可以在底板3的背面设置不间断的突起31或沟槽32。这里,不间断的突起31是指以在中途没有间隙的方式设置突起31。不间断的沟槽32也是同样。这些突起31或沟槽32设置在金属环12的设置位置。突起31或沟槽32能够通过咬入金属环12而填充金属环12与底板3之间的间隙,使间隙进一步减小,并进一步提高遮挡性。由于突起31或沟槽32不间断,所以能够防止导热膏从突起31或沟槽32被挤出到外侧。应予说明,在图4中,突起31或沟槽32是一个,但也可以是多个。此外,也可以是一个为突起31,另一个为沟槽32等的组合。

图5、图6是实施方式的功率半导体模块的图4中的B-B’部分的剖视图。图5是突起31的情况下的剖视图,图6是沟槽32的情况下的剖视图。突起31的高度h为比涂布的导热膏的厚度低的高度,优选为金属环12的厚度的一半以下。此外,沟槽32的深度d优选为金属环12的厚度的一半以上且金属环12的厚度以下。通过形成上述突起31或沟槽32,防止金属环12被拉断等破损,并进一步提高导热膏的遮挡性。

此外,在图5中突起31为三角形状,但只要是容易与金属环12咬合的形状,也可以是其他形状。例如,可以是倒U字形状。同样地,在图6中沟槽32为V字形状,但只要是容易与金属环12咬合的形状,也可以是其他形状。例如,可以是U字形状。

图7是实施方式的功率半导体模块的金属环的图2的A-A’部分的其他剖视图。如图7所示,也可以在金属环12也与底板3同样地设置不间断的突起121。例如,如图7所示,也可以在与底板3接触的部分和与散热器11接触的部分双方设置不间断的突起121。虽然未图示,但在金属环12,也可以在与底板3接触的部分和与散热器11接触的部分中的任一方设置不间断的突起121。应予说明,在图7中,在进行接触的每个面有一个突起121,但也可以在进行接触的一个面有多个突起121。突起121能够埋入金属环12与底板3之间的间隙或者金属环12与散热器11之间的间隙,使间隙进一步减小,并进一步提高遮挡性。同样地,突起的形状只要是容易与底板3或散热器11咬合的形状即可。例如,也可以是三角形状或倒U字形状。

此外,金属环12的突起121的高度h优选为金属环12的没有突起121的部分的厚度w的一半以下。此外,包含突起121的金属环12的厚度(w+h)优选为导热膏的厚度的1.5倍以下。通过形成这样的突起121,防止金属环12被拉断等破损,并进一步提高导热膏的遮挡性。

接下来,对实施方式的功率半导体模块的制造方法进行说明。图8~图10是示出实施方式的功率半导体模块的制造过程中的状态的剖视图。首先,通过使用焊料等接合材料将功率半导体芯片1接合于层叠基板2的导电性板22,从而将功率半导体芯片1实际安装于层叠基板2。接下来,利用金属线6将功率半导体芯片1与层叠基板2的导电性板22电连接。接下来,将金属端子5安装于连接有金属线6的导电性板22。接下来,使用焊料等接合材料将实际安装有这些部件的层叠基板2接合于底板3,组装由功率半导体芯片1、层叠基板2和底板3构成的层叠组装体。此外,代替金属线6,也可以接合引线框架。

接下来,利用硅粘接剂等粘接剂将壳体4粘接于该层叠组装体。接下来,在壳体4内填充环氧树脂等硬质树脂等封装材料8。之后,在预定的条件下进行热处理使其固化。接下来,为了防止封装材料8泄漏到外部,安装盖体7。到此为止的状态记载于图8。

接下来,在底板3的背面的导热膏涂布区域13以预定的厚度涂布导热膏16。到此为止的状态记载于图9。接下来,安装底板3的背面的金属环12。到此为止的状态记载于图10。应予说明,也可以在安装了金属环12之后,涂布导热膏16。

接下来,夹着导热膏16和金属环12将散热器11安装于底板3。散热器11例如可以利用螺钉固定于底板3。按以上所述进行操作,能够制造本发明的实施方式的功率半导体模块。

应予说明,在上述制造方法中,在底板3的背面的导热膏涂布区域13涂布了导热膏16,但是也可以在散热器11涂布导热膏16。在此情况下,在散热器11的与导热膏涂布区域13相对的区域以预定的厚度涂布导热膏16。接下来,在底板3的背面安装金属环12。在此情况下,也可以在安装了金属环12之后涂布导热膏16。接下来,夹着导热膏16和金属环12将散热器11安装于底板3。

如以上所说明的,根据实施方式的功率半导体模块,散热器隔着导热膏和金属环安装于底板。金属环因散热器的表面的凹凸被压垮,由此填埋由凹凸产生的间隙,使散热器与底板的紧密贴合性变好。因此,能够抑制导热膏因泵出而枯竭,并抑制功率半导体芯片因热而产生故障。

此外,金属环具有与底板的外周相同程度的外周。由此,能够防止在金属环之外导热膏因泵出而枯竭,并在该部分散热性变差的情况。此外,功率半导体芯片的正下方成为涂布有导热膏的区域。因此,能够将来自功率半导体芯片的热通过导热膏高效地传递到散热器。

此外,可以在金属环的背面设置不间断的突起或沟槽。突起或沟槽通过咬入金属环而埋入金属环与底板之间的间隙,使间隙进一步减小,并能够提高遮挡性。

工业上的可利用性

以上所述,本发明的半导体装置及半导体装置的制造方法对使用于逆变器等电力转换装置、各种工业用机械等的电源装置、汽车的点火器等的功率半导体装置有用。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1