蓄电池单元的制作方法

文档序号:11103469阅读:419来源:国知局
蓄电池单元的制造方法与工艺

本发明涉及一种蓄电池单元,更特别涉及一种在发生过度充电时能够中断电流流动的袋式蓄电池单元。



背景技术:

随着便携式电子产品,诸如摄影机、便携式电话,以及便携式PC等逐渐被使用,用作其驱动电源的可充电电池的重要性日益增大。

通常,与不充电的一次电池不同,可用于充电和放电的可充电电池,随着诸如数码相机、移动电话、膝上型计算机、动力工具、电动自行车、电动车辆、混合动力车辆以及大容量动力存储设备等高科技领域的发展,已得到积极地研究。

具体来说,与现有的铅酸蓄电池、镍镉蓄电池、镍氢蓄电池、以及镍锌蓄电池等其它二次电池相比,每单位重量具有高能量密度且能够快速充电的锂离子蓄电池,已逐渐被使用。

锂离子蓄电池可具有3.6V或更高的工作电压,且可用作便携式电子设备的电源,多个锂离子蓄电池还可串联或并联连接以使用在高功率电动车辆、混合动力车辆、动力工具、电动自行车、动力储存设备和UPS中。

与镍镉蓄电池或镍-金属氢化物蓄电池相比,人们通常使用具有工作电压高出三倍且每特定重量的能量密度优异等特点的锂离子蓄电池。

利用液体电解质的锂离子蓄电池,通常被焊接并密封在作为容器的圆形或带角的金属罐中。这种使用金属罐作为容器的罐式可充电电池具有固定形状,限制使用罐式可充电蓄电池作为电源的电子产品的设计,并在减小罐容量方面具有一定难度。因而,人们已经研发并使用一种袋式(pouch-type)可充电电池,通过将电极组件和电解质封装在由薄膜形成的袋中,并密封该袋。

然而,锂离子蓄电池在过热时可能会具有不利影响,因此确保安全性非常重要。

锂离子蓄电池可能因各种原因而被过度加热。其中的一个原因是大于极限值的过载电流在锂离子蓄电池中流动的情况。当过载电流流动时,锂离子蓄电池因焦耳热而被加热,从而快速增加其内部温度。此外,温度的快速增加引起电解质的分解反应,从而引起热失控,这会导致蓄电池的不利影响。当锋利的金属物体穿透锂离子蓄电池时;当正电极和负电极之间的绝缘,因介于正电极和负电极之间的分离器的收缩而破坏时;或者当由于外连接的充电电路或载荷中发生故障而将冲击电流施加到蓄电池时,都会产生过载电流。

因此,为了保护锂离子蓄电池免受诸如产生过载电流等异常情况,锂离子蓄电池可与保护电路连接,并且保护电路通常具有熔丝元件,当产生过载电流时,该熔丝元件不可逆地切断充电或放电电流流动的线路。然而,在熔丝元件发生故障的情况下,形成电池模块和/或电池组的锂离子蓄电池,即蓄电池单元内的内压会继续增加,从而可能产生不利事件。

因此,当蓄电池单元的内压增大时,需要更可靠地切断电流的流动,以确保安全。



技术实现要素:

为了在完好地保持现有技术所具有的优点的同时解决现有技术中存在的上述问题,而提出本发明。

本发明的一方面提供一种电极引线,其能够在蓄电池单元中发生故障(过度充电、过度放电、或者异常高温)时,自动中断施加到蓄电池单元的电流。

本发明的另一方面提供一种电极引线,甚至在没有单独电源或控制器的情况下,其也能够通过机械操作来中断施加到蓄电池单元的电流。

本发明的另一方面通过最大限度地缩短电流在其中流动的路径来减小阻力。

本发明的技术主题不限于上述内容,并且从下面描述的实施例中, 本领域技术人员会清楚地理解本文中未描述的任何其它技术主题。

根据本发明的一个示例性实施例,蓄电池单元可包括:电极组件;容纳电极组件的袋状壳体;以及具有外引线和内引线的电极引线,外引线的至少一部分从袋状壳体向外伸出,内引线连接到电极组件和外引线,其中内引线和外引线通过结合部连接,并且当袋状壳体膨胀时结合部断裂。

在具体实施方式以及附图中,示出各个实施例的细节。

附图说明

通过下面的详细描述,并结合附图,本发明的上述和其它目的、特征和优点将更会更加显而易见,其中:

图1是根据本发明示例性实施例的蓄电池单元的平面图;

图2是沿图1的C-C线截取的横截面图;

图3是根据本发明示例性实施例的电极端子的分解立体图;

图4是当电极端子因蓄电池单元中产生气体而分离时,沿着图1的C-C线截取的横截面图。

图中每个元件的附图标记:

11:电极组件

14:袋状壳体

100:电极引线

101:外引线

103:内引线

105:结合部

107:阶梯部

110:袋状粘合层

111:上粘合层

113:下粘合层

120:阶梯粘结部

140:粘结部件

150:保护层。

具体实施方式

通过下文给出的详细描述,并参考附图,用于实现本发明的优点和特征的优点、特征和方法将会更加显而易见。

然而,应该理解,详细的描述和具体实施例仅通过说明的方式给出,因为通过这些详细描述,本发明的精神和范围内的各种变化和修改对于本领域技术人员显而易见。在本说明书中,类似的附图标记指代相同或类似的元件。

在下文中,参考附图详细描述根据本发明的示例性实施例的蓄电池单元。

图1是根据本发明的示例性实施例的蓄电池单元的平面图。

参考图1,蓄电池单元10可包括电极组件11、一对电极引线100、袋状粘合层110以及袋状壳体14。

电极组件11可包括正电极板、负电极板、分离器,以及电极分接头(electrode tap)。电极组件11可以是通过在堆叠的正电极板和负电极板之间插入分离器而形成的堆叠的电极组件。

而且,电极组件11可形成为果冻卷型电极组件。

正电极板可通过在由铝(Al)形成的电流集电片上涂覆正电极活性材料而形成。负电极板可通过在由铜(Cu)形成的电流集电片上涂覆负电极活性材料而形成。

电极分接头可以与正电极板或负电极板整体形成,且可以与正电极板或负电极板上未涂覆电极活性材料的未涂覆区域相对应。即,电极分接头可包括正电极分接头和负电极分接头,该正电极分接头与正电极板上未涂覆正电极活性材料的区域相对应,该负电极分接头与负电极板上未涂覆负电极活性材料的区域相对应。

电极引线100,薄板状金属,可附接到电极分接头上,并沿电极组件11的向外方向延伸。电极引线100可包括附接到正电极分接头的正电极引线和附接到负电极分接头的负电极引线。根据正电极分接头和负电极分接头的形成位置,正电极引线和负电极引线可沿相同的方向或相反的方向延伸。

电极引线100可用于电连接蓄电池单元10的内部和外部,可以由具有导电性的金属形成,例如铜、镍或铝,并且可具有镀层以防止腐 蚀。

袋状粘合层110可沿宽度方向附接到电极引线100的周边,并插入在电极引线100与袋状壳体14的内表面之间。袋状粘合层110可由具有电绝缘性能和热粘结性的薄膜形成。袋状粘合层110可由选自例如聚酰亚胺(PI)、聚丙烯(PP)、聚乙烯(PE)和聚对苯二甲酸乙二醇酯(PET)中的一个或多个材料层(单层薄膜或多层薄膜)形成。

袋状粘合层110可防止电极引线100和袋状壳体14的金属层之间发生短路。此外,袋状粘合层110可用于加强袋状壳体14在电极引线100被引出的区域的密封力。

即,在由金属形成的电极引线100和袋状壳体14的内表面没有适当粘接的情况下,即使袋状壳体14的边缘区域被热粘结从而被密封的情况下,电极引线100被引出区域的密封特性也会劣化。此外,当电极引线100的表面涂覆镍(Ni)时,密封特性的劣化会更加严重。

因此,通过在电极引线100与袋状壳体14之间插入袋状粘合层110,可提高蓄电池单元10的密封特性。

袋状壳体14可具有上壳体14a和下壳体14b,具体地,当其中上壳体14a和下壳体14b彼此接触的边缘区域与其中容纳的电极组件11热粘结,以使得电极引线100被引到外面时,袋状壳体14可被密封。

袋状壳体14可具有多层结构,以便确保刚性和绝缘性能,从而保持优异的热粘结性和形状,并保护电极组件11。例如,袋状壳体14可具有多层结构,其包括布置在最内侧以面向电极组件11的第一层、布置在最外侧并直接暴露于外部环境的第二层、以及介于第一层与第二层之间的第三层。

在这种情况下,例如,第一层可以由相对于电解质具有抗腐蚀性、电绝缘性能,和热粘结性的材料,例如聚丙烯(PP)形成;第二层可以由具有刚性和电绝缘性能以保持形状的材料,例如聚对苯二甲酸乙二醇酯(PET)形成;第三层可由金属,例如铝(Al)形成。

在蓄电池单元10中发生短路或者蓄电池单元10过度充电的异常情况下,在电池内会产生气体。在此,袋状壳体14会因为气体而膨胀,如果异常情况没有得到解决,则袋状壳体14会受到不利的影响。

图2是沿图1的C-C线截取的横截面图。图3是根据本发明的示 例性实施例的电极端子的分解透视图。图4是当电极端子因蓄电池单元内产生气体而分离时,沿图1的C-C线截取的横截面图。

参考图2和图3,根据本发明的各个示例性实施例,电极引线100可包括外引线101和内引线103,外引线101的至少一部分从袋状壳体14向外伸出,内引线103连接于外引线101和电极组件11。

外引线101的一端101b可从袋状壳体14向外伸出,且外引线101的另一端101a可通过焊接结合到袋状壳体14内的内引线103的另一端103a。

内引线103可布置在袋状壳体14中,内引线103的一端103b可连接到袋状壳体14内的电极组件11,且内引线103的另一端103a可通过焊接结合到外引线101的另一端101a。

即,当外引线101的另一端101a和内引线103的另一端103a通过焊接而结合时,可形成结合部105,并且外引线101和内引线103可通过结合部105电连接并物理连接。

结合部105可被配置成,在袋状壳体14在蓄电池单元10内发生短路或故障(过度充电、过度放电,或异常高温)的情况下向内膨胀时,容易断裂。当结合部105断裂时(见图4),外引线101和内引线103可分离以中断电流,从而确保安全。

内引线103的另一端103a和外引线101的另一端101a可以以阶梯结构结合,从而形成阶梯部107。因此,当蓄电池单元10膨胀时,结合部105容易断裂。

根据本发明的各个示例性实施例,结合部105可具有“局部焊接”结构,其中外引线101的另一端101a和内引线103的另一端103a可通过点焊或凸焊进行局部焊接。为了进行局部焊接,可以在外引线101的另一端101a上或内引线103的另一端103a上设置具有各种形状的突起,由此可以不同地调节焊接结构。以这种方式,由于结合部105具有局部焊接结构,因此可以为结合部105提供适当的断裂压力。

袋状粘合层110可包括设置在电极引线100上面的上粘合层111和设置在电极引线100下面的下粘合层113。

上粘合层111可以介于电极引线100的上表面与上壳体14a之间,下粘合层113可以介于电极引线100的下表面与下壳体14b之间。

上粘合层111和电极组件11之间的距离,与下粘合层113和电极组件11之间的距离可以不同,并且上粘合层111与下粘合层113之间的距离差进一步加速结合部105中发生的断裂。

上粘合层111和下粘合层113密封袋状壳体14,以阻止环境空气流入。

下粘合层113可具有阶梯粘结部120,其被形成为阶梯状以便与内引线103和外引线101的阶梯部107相对应。

根据本发明的各个示例性实施例,结合部105还可包括介于外引线101的另一端101a与内引线103的另一端103a之间的粘结部件140。

粘结部件140可介于内引线103的另一端103a与外引线101的另一端101a之间以进行压缩。粘结部件140可使内引线103与外引线101之间的接触面积最大,以使电阻最小。而且,粘结部件140可用于调整结合部105的裂压,并且可主要由具有低电阻和延伸性的金、铝、或铜制成。

根据示例性实施例,粘结部件140由具有低电阻和延伸性的金属箔形成。金属箔可以使导电体之间的接触面积最大,从而使电阻最小。

而且,粘结部件140可由具有低熔点的合金材料,例如锡基合金等形成,以便在蓄电池单元的温度增大时支持增加可操作性的功能。

粘结部件140可以由熔点低于电极引线100的材料制成。

结合部105还可包括至少一个保护层150,保护结合部105免受在制造组件或电池期间不希望出现的外力。参考图3,两个保护层150可介于外引线101的另一端101a与内引线103的另一端103a之间。

保护层150可由诸如PP、PE、PET或特氟隆(Teflon)等聚合物形成。因此,保护层150可防止电池内剩余的电解质渗透到结合部105的内部,从而防止结合部105受到腐蚀。

本发明具有以下优点:

第一,提供一种电极引线,其在蓄电池单元中发生故障(过度充电、过度放电,或异常高温)时,自动切断施加到蓄电池单元的电流;

第二,甚至在没有单独电源或控制器的情况下,该电极引线也可被机械地操作,以切断施加到蓄电池单元的电流;

第三,最大限度地缩短电流流动的路径,以减小阻力。

本发明可能获得的效果不限于上述效果,并且通过本发明的教导,本领域技术人员可容易地理解本文未提及的任何其他技术效果。

如上所述,尽管已参考示例性实施例和附图对本发明进行描述,然而,本发明并不限于此,在不偏离所附权利要求所要求的本发明的精神和范围的情况下,本发明所属领域的技术人员还可进行各种修改和变化。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1