具有燃料电池的机动车辆的制作方法

文档序号:16689873发布日期:2019-01-22 18:42阅读:156来源:国知局
具有燃料电池的机动车辆的制作方法

本发明总体涉及一种具有燃料电池的机动车辆。



背景技术:

在燃料电池中,尤其是用于机动车辆的燃料电池中,用作氧化剂的空气以相对高的压力并且每次大量地供给到燃料电池。燃料电池中的压力下降后,仍有相当大动能的一部分空气从燃料电池中流出。该排气流被带入排气涡轮机。涡轮机连接到发电机。这个排气流的动能由此被用于产生电能。

为了获得燃料电池的非常高的输出功率(这相当于产生大电流强度的电流)需要高的阴极压力。在现有技术的装置中,用空气压缩机的升高的质量流量工作;出口管线中的节流阀或跨越燃料电池的调节旁通阀将燃料电池的阴极压力调节到期望值。

为了满足燃料电池的单个电池单元中的化学计量,在较低的输出功率下工作也需要相对较高的阴极压力。当使用跨越燃料电池的旁通阀时,可以通过关闭旁通阀从而总空气质量仅供给到燃料电池,和/或通过增加压缩机的转速来实现最大阴极压力。然而,由此得到的阴极压力的值受到引起压降的燃料电池技术特征的设计的限制。当燃料电池被压缩机供以相对较高的空气流量时,燃料电池的效率会降低。

在jp2005310429a中,为产生的电力提供调节器54,该调节器显然构成ac/dc转换器。ac/dc转换器连接到电池。图中显示了从该电池到压缩机/空气供应单元的电气连接。电池只能通过发电机供电。电池的功率不足以满足压缩机的高功率需求(如果后者是电动的)。只有该电池进一步由高压电路充电,则此架构才在技术上有意义。

在jp2006286559a中提出了类似的架构,基本上示出了两种电气架构变型。在变型1中,电动压缩机单元和排气涡轮机经由控制器4连接到高压电路。在变型2中,压缩机单元和排气涡轮机经由控制器8连接到常见的能量存储器7(电池、电容器组等)。此外,只有能量存储器7由高压电路充电,则该架构才在技术上有意义。

如果希望优化燃料电池特别是氢燃料电池的效率,则需要对输入系统的电能给予很大的关注,该电能必须尽可能低。根据现有技术,在输入侧使用具有电力驱动的涡轮增压器和具有叶轮的径向压缩机来供应空气。在输出侧,使用由流出的空气驱动的径流式涡轮机。径流式涡轮机被机械连接从而随着叶轮的轴旋转。这种布置的缺点是,不管压缩机的范围如何,涡轮机在最佳范围内工作的自由度较低。这样做的一个结果是,在机动车辆的驱动马达对燃料电池的轻微功率需求和相对低的空气流量的情况下,回收的动能的测量值相对较低。此外,如几个现有技术的应用所示的那样,除了通过使用诸如燃料电池的空气出口处的控制阀或系统旁路或可变的涡轮机几何结构之类的附加部件之外,不可能采用对空气背压的控制。这些解决方案中的每一个都具有用于控制阴极压力或实现更高效率的有限程度的自由机会。

由此开始,本发明的目的是进一步开发一种燃料电池,该燃料电池适用于驱动机动车辆,使得在高负载和较低负载下效率都获得提高,并且使得对燃料电池的操作的更优控制是可能的。



技术实现要素:

该目的通过具有权利要求1的特征的燃料电池和具有权利要求6的特征的方法解决。

使用具有叶轮的径流式涡轮机,其特别根据现有技术设计并且仅与发电机连接。这样,空气的阴极压力可以由压缩机独立控制;这尤其是通过借助于单独的调节值调节压缩机的转速和/或涡轮机的转数以及使用阴极压力来完成,因为由传感器检测的用于阴极压力的值是与作为由发电机转矩的控制系统调节的变量的调节值或表格值相比较。

不需要额外的装置例如跨越燃料电池的调节旁通阀来控制压力。以这种方式实现的一个好处是,与发电机连接的涡轮机的能量回收随着阴极反压的增加而增加,这导致燃料电池对于所有低输出功率和高输出功率的更高的效率。

根据本发明,以与现有技术相同的方式控制h2阳极压力。

阳极压力被调节到比阴极更高的压差。这通过借助传感器检测阳极压力来完成。该传感器检测到的值用于控制阳极压力;这由供应气体的压力的控制阀和用于冲洗阳极的放气阀来控制。

在压缩机的控制器中,用于控制空气质量流量的偏移和用于阴极压力的设定值被用于控制压缩机转速的工作点。

在用于涡轮机的控制器中,用于控制阴极压力的偏移和用于空气流量的设定值被用于控制涡轮机的转速或用于发电机转矩的调节值。

涡轮机中的发电机和逆变器(电压转换器)的组合使得可以在低电压范围内工作。低电压是指可以毫无问题地触摸的电压,特别是最高到并包括48v的电压。在较高的电压下,需要足够的防止接触的保护。术语“逆变器”、“转换器”、“变压器”和“电压转换器”是同义词。

因此,能够通过100kw的涡轮机回收的车辆的典型燃料电池的平均功率足以满足在低电压下运行的车辆的燃料电池附件的能量需求。

由于低电压电池可以在短时间内产生相对较高的功率,因此根据本发明的装置的另一个优点是不需要用于在dc电压/dc电压范围内从高电压转换为低电压的转换器。这样,总体成本和所需的设计空间也会减少。

在本发明的一个特殊实施例中,可以使用更简单的发电机,例如具有输出功率高达3kw和具有整流器的标准充电调节器的交流发电机形式的发电机。

术语电池特别是指可充电电池,通常称为蓄电池。一般来说,电池是指整体上包括电容器电池在内的用于直流电压的电荷储存器。

根据本发明,涡轮机在其输入处没有机械连接到压缩机,即空气供应单元。作为发电机的电动马达和逆变器被用来将输出端处的空气背压转换成电力,用这种方式从而在燃料电池产生的较低功率或较低的空气吞吐量情况下实现较高的能量产量。

由于涡轮机从压缩机侧分离并且不与压缩机机械连接,因此可以独立于输入侧将涡轮机设定为最佳转速,这对于能量回收是特别有利的。涡轮机被连接到电动马达,该电动马达用作发电机并将动能转化为电力。

这种布置的第二个特征是调节燃料电池的背压,这可以通过调节发电机的转速或电动马达的转矩并且因此调节涡轮机的转速(以时间为单位)来实现。涡轮机的较低转速导致涡轮机的较高入口压力并因此导致燃料电池出口处较高的背压。较高的出口压力导致燃料电池的阴极压力增加,并且因此增加使得燃料电池可能获得的工作压力的大小,以实现更高的效率和更好的工作范围。该逆变器设计用于低电压。避免了高电压认证、安全和与较高电压相关的问题的额外成本。

本发明完成了:

·排气中背压的分离调节,从而提高系统效率,

·排气质量或质量流量的改进回收,

·去除了高压/低压dc/dc转换器,并且

·使用低电压电池作为与相应的涡轮机/发电机系统(可能是带有可控充电调节器的交流发电机)相连接的能量存储器(例如12v或48v)。

在所提出的设计中,马达/压缩机单元的逆变器连接到高压电路,并且涡轮机/发电机单元的逆变器连接到低电压电池。这与例如上述jp2006286559a的变型2区分开来。

此外,下游的高压/低压转换器可以去除,从而实现压缩机和涡轮机组的分离。通过这种方式,发电机/涡轮机组的电气回收电力可以很大程度上被独立调节。

尽管排气压力调节是调节和致动构思的主要调节目标,但是在车载低压网络的高负载以及低电压电池的相关充电状态下降的情况下需要提升回收电力,它同时需要增加充电压力和压缩机功率。在燃料电池的低电负载下,整体效率变得稍低。

控制器中的调节策略必须适当协调阴极压力和电池充电状态。

附图说明

不应被视为限制的本发明的示例实施例将在下面更加详细地描述并参考附图进行解释,其中:

图1示出了用于混合动力车辆的具有燃料电池的系统的架构的基本电路图;

图2示出了与图1类似的基本电路图,但是现在是在第二变型中;

图3示出了与图1相似的基本电路图,但是现在是在第三变型中;

图4示出了与图1相似的基本电路图,但是现在是用于插电式混合动力车辆的变型;

图5示出了用于说明空气出口侧的阴极压力8的调节的电路图;

图6示出了具有可控整流器的车辆的交流发电机的电路图。

具体实施方式

下面将更加详细地描述图1。图2至图4包含了很多与图1相一致的内容,因此这些图仅在与图1不同的地方进行描述。之后,我们将讨论图5和图6。

图1示意性地示出了氢燃料电池20。在图的顶部是阳极侧19或氢侧,在底部是阴极侧21,也称为空气侧。两侧接收到相反方向的流量。阳极侧19被供以氢气。为此,提供氢气罐22,氢气罐22中气体以高压储存。氢气罐22可以通过罐阀关闭并连接到供给管线。在该管线中安装有压力调节器26。供给管线出现在阳极侧19中,并且喷射泵28还安装在供给管线中。喷射泵28也可以被设计成循环泵或鼓风机。喷射泵28用于吸收从阳极侧流出以及排气管线中携带的氢气,并将其供给回喷射泵28的区域中的供给管线中。在排气管线中还设置有压力传感器30,其检测阳极侧19的出口处的排气压力。还可以设置差压计,其检测阳极和阴极之间的差压。

阴极侧21充有空气。为此,空气通过压缩机34被吸入进气口32中。压缩机34由马达m36驱动。马达m36上游电连接有第一逆变器38,第一逆变器38还具有马达控制的功能。在第一逆变器38的初级侧,其连接到配电箱40,配电箱又连接到高电压电池42。还连接到配电箱40的是dc/dc转换器44的输出端。dc/dc转换器44在输入端侧连接到燃料电池20。由燃料电池20产生的电力经由转换器44被分接并被供给到高电压电池42以进行充电。从这里,车辆推进所需的电力可以被分接,这是现有技术并且这里不再赘述。

在出口侧,空气从阴极侧21通过排气管线流到涡轮机46。通过排气的动能使空气旋转,空气在空气出口处流出。阴极压力传感器48安装在排气管线中。

在阳极侧19的出口处设置有直接连接到燃料电池20的放气阀31。该放气阀31的放气出口连接到收集点50,排气管线也通过收集点50保持连通。以这种方式,氢气在放气期间与排气一起流动并与其一起到达涡轮机46。以这种方式,放气气体的动能也被利用。

涡轮机46仅驱动连接到发电机g52,并驱动该发电机52。发电机52仅由涡轮机46驱动并且仅与其连接。发电机52的下游连接有第二逆变器54,该第二逆变器54同时也被设计为发电机52的控制器。该第二逆变器54输出端连接到低电压电池56。同时,第二逆变器54连接到在低电压下运行的用电器58,所述用电器没有在这里详细地显示。特别地,这些用电器是直接属于燃料电池20的装置。

所描述的系统由fcu(燃料控制单元)控制器60控制,fcu控制器60监视并控制整体装置。为此,它通过虚线所示的控制线连接到单独的部件,特别是第二逆变器54、喷射泵28、放气阀31和第一逆变器38。它通过点划相间线接收其输入信号;这里示出的是例如用于压力传感器(阴极)48的输入线,用于压力传感器(阳极)30的输入线和用于低电压电池56的正侧上的电压传感器62的输入线。它的负极侧连接到地面。

在图2的变型中,不存在作为燃料电池20的逆变器的转换器44,而是将燃料电池20的电输出直接连接到配电箱40。燃料电池20的输出电压因此直接存在于第一逆变器38处。高电压电池42现在跨越作为高电压电池42的转换器的第二转换器64被连接到配电箱40。

在图3的第三变型中,与图1相比,在配电箱40和高电压电池42之间另外提供了第二转换器64。

在图4的图示中,与图3相比,存在附加地连接到配电箱40的充电器66,其优选地是位于车辆上的充电器。这可以通过插头68连接到网络,例如家庭网络或公共网络。通过充电器66,高电压电池42可以被充电。在充电期间,待充电的高电压电池42通过电池接触开关67与第二转换器64电隔离。

图5示出调节阴极压力48的顺序的电路框图。基于燃料电池系统当前所需功率或电流需求,计算阴极压力和空气流量的设定值。此外,主要考虑燃料电池的电力需求或电池电压以及电池的充电状态,确定空气质量流量和阴极压力的决定偏移量。决定偏移量的值被添加到调节值。

作为输入变量,在左侧四个值被提供给系统,即:

1.当前所需的燃料电池功率或所需电流(请求的燃料电池功率或电流),

2.实际空气质量流量的测量值(实际空气质量流量),

3.当前阴极压力的测量值(实际阴极压力)和

4.低电压电池的测量电压(lv电池电压)。

所需功率的值被提供给块电路框图上部的第一阶段70,其中确定阴极的空气的质量流量的所需值(空气阴极质量流量请求),该值被带到第一组合点72。在此,它与空气的质量流量的任意值(空气质量流量任意值)在逻辑上组合,每次组合点为正,参见该图。该值在第二阶段74中确定,其中空气的质量流量、阴极压力48和低电压电池56的充电状态在逻辑上彼此组合。在第二阶段74的输入端侧存在低电压电池的电压信号(lv电池电压)和所需功率的值。在第一组合点72的输出处存在阴极空气的质量流量的调整值(空气的阴极质量流量设定值)。该值一方面直接被输入到涡轮机控制器76中,另一方面在具有指示的标志的第二组合点78中与空气的实际质量流量的测量值逻辑组合,然后在输出端侧被输入到压缩机控制器80。压缩机控制器80接收另外的输入信号,这将在下面进一步讨论。在输出端侧,获得压缩机转速的调节值(压缩机转速设定值)。

所需功率的值此外存在于第三阶段82。在该阶段中,确定提供给第四组合点84的阴极压力48的请求值(阴极压力请求)。在那里,在逻辑上根据指示的标志与由第二阶段74确定的阴极压力48的任意值(阴极压力任意值)相组合。在输出端侧,第四组合点84一方面连接到压缩机控制器80的第二输入端,另一方面连接到第五组合点86。这里也应指出标志。此外,第五组合点86被提供有用于当前阴极压力48的测量值。第五组合点86的输出信号作为输入值被提供给涡轮机控制器76,并且涡轮机控制器76根据其两个输入值为涡轮机转速(涡轮转速设定值)确定调节值和/或发电机转矩(发电机转矩设定值)确定调节值。

图6最后显示了与可控整流器相连的机动车辆的3千瓦交流发电机的使用的更具体的示例性实施例。阳极侧和阴极的进气口侧如图1所示;与该图相比,第一逆变器38直接连接到hv电池42,即不提供配电箱40。在排气侧再次设置有涡轮机46,涡轮机46现在与交流发电机g旋转地机械连接。这形成发电机52的特殊构造的示例。在交流发电机g的下游连接可控制的整流器,例如充电调节器,其在这里是第二逆变器54的特殊配置的示例。在输出端侧,第二逆变器54连接到低电压电池56。

在用于控制燃料电池系统的方法中,通过考虑燃料电池20的所需功率的输入值、空气的实际质量流量的测量值、当前阴极压力48的测量值以及低电压电池56的电压的输入值来为压缩机34的转速确定调节值。基于燃料电池20的当前所需功率,计算阴极压力48的值和空气流量的设定值。主要考虑燃料电池20的功率需求和/或低电压电池56的电池电压,为空气的质量流量并为阴极压力两者确定判定值。

机动车辆的燃料电池系统具有包括阳极侧和阴极侧的燃料电池20、与马达m36可旋转地连接并且通过供给管线连接到燃料电池的阴极侧20的压缩机34和通过排气管线连接到阴极侧并且此外仅旋转地连接到发电机g52的涡轮机46,该发电机g52在输出侧连接到第二逆变器54和低电压电池56。

附图标记列表

19阳极侧

20燃料电池

21阴极侧

22氢罐

24罐阀

26压力调节器

28喷射泵

30压力传感器(阳极)

31放气阀

32进气口

34压缩机

36马达m

38第一逆变器

40配电箱

42hv-电池

44dc/dc转换器

46涡轮机

48压力传感器(阴极)

50收集点

52发电机g

54第二逆变器

56低电压电池

58用电器

60fcu控制器

62电压传感器

64第二转换器

66充电器

67电池接触开关

68插头

70第一阶段

72第一组合点

74第二阶段

76涡轮机控制器

78第二组合点

80压缩机控制器

82第三阶段

84第四组合点

86第五组合点

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1