半导体器件的制造方法

文档序号:6819252阅读:167来源:国知局
专利名称:半导体器件的制造方法
技术领域
本发明涉及到用倒装片键合方法安装器件芯片的半导体器件的制造方法,更确切地说是涉及到提高焊球纯度从而改善器件制造成品率的方法。
为进一步减小电子设备的尺寸,如何改进部件安装密度是很重要的。对于半导体IC,已提出直接将LSI裸芯片连接到安装衬底上的导体图形的无引线键合方法来取代用键合引线和引线框的现有封装件安装。其中,在器件芯片的器件制作表面上制作所有的电极部分、焊料球(凸块)和连接于其上的梁式引线,并以器件制作表面朝下地直接将其连接到安装衬底上的导体图形上的方法,被称为倒装片键合方法,且由于装配步骤合理而普遍应用于混合IC的安装中或大型计算机的应用中。
在安装有望作为多脚封装件的BGA(网格焊球阵列)封装件的引出线时,焊料球尤其将处于越来越重要的地位。BGA意指将通常集中在器件芯片周边的铝电极焊点的分布图形,用绝缘的中间层(插入层)转换成分布于更广范围内的电接触的规则分布图形并将焊料球分配到电接触点的一种技术。由于用BGA可确保相邻焊料球之间有大的排列间距,故不用担心焊料球之间短路,因而器件芯片能以足够的键合强度安装在安装衬底上而无需减小球的直径。
近年来,一个封装件中有时制作多达200个或更多的焊料球,因而安装的可靠性依赖于这样多的焊料球如何能制作成均匀的高度。
通常用电镀方法来制作焊料球,但此法牵涉到待要制作的焊料膜其厚度随下方材料层的表面状态和电阻的稍许分散而起伏的问题。
为了解决这一问题,本申请人先前已在日本专利公开Hei 7-288255中提出了一种制作焊料球的方法,它包含将真空薄膜制作技术与抗蚀剂图形剥离进行组合。现参照图7-

图10来解释此方法。
图7示出了晶片W即衬底11的状态,其中用钝化方法在铝电极焊点12上制作了BLM膜15,并用有机保护膜钝化方法制作了焊料膜图形。BLM(限球金属)是一种势垒金属,其制作目的是改善附着力和防止薄膜与随后待要制作的焊料膜之间的互扩散,且这一命名来自此膜要决定焊料球的最终形状。
简单地参照迄今的各个步骤,铝电极焊点12首先被图形化为已制作所有器件的衬底11上的预定形状。然后用SiN钝化膜13覆盖晶片W的整个表面,再对此膜进行图形化以形成面对铝电极焊点12的窗口13a。随后在晶片W的整个表面上淀积聚酰亚胺膜14作为有机钝化膜,在窗口13a中再制作面向铝电极焊点12的窗口14a。
然后,制作BLM膜15以覆盖窗口14a。此BLM膜15是一个多层膜,它包含通常用剥离方法制作的从下层顺序溅射层叠而成的Cr膜、Cu膜和Au膜。
然后用剥离方法制作焊料膜图形17a。如图8所示,首先制作一个厚度足够的带有暴露窗口14a及其附近区域的窗口16a的抗蚀剂图形16。然后用焊料膜涂覆晶片W的整个表面。此焊料膜制作在窗口16a之中,与BLM膜15相接触,且分离成焊料膜图形17a以便在后续步骤中形成焊料球以及淀积在抗蚀剂图形16上的在后续步骤中要被清除的不需要的焊料膜17b。
接着,将衬底浸入抗蚀剂剥离液中并在加热的情况下摇动,当抗蚀剂图形16和不需要的焊料膜17b被清除后,如图9所示留下焊料膜图形17a。
随后进行称之为回润(wet back)的热熔化处理。亦即,在焊料膜图形17a的表面上涂覆焊药之后,当在N2气氛中阶段性地提高温度时,焊料膜图形17a靠其自身的表面张力收缩而如图10所示在BLM膜15上以自对准方式形成焊料球17c。回润过程中达到的最终温度约为340℃。
然后对晶片W进行划片,当从晶片W分出的单个器件芯片的焊料球制作表面朝下且正对着安装衬底,而且预先焊接在安装衬底上的导体图形与焊料球对准并被热熔化时,就完成了芯片的安装。
顺便说一下,为了确保芯片至安装衬底的键合强度以及尺寸稳定性决定焊料球17c尺寸的焊料膜图形17a的厚度被做得足够大。此厚度虽然有赖于球的分布图形,但通常约为30μm。因此,下方用于剥离的抗蚀剂图形16的膜厚希望大于30μm。这一膜厚是器件内部电路制备时所用抗蚀剂图形厚度的数十倍。
但若抗蚀剂图形16的厚度如上所述那样大,则液体显影液或清洗用水中出来的大量的水在光刻之后倾向于进入薄膜。特别是进入薄膜内部深处的水,即使用通常的烘焙处理也不易充分地清除。此外,在烘焙处理之后的衬底冷却步骤中,抗蚀剂图形16有时可能重新吸收空气中的水分。倘若焊料膜汽相淀积与含有大量残留水的抗蚀剂图形16相接触,则出现所谓放气,在汽相淀积时加热衬底而使水气化并从抗蚀剂图形16中释放出来。释出的水使焊料膜的制作条件起伏,且一部分水如图中箭头所示进入焊料膜图形17内部。
进入焊料膜图形17a的一部分水还如图中箭头所示来自聚酰亚胺膜。
若对这种情况下制作的焊料膜图形17a进行回润,则先前进入膜中的水可能气化并扩展到焊料球10中以致引起空洞18,或者水可能氧化焊料膜的组分元素以致局部淀积金属氧化物19。空洞18或金属氧化物19在完工之后会增大焊料球17c的电阻率或降低BLM膜15与焊料球之间的粘合性,以致引起器件制造成品率下降。
本发明的目的则是提供一种制造半导体器件的方法,此法借助于提高完工后焊料球的纯度以及在选择性淀积焊料膜图形的情况下借助于用抗蚀剂图形的剥离方法,能够改善器件的制造成品率。
在根据本发明的制造半导体器件的方法中,在用于剥离的抗蚀剂图形上形成焊料膜之前对抗蚀剂图形进行脱水处理,使通过剥离方法选择性淀积于器件芯片电极焊点上的焊料膜图形回润成焊球,可达到了本发明的上述目的。
在本发明中,由于在汽相淀积焊料膜之前借助于脱水处理至少从下方的抗蚀剂图形中预先释放了残留的水,故在焊料的汽相淀积时不会出现抗蚀剂图形的释气现象。此处说成是“至少从抗蚀剂图形…”是因为根据脱水处理的条件,还同时进行着水从暴露在抗蚀剂图形窗口(第二窗口)中的绝缘保护膜的释放,例如聚酰亚胺树脂、聚四氟乙烯电介质、氟化聚芳基醚衍生物、多-P-氟化二甲苯(poly-p-fluorinatedxylene)之类可用作绝缘保护膜、近年提出作为层间绝缘膜材料的低介电常数材料膜。其中聚酰亚胺树脂膜现已被最广泛地使用,它具有高达400℃或更高的抗热性,并可适当地选择和使用热阻优越、抗潮、抗裂和均匀的热膨胀系数小并最好具有吸杂性质的有机材料。
根据本发明可抑制焊料膜制作条件的起伏以及水向薄膜的侵入,并可防止焊料球内金属氧化物的淀积和空洞的形成。结果,焊料球的电阻率可保持于所设计的低值并改善与下方材料膜的粘合性,从而改善器件的制造成品率。
但必须在控制衬底达到的最高温度低于抗蚀剂图形抗热温度的情况下进行脱水处理。这是由于抗蚀剂材料在超过抗蚀剂图形抗热温度范围中被热变性以致引起所谓焦化,其中的材料无法从下方绝缘保护膜剥离。本发明中的脱水处理温度虽然依赖于构成抗蚀剂图形的基质树脂或与之混合的增塑剂的组成,但被适当地确定为约50-100℃,50-80℃更好。若温度低于此范围,则脱水效果不充分,即必须延长脱水处理所需的时间,以致使产率大为下降。另一方面,若温度超过此上限,则如上所述由于后续步骤中的焦化而使抗蚀剂难以剥离。即使温度升高不直接导致焦化,倘若温度超过基质树脂的软化点,也可发现抗蚀剂图形物理性质的各种改变。因此,若温度在上述范围中,则即使考虑到基质树脂种类的差别,也可以避免各种偶然情况。
特别是,用来制作本发明中用于剥离焊料膜的厚的抗蚀剂图形的高粘度抗蚀剂材料的抗热温度,比用来制作器件芯片中的电路图形的抗蚀剂材料的抗热温度更低,且常常为约70℃。因此,对这种高粘度抗蚀剂材料必须在65-70℃的温度范围内进行脱水处理。
通常用作绝缘保护膜的聚酰亚胺比之一般的抗蚀剂材料,具有优良得多的抗热性,在上述的温度范围内完全不用担心热变性。
在本发明中进行了下列的实际脱水方法(a)溅射腐蚀,(b)高真空退火,或(c)惰性气体气氛中烘干。
在上述的溅射腐蚀(a)中,吸附在抗蚀剂图形或绝缘保护膜表面处或进入其内部的水分子被入射到衬底的离子的动能或入射衬底后能量转换所产生的热所分解。由于溅射腐蚀是在等离子放电条件下进行的,故衬底的温度被诸如来自溅射设备衬底平台的热发射、等离子辐射热、衬底内部入射离子动能到热能的转换之类的多种因素提高。因此,当用溅射腐蚀来脱水时,必须优化等离子放电条件,使衬底表面要达到的最高温度处于上述范围之中。用于溅射腐蚀的等离子体要选择成对离子入射表面的形状和性质不起有害的影响。一般采用Ar等离子体。
顺便说一下,对于用来进行溅射腐蚀的等离子设备没有特定的限制,例如可采用迄今所用的平行板RF等离子设备以及磁控RIE设备。但由于决定等离子密度的高频功率(ratio frequency power)以及决定入射离子能量的偏置电压在这些设备中被控制为保持于预定的相互关系中,故若提高等离子密度,则衬底偏压也相应地提高。因此对于快速清除残留物同时抑制对有机保护膜的损伤有一定限制。
相反,在能够独立地控制等离子激发与衬底偏压的等离子设备中,由于能够在较低电压下形成高密度的等离子体,故可用大量的离子来快速清除残留物而同时使入射到表面有机保护膜的离子的动能保持在恰当的数值。这类设备可包括例如三极管型RF等离子设备、磁场微波等离子设备、ICP(感应耦合等离子)设备以及螺旋波等离子设备。在三极管型RF等离子设备中,可得到约为1010/cm3的等离子密度。能够得到大约1×1011/cm3或更高的等离子密度的设备近年特别统称为高密度等离子(HDP)设备,并有可能在磁场微波等离子设备中激发密度约为1011/cm3的等离子体,在ICP设备中激发密度为1012/cm3的等离子体,而在螺旋波等离子设备中激发密度为1013/cm3的等离子体。
当用溅射腐蚀进行脱水时,若抗蚀剂图形窗口中即第二窗口中留有抗蚀剂膜的残渣(scam)则可同时清除。
此残渣是光刻中分辨率失效或显影失效所引起的抗蚀剂膜残留物。在剥离方法中,如上所述,所用的抗蚀剂膜极厚,而光刻中的焦深随曝光波长的缩短变得极浅。因此,即使曝光条件或显影条件稍有起伏,就会形成残渣。若它们留在下方材料膜的表面上以形成焊料膜图形,则它们就引起焊料球与下方材料膜之间的接触电阻增大即接触失效。溅射腐蚀是一种物理清除残渣的有效方法。
上述的高真空退火(b)是一种在高真空下加热衬底时分解膜中的水的方法。另一方面,在上述方法(c)中将衬底置于干燥的惰性气体气氛中,衬底可不必特别加热,但这依赖于放置的时间。一般可用干N2作为干燥的惰性气体。
在方法(b)和(c)中,在脱水过程中由于不像上述的溅射腐蚀(a)中那样对膜施加有物理能量,故有可能得到损伤小的脱水。若有意清除残渣,则可在高真空退火之后接着进行溅射腐蚀。借助于在独立条件下进行脱水和清除残渣,可容易地设定各步骤的最佳条件以改进工艺精度。
图1剖面示意图示出了用对SiN钝化膜和衬底上铝电极焊点上的聚酰亚胺膜进行图形化的方法而制作BLM膜的情况;图2剖面示意图示出了制作用来在图1晶片上确定焊料膜淀积部位的抗蚀剂图形的情况;图3剖面示意图示出了对图2所示抗蚀剂图形与聚酰亚胺膜暴露部位进行脱水处理和残渣清除的情况;图4剖面示意图示出了在图3所示晶片上制作焊料膜的情况;图5剖面示意图示出了剥离图4中抗蚀剂图形以及清除不必要的焊料膜部位的情况;图6剖面示意图示出了用回润方法制作焊料球的情况;图7剖面示意图示出了现有工艺中在铝电极焊点上制作BLM膜的情况;图8剖面示意图示出了水从抗蚀剂图形或聚酰亚胺膜进入制作在图7晶片表面上的焊料膜图形的情况;图9剖面示意图示出了剥离图8中抗蚀剂图形以及清除不必要的焊料膜部位的情况;以及图10剖面示意图示出了回润形成的焊料球内形成空洞或金属氧化物的情况。
本发明的最佳实施例将解释如下。
例1
以下参照图1-6来说明在淀积焊料膜之前用三极管型RF等离子加工设备进行脱水处理的工艺。
首先,如图1所示,在已制作有所有器件的衬底1上对铝电极焊点2进行图形化。接着,用例如由等离子CVD方法制得的SiN钝化膜3覆盖衬底的整个表面,再对此膜进行图形化形成窗口3a以暴露铝电极焊点2。这样得到的状态是通常器件芯片的完成状态。
然后在衬底(晶片)的整个表面上涂覆厚度约为5μm的光敏聚酰亚胺树脂(Toray Industries公司制造,商标名为UR-3100,比介电常数ε≈3.2)以形成聚酰亚胺膜4。然后用g射线光刻方法对聚酰亚胺4进行图形化并显影形成窗口4a作为暴露铝电极焊点2的第一窗口。窗口4a制作在先已形成的SiN钝化膜3的窗口3a之中,且在铝电极焊点2与后续步骤中待制作的BLM膜之间确定一个接触区。
然后制作与铝电极焊点2暴露表面相接触的BLM5以便覆盖窗口4a。为此采用了剥离方法。亦即,制作了一个对应于BLM膜5制作部位而开孔的未示出的抗蚀剂图形,随后进行预处理以清除铝电极焊点2表面上的自发氧化膜。然后例如用直流溅射方法相继溅射Cr膜(厚约0.1μm)、Cu膜(厚约1.0μm)和Au膜(厚约0.1μm)以形成一个膜。膜制作条件被设定为例如如下所示Cr膜Ar流速 75sccm压力1.0Pa直流功率3.0kW衬底温度室温Cu膜Ar流速 100sccm压力1.0Pa直流功率9.0kW衬底温度室温Au膜Ar流速 75sccm压力1.5Pa直流功率3.0kW衬底温度室温在此例中,最下层的Cr膜对通常由铝族金属膜组成的电极焊点起粘合层的作用,中层的Cu膜对焊料球组成金属起抗扩散层的作用,而最上层的Au膜对Cu膜起抗氧化膜的作用。BLM膜5制作成在抗蚀剂图形的上下方分隔的状态。
然后将晶片W浸入抗蚀剂剥离液中进行摇动加热处理。用例如混合二甲基亚砜(DMSO)与N甲基-2-2-吡咯烷酮(CH3NC4H6O)的方法来制备抗蚀剂剥离液。结果,与剥离抗蚀剂图形一道,淀积于其上的不必要的BLM膜也被同时清除,只留下待与铝电极焊点2连接的BLM膜5。图1示出了至此阶段所完成的步骤的情况。
然后如图2所示,在晶片W的整个表面上制作抗蚀剂膜并进行抗蚀剂图形化以确定焊料膜的淀积部位。借助于图形化,抗蚀剂图形6具有一个用来暴露制作窗口4a的区域及其周边区域的窗口6a。抗蚀剂图形6的厚度做成例如30μm,足以在后续步骤中分隔焊料膜。
但这样厚的抗蚀剂膜处于在显影步骤和冲洗步骤中大量吸收显影液和清洗液中的水,或在以后置于大气的过程中重新吸附水的状态中。而且也难以靠显影来完全清除窗口6a中的抗蚀剂膜从而在窗口6a底部留下了某些残渣6s。
然后进行本发明特有的步骤即抗蚀剂图形6的脱水处理。在本实施例中,晶片W被安置在三极管型RF等离子加工设备的晶片平台上,然后如图3所示进行溅射腐蚀。
三极管型RF等离子设备包含一个三电极结构,其中的上电极(阳极)和同时用作晶片平台的下电极(阴极)彼此相对,在等离子室中二个电极之间排列着栅极。用于等离子激发的RF功率源连接于上电极,而用于衬底偏置的RF功率源连接于下电极,从而可独立地控制等离子密度与衬底偏压。借助于上电极与设定于地电位的栅极之间产生的辉光放电而形成等离子体,正离子通过栅极并被引出到下电极。
本实施例的溅射腐蚀条件的例子如下所示。
设备三极管型RF等离子设备Ar流速 25sccm压力0.7Pa
源功率 600W(2MHz)偏置功率250W(13.56MHz)晶片平台温度25℃加工时间60sec在溅射腐蚀工艺中,晶片表面达到的最高温度被升至约70℃,其机制是来自温控加热的晶片平台的热传导、等离子辐射热以及离子入射能量的热能转换。虽然图3中所示好像只从其下表面给晶片W以热能△,但这种表示仅仅是为了方便起见。温度的升高有效地释出了进入抗蚀剂图形6内部深处的水,且这种程度的温度完全不引起抗蚀剂图形6的热变性。留在窗口6a底部的所有残渣6s以及形成在BLM膜5表面上的未示出的自发氧化膜,都被离子溅射效应同时清除了。而且,水还被等离子加工从聚酰亚胺膜4释放了。
接着如图4所示,在晶片W的表面上汽相淀积焊料膜(Pb∶Sn=97∶3)。焊料膜以垂直自对准方式被抗蚀剂图形6分隔开,且在窗口6a中淀积待要连接于BLM膜5的焊料图形7a,同时在抗蚀剂图形6上淀积不必要的焊料膜7b。
在汽相淀积工艺中,虽然晶片W的温度升至约60℃,但由于先前已由上述的脱水处理充分地释出了抗蚀剂图形6与聚酰亚胺膜4中的水,故在汽相淀积气氛中不出现放气引起的起伏,从而可进行稳定的薄膜制作。
再次将晶片W浸入抗蚀剂剥离液中进行加热/摇动处理以清除抗蚀剂图形6和不必要的焊料膜7b。这样,如图5所示,只留下覆盖着BLM膜5的焊料膜图形7a。所有的抗蚀剂图形6都被迅速清除了,而且未观察到焦化所造成的剥离失效。
接着,用所谓回润步骤来制作焊料球。亦即,首先将焊药涂至图形化的焊料膜7a。此焊药包含诸如胺型活化剂之类的树脂、醇类溶剂、松香和聚乙二醇作为组成部分,并对焊料膜7a有还原和表面活化的作用。此时当晶片W的温度在N2气氛中阶段性地升高时,焊料膜7a在熔化时靠其自身的表面张力而收缩成球形。结果就形成了图6所示的焊料球7c。在球7c内部未观察到现有技术中那样的空洞或金属氧化物分凝的形成,并获得了所设计的电阻值。而且,焊料球7c与BLM膜5之间的粘合性也令人满意。
接着,将晶片切割成单个芯片,并在位置对准的情况下加热熔合焊料球7c和先前已焊接在安装衬底上的导体图形,从而完成LSI芯片的安装。
这样完成的安装产品由于提高了焊料球7c的纯度而在焊球键合部位具有改善了的机械强度和电学特性。因此,比之现有工艺的产品,其可靠性、寿命和制造成品率都得到了明显的改进。
例2在本例中,作为制作焊料膜图形的预处理,连续进行了高真空退火脱水处理和ICP(感应耦合等离子)设备的溅射腐蚀。
在ICP设备中,上电极(阳极)还用作等离子室的上盖,而下电极(阴极)也用作晶片平台,二者彼此相对,构成等离子室横侧壁表面一部分的绝缘壁的外周边被多圈天线环绕。等离子激活用的RF功率源连接于多圈天线,衬底偏置用的RF功率源连接于下电极,从而有可能独立地控制等离子密度和衬底偏置。
在此例中,直至制作窗口6a的各个步骤都与例1中所述的相同,而后续的高真空退火在下列条件下进行Ar流速 100sccm压力2Pa晶片平台温度65加工时间120sec溅射腐蚀则在下列条件下进行设备 ICP设备Ar流速 100sccm压力 0.7Pa源功率 1kw(450MHz)RF偏压 60V(13.56MHz)晶片平台温度 65℃工艺温度 20sec
在此例中,脱水处理主要由高真空退火进行,而进行溅射腐蚀的主要目的是在局部启动脱水处理时清除残渣。以这种方式,借助于在优化条件下分别进行脱水处理和残渣清除,改善了加工精度。
借助于提高气体分子的分解效率,此处所用的ICP加工设备即使在低于1Pa的低压下也能获得高达约1012/cm3的等离子密度,而且,大量形成的Ar+离子能够基本上垂直地进入晶片W而将离子散射减为最小。因此,可有效地清除残渣7s而无需提高偏压,从而获得低损伤的加工。
接着,按相同于例1的方式进行焊料球7c的制作与LSI芯片的安装,并证实了焊球键合部位机械强度和电学特性的改善。
例3在此例中,晶片W被置于干燥的惰性气体气氛中进行脱水处理,然后用溅射腐蚀清除残渣,以此作为制作焊料膜图形的预处理。
具体地说,干N2气体在常温下被密封在能够使晶片温度保持于65℃的工作室中,而处于图2所示状态下的晶片W被置于这种气氛中2小时。虽然此法比其它各例子需要更长的加工时间,但由于完全不使用等离子体,故具有完全不引起等离子辐射损伤的优点。
在此例中也证实了最终安装成品的焊球键合部位的机械强度和电学特性的改善。
已参照三种例子对本发明进行了解释,但本发明完全不局限于这些例子。例如,可以使用如上所述的三极管型RF等离子设备或ICP设备,也可使用诸如平行板型RF等离子设备之类的现有类型等离子设备作为脱水处理或残渣清除的等离子设备,诸如螺旋波等离子设备之类的高密度等离子设备或ECR等离子设备也可使用。
采用上述等离子设备的溅射腐蚀最好在随后的焊料膜汽相淀积马上要开始之前进行。为了防止抗蚀剂图形重新吸收水,采用一种能够在进行溅射腐蚀的等离子设备工作室与汽相淀积设备的薄膜制作室之间高真空传送晶片的多室型制造设备是极为有效的。
此外,可适当改变、选择和组合所用样品晶片的组成、薄膜制作条件、各个材料膜的种类和厚度以及溅射腐蚀条件。
从以上解释可见,根据本发明,借助于提高用于倒装片键合的焊料球的纯度,可改善球键合部位的机械和电学可靠性,并改善安装产品的制造成品率。
因此,用本发明可以制造以高密度安装有能够高速运行的器件芯片且可靠性与使用寿命优异的半导体器件。
权利要求
1.一种制造半导体器件的方法,它包含下列步骤制作用来将电极焊点暴露于覆盖器件芯片的绝缘保护膜的第一窗口的第一步骤;制作在绝缘保护膜上带有用来暴露制作第一窗口的区域及其附近区域的第二窗口的抗蚀剂图形的第二步骤;在将衬底表面达到的最高温度控制在低于抗蚀剂图形抗热温度的情况下,至少对抗蚀剂图形进行脱水处理的第三步骤;借助于采用抗蚀剂图形的剥离方法,在对应于第二窗口的区域中选择性地淀积焊料膜图形的第四步骤;以及用热处理方法使焊料膜图形变形并收缩,从而形成焊料球的第五步骤。
2.权利要求1所述的制造半导体器件的方法,其中第三步骤中的脱水处理用溅射腐蚀方法进行。
3.权利要求1所述的制造半导体器件的方法,其中第三步骤中的脱水处理用高真空退火方法进行。
4.权利要求3所述的制造半导体器件的方法,其中的溅射腐蚀继高真空退火之后进行。
5.权利要求1所述的制造半导体器件的方法,其中在第三步骤中的脱水处理借助于将衬底置于干燥的惰性气体气氛中而进行。
6.权利要求5所述的制造半导体器件的方法,其中在第三步骤中的溅射腐蚀于放置衬底之后进行。
7.权利要求1所述的制造半导体器件的方法,其中要达到的最高温度被控制在50-100℃的范围之内。
8.权利要求1所述的制造半导体器件的方法,其中在电极焊点上制作限球金属。
全文摘要
在将晶片表面达到的最高温度控制在低于抗蚀剂图形抗热温度的情况下,对带有用来确定焊料膜图形淀积位置的窗口的抗蚀剂图形进行脱水处理。脱水处理用溅射腐蚀、高真空退火或惰性气体气氛中干燥的方法进行。随后在晶片的整个表面上淀积焊料膜,淀积在窗口内部以外的部位处的焊料膜与抗蚀剂图形一起被清除,而留下的焊料膜图形被热熔化处理最后加工成焊料球。
文档编号H01L21/302GK1198000SQ9810635
公开日1998年11月4日 申请日期1998年4月8日 优先权日1997年4月8日
发明者柳田敏治 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1