电池的制作方法

文档序号:16477441发布日期:2019-01-02 23:45阅读:161来源:国知局
本发明属于电池领域,具体涉及一种基于内部离子交换的电池。
背景技术
:铅酸电池,其出现已超百年,拥有着成熟的电池技术,占据着汽车启动电瓶、电动自行车、ups等储能领域的绝对市场份额。铅酸电池虽然循环使用寿命较低,能量密度也相对较低,但却拥有价格非常低廉,性价比非常高的优点。因此,近些年来,镍氢电池、锂离子电池、钠硫电池等,均无法在储能领域取代铅酸电池。新出现了一种基于内部离子交换的电池。该电池的工作原理为,正极基于第一金属离子的脱出-嵌入反应,负极基于第二金属离子的沉积-溶解反应,电解液含参与正极脱出-嵌入反应的第一金属离子和参与负极沉积-溶解反应的第二金属离子。该类型电池的理论能量密度为160wh/kg,预计实际能量密度可达50~80wh/kg。综上所述,该类型电池非常有希望成为替代铅酸电池的下一代储能电池,具有极大的商业价值。但是,目前该类电池自放电问题较为严重,会导致电池电化学性能迅速恶化,限制了该类电池的实际应用,因此,亟待寻找一种新的离子交换电池,能够改善电池的自放电问题。技术实现要素:本发明的目的是提供一种离子交换电池,能够改善离子交换电池正极导电剂的腐蚀问题,从而进一步改善电池的自放电问题。一种电池,包括正极、负极、及电解液,所述正极包括能够可逆脱出-嵌入第一金属离子的正极活性物质和正极导电剂;所述电解液包括能够溶解电解质并使所述电解质电离的溶剂;所述电解质包括第一金属离子和第二金属离子,所述第二金属离子在充放电过程中能够在所述负极还原沉积为第二金属,所述第二金属能够可逆的氧化溶解为第二金属离子;其中,所述电池还包括加入到所述正极中的添加剂,所述添加剂为无机氧化物,所述无机氧化物的析氧过电位不低于2v。优选的,所述无机氧化物为tio2、bi2o3、sno2、sro、al2o3、pbo2、ceo2中的至少一种。优选的,以所述正极的质量百分含量为基准,所述无机氧化物的质量百分含量不高于10%。优选的,所述电解液的ph值为3~7。优选的,所述溶剂为水或醇。优选的,所述电解质中的阴离子包括硫酸根离子、氯离子、醋酸根离子、甲酸根离子、磷酸根离子或烷基磺酸根离子中一种或几种。优选的,所述第一金属离子选自锂离子或钠离子。优选的,所述第二金属离子为锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。优选的,所述正极活性物质选自limn2o4、lifepo4或licoo2中一种或几种。优选的,所述正极导电剂为导电聚合物、导电氧化物、活性碳、石墨烯、碳黑、石墨、碳纤维、金属纤维、金属粉末、以及金属薄片中的一种或几种。本发明通过在电池的正极添加了析氧过电位不低于2v的无机氧化物,能够抑制氧气在正极的析出,改善电池正极导电剂的腐蚀问题,从而进一步改善电池的自放电问题,同时也提高了电池的电化学性能和安全性能。具体实施方式为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供一种电池,包括正极、负极、及电解液,正极包括能够可逆脱出-嵌入第一金属离子的正极活性物质和正极导电剂;电解液包括能够溶解电解质并使电解质电离的溶剂;电解质包括第一金属离子和第二金属离子,第二金属离子在充放电过程中能够在负极还原沉积为第二金属,第二金属能够可逆的氧化溶解为第二金属离子;其中,电池还包括加入到正极中的添加剂,添加剂为无机氧化物,无机氧化物的析氧过电位不低于2v。本发明电池的充放电原理为:充电时,正极活性物质脱出第一金属离子,同时伴随正极活性物质被氧化,并放出电子;电子经由外电路到达电池负极,同时电解液中的第二金属离子在负极上得到电子被还原,并沉积在负极上。放电时,沉积在负极上的第二金属被氧化,失去电子转变为第二金属离子进入电解液中;电子经外电路到达正极,正极活性物质接受电子被还原,同时第一金属离子嵌入正极活性物质中。电池的正极包括正极活性物质,正极活性物质参与正极反应,并且能够可逆脱出-嵌入第一金属离子。优选的,第一金属离子选自锂离子或钠离子。正极活性物质可以是符合通式li1+xmnymzok的能够可逆脱出-嵌入锂离子的尖晶石结构的化合物,其中,-1≤x≤0.5,1≤y≤2.5,0≤z≤0.5,3≤k≤6,m选自na、li、co、mg、ti、cr、v、zn、zr、si、al中的至少一种。优选的,正极活性物质含有limn2o4。更优选的,正极活性物质含有经过掺杂或包覆改性的limn2o4。正极活性物质可以是符合通式li1+xmym′zm″co2+n的能够可逆脱出-嵌入锂离子的层状结构的化合物,其中,-1<x≤0.5,0≤y≤1,0≤z≤1,0≤c≤1,-0.2≤n≤0.2,m,m′,m″分别选自ni、mn、co、mg、ti、cr、v、zn、zr、si或al的中至少一种。正极活性物质还可以是符合通式lixm1-ym′y(xo4)n的能够可逆脱出-嵌入锂离子的橄榄石结构的化合物,其中,0<x≤2,0≤y≤0.6,1≤n≤1.5,m选自fe、mn、v或co,m′选自mg、ti、cr、v或al的中至少一种,x选自s、p或si中的至少一种。优选的,正极活性物质选自limn2o4、lifepo4或licoo2中一种或几种。在目前电池工业中,几乎所有正极活性物质都会经过掺杂、包覆等改性处理。但掺杂,包覆改性等手段造成材料的化学通式表达复杂,如limn2o4已经不能够代表目前广泛使用的“锰酸锂”的通式,而应该以通式li1+xmnymzok为准,广泛地包括经过各种改性的limn2o4正极活性物质。同样的,lifepo4以及licoo2也应该广泛地理解为包括经过各种掺杂、包覆等改性的,通式分别符合lixm1-ym′y(xo4)n和li1+xmym′zm″co2+n的正极活性物质。正极活性物质为能可逆脱出-嵌入锂离子的物质时,优选可以选用如limn2o4、lifepo4、licoo2、limxpo4、limxsioy(其中m为一种变价金属)等化合物。此外,本发明的正极活性物质为能可逆脱出-嵌入钠离子的物质时,优选可以选用navpo4f等。具体的,正极还包括负载正极活性物质的正极集流体,正极集流体仅作为电子传导和收集的载体,不参与电化学反应,即在电池工作电压范围内,正极集流体能够稳定的存在于电解液中而基本不发生副反应,从而保证电池具有稳定的循环性能。正极集流体的材料选自碳基材料、金属或合金中的一种。碳基材料选自玻璃碳、石墨箔、石墨片、泡沫碳、碳毡、碳布、碳纤维中的一种。在具体的实施方式中,正极集流体为石墨,如商业化的石墨压制的箔,其中石墨所占的重量比例范围为90-100%。金属包括ni、al、fe、cu、pb、ti、cr、mo、co、ag或经过钝化处理的上述金属中的一种。合金包括不锈钢、碳钢、al合金、ni合金、ti合金、cu合金、co合金、ti-pt合金、pt-rh合金或经过钝化处理的上述金属中的一种。不锈钢包括不锈钢网、不锈钢箔,不锈钢的型号包括但不仅限于不锈钢304或者不锈钢316或者不锈钢316l中的一种。优选地,对正极集流体进行钝化处理,其的主要目的是,使正极集流体的表面形成一层钝化的氧化膜,从而在电池充放电过程中,能起到稳定的收集和传导电子的作用,而不会参与电池反应,保证电池性能稳定。正极集流体钝化处理方法包括化学钝化处理或电化学钝化处理。化学钝化处理包括通过氧化剂氧化正极集流体,使正极集流体表面形成钝化膜。氧化剂选择的原则为氧化剂能使正极集流体表面形成一层钝化膜而不会溶解正极集流体。氧化剂选自但不仅限于浓硝酸或硫酸高铈(ce(so4)2)。电化学钝化处理包括对正极集流体进行电化学氧化或对含有正极集流体的电池进行充放电处理,使正极集流体表面形成钝化膜。更加优选的,正极还包括负载正极活性物质的复合集流体,复合集流体包括正极集流体和包覆在正极集流体上导电膜。导电膜的选材必须满足在水系电解液中可以稳定存在、不溶于电解液、不发生溶胀、高电压不能被氧化、易于加工成致密、不透水并且导电的膜。一方面,导电膜对正极集流体可以起到保护作用,避免水系电解液对正极集流体的腐蚀。另一方面,有利于降低正极片与正极集流体之间的接触内阻,提高电池的能量。优选的,导电膜的厚度为10μm~2mm,导电膜不仅能够有效的起到保护正极集流体的作用,而且有利于降低正极活性物质与正极集流体之间的接触内阻,提高电池的能量。正极集流体具有相对设置的第一面和第二面,优选的,正极集流体的第一面和第二面均包覆有导电膜。导电膜包含作为必要组分的聚合物,聚合物占导电膜的重量比重为50~95%,优选的,聚合物选自热塑性聚合物。为了使导电膜能够导电,有两种可行的形式:(1)聚合物为导电聚合物;(2)除了聚合物之外,导电膜还包含导电填料。导电聚合物选材要求为具有导电能力但电化学惰性,即不会作为电荷转移介质的离子导电。具体的,导电聚合物包括但不仅限于聚乙炔、聚吡咯、聚噻吩、聚苯硫醚、聚苯胺、聚丙烯腈、聚喹啉、聚对苯撑(polyparaphenylene)及其任意混合物。导电聚合物本身就具有导电性,但还可以对导电聚合物进行掺杂或改性以进一步提高其导电能力。从导电性能和电池中的稳定使用考量,导电聚合物优选聚苯胺、聚吡咯、聚噻吩和聚乙炔。同样的,导电填料的选材要求为表面积小、难于氧化、结晶度高、具有导电性但电化学惰性,即不会作为电荷转移介质的离子导电。导电填料的材料包括但不仅限于导电聚合物、碳基材料或金属氧化物。导电填料在导电膜中的质量百分比范围为5~50%。导电填料的平均粒径并没有特别限定,通常范围在100nm~100μm。当导电膜中包含导电填料时,导电膜中的聚合物优选包含起到结合导电填料作用的非导电聚合物,非导电聚合物增强了导电填料的结合,改善了电池的可靠性。优选的,非导电聚合物为热塑性聚合物。具体的,热塑性聚合物包括但不仅限于聚烯烃如聚乙烯、聚丙烯,聚丁烯,聚氯乙烯,聚苯乙烯,聚酰胺,聚碳酸酯,聚甲基丙烯酸甲酯,聚甲醛,聚苯醚,聚砜,聚醚砜、丁苯橡胶或聚偏氟乙烯中的一种或多种。其中,优选为聚烯烃、聚酰胺和聚偏氟乙烯。这些聚合物容易通过热而熔化,因此容易与正极集流体复合在一起。此外,这些聚合物具有大电位窗口,从而使正极稳定并为电池输出密度节省重量。优选的,导电膜通过热压复合、抽真空或喷涂的方式结合到正极集流体上。在具体的实施方式中,制备正极时,除了正极活性物质之外,通通常还会添加正极导电剂和正极粘结剂来提升正极的性能。正极导电剂选自导电聚合物、导电氧化物、导电陶瓷、活性碳、石墨烯、碳黑、石墨、碳纤维、金属纤维、金属粉末、以及金属薄片中的一种或多种。正极粘结剂可以选自聚乙烯氧化物、聚丙烯氧化物,聚丙烯腈、聚酰亚胺、聚酯、聚醚、氟化聚合物、聚二乙烯基聚乙二醇、聚乙二醇二丙烯酸酯、聚乙二醇二甲基丙烯酸中的一种、或上述聚合物的混合物及衍生物。更优选地,正极粘结剂选自聚四氟乙烯(ptfe)、聚偏氟乙烯(pvdf)或丁苯橡胶(sbr)。在具体的实施方式中,制备电池时,正极中还添加无机氧化物,无机氧化物的析氧过电位不低于2v。优选的实施方式中,正极所添加的无机氧化物为tio2、bi2o3、sno2、sro、al2o3、pbo2、ceo2中的至少一种。以正极的质量百分含量为基准,所添加无机氧化物的质量百分含量不高于10%。无机氧化物添加到正极中的方式可为直接将无机氧化物与正极活性材料以及正极导电剂、正极粘接剂一起混合制备正极浆料。通过在正极添加析氧过电位不低于2v的无机氧化物,能够改善正极导电剂在电池充放电过程中被腐蚀的问题,从而能够改善该类型离子交换电池的自放电问题。电池的负极,发生电化学反应的物质为第二金属,第二金属能够氧化溶解为第二金属离子且第二金属离子能可逆还原沉积为第二金属。优选的实施方式中,第二金属离子为锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子。电池的负极,根据结构以及作用的不同,可以为以下三种不同的形式:在第一优选实施方式中,负极仅包括负极集流体,并且负极集流体仅作为电子传导和收集的载体,不参与电化学反应。负极集流体的材料选自金属ni、cu、ag、pb、mn、sn、fe、al或经过钝化处理的上述金属中的至少一种,或者单质硅,或者碳基材料;其中,碳基材料包括石墨材料,比如商业化的石墨压制的箔,其中石墨所占的重量比例范围为90~100%。负极集流体的材料还可以选自不锈钢或经钝化处理的不锈钢。不锈钢包括但不仅限于不锈钢网和不锈钢箔,同样的,不锈钢的型号可以是300系列的不锈钢,如不锈钢304或者不锈钢316或者不锈钢316l。另外,负极集流体还可以选自含有析氢电位高的镀/涂层的金属,从而降低负极副反应的发生。镀/涂层选自含有c、sn、in、ag、pb、co的单质,合金,或者氧化物中至少一种。镀/涂层的厚度范围为1~1000nm。例如:在铜箔或石墨箔的负极集流体表面镀上锡,铅或银。在第二优选实施方式中,负极除了负极集流体,还包括负载在负极集流体上的负极活性物质。负极活性物质为第二金属,第二金属包括其单质。优选地,负极活性物质为zn、ni、fe、cr、cu、mn、sn或pb。其中,负极集流体可以参考第一优选实施方式,在此不再赘述。第二金属以片状或者粉末状存在。当采用第二金属片作为负极活性物质时,第二金属片与负极集流体形成复合层。具体的实施方式中,制备负极时,除了负极活性物质第二金属粉末之外,根据实际情况,还根据需要添加负极导电剂和负极粘结剂来提升负极的性能。在第三优选实施方式中,直接采用第二金属片作为负极,第二金属片既作为负极集流体,同时也为负极活性物质。电池的电解液中,溶剂的目的是溶解电解质,并使电解质在溶剂中电离,最终在电解液中生成可自由移动的阳离子和阴离子。溶剂优选为水和/或醇。其中醇包括但不限于甲醇或乙醇。电解质包括第一金属离子和第二金属离子,其中,电解质中的第一金属离子,在充放电过程中在正极能够可逆脱出-嵌入。即在电池放电时,电解液中的第一金属离子嵌入正极活性物质中;在电池充电时,第一金属离子从正极活性物质中脱出,进入电解液。优选地,第一金属离子选自锂离子或钠离子,更优选为锂离子。电解质中的第二金属离子,在充放电过程中在负极能够还原沉积为第二金属且第二金属能可逆氧化溶解。即在电池充电时,电解液中的第二金属离子还原成第二金属,沉积在负极上;在电池放电时,第二金属氧化成第二金属离子从负极上溶解,进入电解液。优选地,第二金属离子选自锰离子、铁离子、铜离子、锌离子、铬离子、镍离子、锡离子或铅离子;更优选为锌离子。在一优选实施例下,本发明的第一金属离子选自锂离子,同时第二金属离子选自锌离子,即电解质中阳离子为锂离子和锌离子。电解质中阴离子,可以是任何基本不影响正负极反应、以及电解质在溶剂中的溶解的阴离子。例如可以是硫酸根离子、氯离子、醋酸根离子、甲酸根离子、磷酸根离子、烷基磺酸根离子及其混合等。电解液中各离子的浓度,可以根据不同电解质、溶剂、以及电池的应用领域等不同情况而进行改变调配。优选的,在电解液中,第一金属离子的浓度为0.1~10mol/l。优选的,在电解液中,第二金属离子的浓度为0.5~15mol/l。优选的,在电解液中,阴离子的浓度为0.5~12mol/l。优选的,电解液的ph值范围为3~7。这样既可以有效保证电解液中第二金属离子的浓度,从而保证电池的容量以及倍率放电性能,还可以避免质子共嵌入问题的发生。电池可以不含隔膜。当然,为了提供更好的安全性能,优选在电解液中位于正极与负极之间还设有隔膜。隔膜可以避免其他意外因素造成的正负极相连而造成的短路。隔膜没有特殊要求,只要是允许电解液通过且电子绝缘的隔膜即可。有机系锂离子电池采用的各种隔膜,均可以适用于本发明。隔膜还可以是微孔陶瓷隔板等其他材料。在一优选实施方式下,隔膜为将电解液分隔为正极电解液和负极电解液的隔膜。即将第一金属离子限制在正极电解液中,第二金属离子限制在负极电解液中,这样隔膜能阻止正负极电解液的相互污染,可选择更加适合正极或负极的电解液,但不影响离子电荷传递。例如采用阴离子交换膜、或者氢离子交换膜作为隔膜,位于正极电解液中第一金属离子不能通过隔膜,故而不能进入负极电解液,只能限制在正极电解液中;位于负极电解液中第二金属离子也不能通过隔膜,故而也不能进入正极电解液,只能限制在负极电解液中。但是电解液中阴离子或氢离子可以自由通过,故并不影响电解液中离子电荷传递。本发明的电池,在正极中加入析氧过电位不低于2v的无机氧化物,能够抑制充放电过程中电池正极气体的产生,改善电池正极导电剂的腐蚀问题,从而进一步改善电池的自放电问题,同时也提高了电池的安全性能,并增加了电池的使用性能。下面通过实施例对本发明进一步说明。实施例1将锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc按照质量比90:5:2.5:2.5在水中混合,加入锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc总质量5%的bi2o3,混合形成均匀的正极浆料。将正极浆料涂覆在包覆有导电膜的正极集流体(50μm的不锈钢丝网)两面上形成活性物质层,随后将其进行压片,剪裁成8×10cm大小,制成正极。正极片厚度为0.4mm,正极活性物质面密度为750g/m2。采用厚50μm的锌箔作为负极。隔膜为agm玻璃纤维隔膜。隔膜和负极尺寸与正极相当。称取一定质量的硫酸锌、硫酸锂,加入水中溶解,配置成硫酸锌浓度为2mol/l、硫酸锂浓度为1mol/l的电解液。将电解液滴加到隔膜的一侧,再将正极、隔膜、负极层叠组装成电芯,隔膜滴加的一侧面向负极设置;然后装入壳体内,组装成电池。得到的电池,记作s1。实施例2与实施例1的不同之处在于:将锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc按照质量比90:5:2.5:2.5在水中混合,加入锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc总质量5%的tio2,混合形成均匀的正极浆料。得到的电池,记作s2。实施例3与实施例1的不同之处在于:将锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc按照质量比90:5:2.5:2.5在水中混合,加入锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc总质量5%的sno2,混合形成均匀的正极浆料。得到的电池,记作s3。实施例4与实施例1的不同之处在于:将锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc按照质量比90:5:2.5:2.5在水中混合,加入锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc总质量5%的al2o3,混合形成均匀的正极浆料。得到的电池,记作s4。实施例5与实施例2的不同之处在于:所加入tio2的量为1%。得到的电池,记作s5。实施例6与实施例2的不同之处在于:所加入tio2的量为10%。得到的电池,记作s6。对比例1将锰酸锂lmo、导电剂石墨、粘结剂sbr和cmc按照质量比90:5:2.5:2.5在水中混合,形成均匀的正极浆料。将正极浆料涂覆在正极集流体(50μm的不锈钢丝网)上形成活性物质层,随后将其进行压片,剪裁成6×6cm大小,制成正极片。正极片厚度为0.4mm,正极活性物质面密度为750g/m2。采用厚50μm的锌箔作为负极。隔膜为agm玻璃纤维隔膜,隔膜和负极尺寸与正极相当。称取一定质量的硫酸锌、硫酸锂,加入水中溶解,配置成硫酸锌浓度为2mol/l、硫酸锂浓度为1mol/l的电解液。将正极、负极以及隔膜层叠组装成电芯,装入壳体内,然后注入电解液,封口,组装成电池。得到的电池,记作d1。自放电性能测试先将电池在60℃下放置一天,再在室温条件下以0.2c倍率在1.4v~2.1v电压范围内测试s1~s4以及d1电池的充放电容量,将电池容量与未在下放置的电池容量进行比较,得到电池在60℃放置一天之后的容量保持率,如表1中所示。表1电池序号s1s2s3s4d1容量保持率(%)91.992.693.792.390从表1中可以看出,s1-s4的电池,在60℃放置一天之后的容量保持率要高于d1电池的容量保持率,说明在正极添加析氧过电位不低于2v的无机氧化物,改善了电池的自放电问题,同时提高了电池的电化学性能。尽管发明人已经对本发明的技术方案做了较详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例作出修改和/或变通或者采用等同的替代方案是显然的,都不能脱离本发明精神的实质,本发明中出现的术语用于对本发明技术方案的阐述和理解,并不能构成对本发明的限制。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1