锂离子动力电池无损充电机的制作方法

文档序号:7436649阅读:173来源:国知局
专利名称:锂离子动力电池无损充电机的制作方法
技术领域
本发明属于一种锂离子动力电池无损充电机。
背景技术
锂离子电池由于单体电压高、体积小、重量轻、无记忆效应、无污染、自放电小、循 环寿命长,是一种理想电源。在实际使用中,为了获得更高的放电电压,一般将至少两只单 体电池串联组成电池组使用。目前,锂离子电池组已广泛应用于笔记本电脑、电动自行车和 备用电源等多种领域,同时是方兴未艾的电动汽车的最佳动力源。锂离子蓄电池对充放电的要求,与铅酸等可逆电化学反应类蓄电池完全不同。由 于锂离子蓄电池成组应用技术、系统集成关键技术和关键零部件及产品研究,严重滞后于 锂离子蓄电池的发展,电池成组后发生过充电、过放电、超温和过流问题,致使成组锂离子 蓄电池使用寿命大幅缩短,安全性大幅下降,甚至发生燃烧、爆炸等恶性事故,已经成为制 约锂离子蓄电池产业发展的主要问题,也是当前节能与新能源汽车产业发展的技术瓶颈。我国电动汽车技术发展到今天,在车用动力电池、电机、电传动等领域,已经取得 了一批不错的成果。车用动力电池技术虽然还不是很成熟,但发展的速度与发达国家相比 并不算慢。对电池单体进行测量时,显示出的各项指标基本达到设计要求。但是,真正集成 为一个动力总成,或者集成到整车上的时候,却发现与单体测量时的情况有很大出入。车用 动力电池总成并非将一个个单体电池串联或并联在一起就行了那么简单。将数十个甚至上 百个电池集成在一起,并将它们集成到车上,在世界范围内都是一项高新技术,绝不是看起 来那么容易的事情,有能力解决这一难题的单位或个人也不是太多。锂离子蓄电池系统主 要包括电池系统、充电系统、放电系统和维护管理系统。是一个函括多个技术领域和行业的 高技术集成系统。传统充电方法1)串联充电法目前锂离子电池组的充电一般都采用串联充电,这主要是因为串 联充电结构简单、成本较低、容易实现。但由于单体锂离子电池在容量、内阻、衰减、自放电 等性能存在差异,将100只放电容量都为lOOAh的锂离子电池串联起来组成电池组,但如果 成组前其中99只单体锂离子电池荷电80Ah,另外1只单体锂离子电池荷电lOOAh,将此电 池组进行串联充电时,其中荷电lOOAh的那只单体锂离子电池会先充满电,从而达到过充 保护电压,为了防止这只单体锂离子电池被过充电,电池管理系统会将整个串联充电电路 切断,也就使得其他99只电池无法充满,从而整个电池组放电容量也就只有80Ah。串联充 电的缺点是要么电池组充不满,浪费电池组的容量,要么产生过充,发生电池爆炸的危险。2)电池管理系统和充电机协调配合串联充电法电池管理系统是对电池的性能 和状态了解最为全面的设备,所以将电池管理系统和充电机之间建立联系,就能使充电机 实时地了解电池的信息,从而更有效地解决电池的充电时产生一些的问题,但其仍属串联 充电,因而继承了串联充电的一切缺点。3)并联充电法为了解决电池组中某些单体电池过充和充不满的问题,产生了并
3联充电法,但是并联充电法需要采用多个低电压、大电流的充电电源为每一只单体电池充 电,存在充电电源成本高、可靠性低、充电效率低。设动力汽车采用三相交流电机,其逆变器 输入直流电压288V,应由80个单体电压3. 7V的锂动力电池组提供动力,并联充电机必须 80个完全隔离、输出电流200A恒流、输出电压3. 7V恒压的直流电源,这些完全隔离的恒流 恒压直流电源必须适时接入和断开,其复杂程度在实践中几乎是不可能实现的。4)串联大电流加并联小电流充电法由于上述三种充电方法都存在问题,另发展 出一种最适合高电压电池组,特别是电动汽车电池组的充电方法,即采用电池管理系统和 充电机协调配合、串联大电流、恒压限流的并联小电流充电方法,这种充电法虽然综合了上 述三种充电法的优点,却完全继承了三者的所有缺点。

发明内容
锂离子动力电池无损充电机采用整体串联恒流、单体并联恒压的充电方法,对电 池实现无损充电,无损的含意有两层,一是充电效率接近100 %,充电功率基本无损耗,二是 充、放电完全依据图2所示电池的特性曲线,电池本身在充、放电过程中完全无损害。该无 损充电机免除电池管理系统,仅由简单的电路实现电池系统、充电系统、放电系统和维护管 理系统的所有功能,无过充、过热、过放、过流、短路现象,充电终了时所有单体电池的端电 压完全相等,无须进行均衡充电,同时无易受干扰的复杂控制芯片和软件,安全可靠,简单 实用,其成本、体积、重量、功耗都是传统充电机的十分之一。整体串联恒流充电的含义是对于电池整体,进行串联充电,充电电源采用恒流恒 压直流电源。单体并联恒压控制的含义是对于电池单体,进行并联稳压控制,每个单体电 池都直接并联一个并联稳压电路,所有并联稳压电路直接串联,可以理解为,在对整体电池 进行串联恒流充电的同时,也在对所有串联的并联电源进行串联恒流充电,串联充电电流 是流经电池,还是流经并联稳压电路,取决于电池充电的端电压。并联稳压电路的输出电 压调整为电池充电终止电压值3. 75V,当某个与之并联的单体电池端电压充到此电压值时, 并联电路启动,串联恒流充电电压流经并联稳压电路,而不再流经电池,该单体电池充电停 止,其他单体电池继续进行串联恒流充电,仿佛串联恒流充电对直接串联的整体电池和直 接串联的并联稳压电路这两个支路同时进行充电一样,只不过充电的时机由并联稳压电路 控制,因而得名单体并联恒压控制。上述整体串联恒流充电、单体并联恒压控制的充电方 法,具备串联、并联充电的所有优点,完全免除了串联、并联充电的所有缺点。当充电终了 时,所有单体电池的端电压都等于与之并联的并联稳压电路的没定值3. 75V,当然不会发生 过充、过热现象。


图1,主电路图;图2,锂离子动力电池充电特性曲线;图3,锂离子动力电池充电电路及其充电曲线仿真波形;图4,锂离子动力电池放电电路图5,恒流恒压电源;图6,恒流恒压电源输出电压和电流的仿真波形;
图7,电压切割电路图8,电压切割电路各点电压的仿真波形。图9,锂离子单体电池26节充放电的实际电路;
图10,锂离子单体电池26节充电曲线仿真波形;图11,锂离子单体电池26节充放电电路A部份;图12,锂离子单体电池26节充放电电路B部份图13,铅酸蓄电池26节充电曲线仿真波形;图1锂离子动力电池无损充电机,不采用PWM控制技术和高频功率变换,整机由充 电电路1、放电电路2和电池控制级3级联而成。充电电路1由M0S管Q5等组成,M0S管Q5的栅极接驱动电压V3的正极,其源极 接驱动电压V3的负极,其漏极通过电阻R1接充电电源VI,充电电源VI的的负极接地。放电电路2由M0S管Q6等组成,M0S管Q6的栅极通过开关S1接驱动电压V2的 负极,其源极接驱动电压V2的正极,其漏极通过电阻R4接地;开关S1控制边的正极通过电 阻R6接驱动电压V2的正极,其负极通过开关S2与电池控制级中的对应开关串联;开关S2 控制边的正极接齐纳二极管D4的正极,其负极通过电阻R7接地,齐纳二极管D4的负极接 M0S管Q6的源极。电池控制级ST1由一节锂离子动力电池及与之并联的一个并联稳压电路Va和一 个开关电路SW组成,并联稳压电路Va中的、三极管Ql、Q2的集电极和齐纳二极管D1的正 极接蓄电池E1的正极,电阻R2的一端和三极管Q2的发射极接蓄电池E1的负极,电阻R2 另一端接齐纳二极管D1的负极和三极管Q1的基极,三极管Q1的发射极接三极管Q2的基 极;开关电路SW中的开关S3与上一级和下一级电池控制级中的对应开关串联,开关S3控 制边的正极接齐纳二极管D3的正极,其负极通过电阻R6接本级蓄电池的负极,齐纳二极管 D3的负极接本级蓄电池的正极。电池控制级可以依次级联,第一级级的蓄电池正极接充电电路中M0S管Q5的源 极,其负极接下一级电池控制级中电池的正极,第二级电池控制级中蓄电池的正极接上一 级电池控制级的负极,其负极接下一级电池控制级的正极,最后一级中电池的负极接地,按 此级联方法,蓄电池控制级可由1-N级级联而成。图2是锂离子电池充电特性曲线,电池端电压可充到3. 75V。图3左边是无损充电机充电的原理电路,其中E1 = 2. 5V,E2 = 2. 0V是单体锂离 子电池,VI是直流恒流恒压电源,由Q1、Q2、D1、R2和Q3、Q4、D2、R3组成2个并联稳压电路 Va和Vb,分别和电池El、E2并联。VI通过电阻R1直接对锂离子电池El、E2串联充电,当 有一个电池,例如E1的端电压充到额定值,即到达并联稳压电路Va设定的稳压值时,齐纳 二极管D1击穿,并联稳压电路Va启动,串联充电电流流经三极管Q2,不再对E1充电,E1的 端电压也不再上升;与此同时串联充电电流继续对E2充电,直到E2充到额定值时,充电电 源VI才断开,串联充电停止。图3右边是锂离子电池E1、E2充电电压的仿真波形,El从2. 5V开始充电,当其端 电压充到3. 75V后,充电曲线成直线,端电压不再上升,率先进入充满和并联稳压状态,VI 继续对E2充电;E2从2. 0V开始充电,其端电压充到额定值时,充电曲线也成一直线,和E1 的充电曲线重合,因为E2起始充电电压较低,恒流充电时间较长,较后进入充满和并联稳压状态。图4是无损充电机放电(包括充电)的原理电路,Q1控制充电电源VI的接入和 断开,Q2控制电池组的放电全过程。开关S3和S4连同控制边的D3、R6和D5、R8组成两个 开关电路SW1和SW2,分别和电池E1、E2并联,在放电过程中,E1、E2的端电压总是大于D3、 D5的击穿电压,开关S3、S4闭合;同样道理,开关S2的控制边(D4、R7)和整个电池组并联, 在放电过程中,整个电池组的端电压总是大于D4的击穿电压,开关S2闭合。开关S1的控 制边通过电阻R5和开关S2、S3、S4和整个电池组并联,于是开关S1也闭合,驱动电压V2加 在Q2的栅源极,Q2导通,电池组向负载R4放电。在放电过程中,当电池组中有一个单体电池,例如E1的端电压低于额定放电电 压,即低于齐纳二极管D3的击穿电压时,S3控制边失电,S3断开,于是S1控制边也失电, S1断开,驱动电压V2加不到Q2的栅极,Q2关断,电池组放电终止。当电池组过放、过流或 外部短路时,电池组端电压小于D1的击穿电压,S2控制边失电,S2断开,于是S1控制边也 失电,S1断开,驱动电压V2加不到Q2的栅极,Q2关断,电池组停止放电,当过流或外部短路 故障解除后,蓄电池组端电压恢复正常,高于D4的击穿电压,S2控制边得电,S2闭合,同时 单体电池若无过放电,则S3、S4闭合,于是S1也闭合,V2加到Q2的栅源极,Q2开通,蓄电 池继续对负载放电。与单体电池E1并联的并联稳压电路Va和开关电路SW1,构成一个基本单元,此基 本单元可以任意级联,对任意个锂离子动力单体电池组成的电池组进行充放电。图3中的充电电源VI是恒流恒压电源,图5是恒流恒压电源的实际电路,输入电 压是整流后的馒头波,图6左边是负载电阻R8输出电流的仿真波形,右边是负载电阻R8输 出电压的仿真波形,负载电阻R8从8欧变化到30欧,流经负载电阻R8的电流基本不变,其 上电压从50V变化到200V,负载电阻越大,输出电压越高,说明输出电流具备恒流特性,但 电阻R8上电压有一个极限值,此值由M0S管Q1的栅极电压,即由四个齐纳二极管D4、D5、 D6、D9的击穿电压界定。锂离子电池组在整个充电过程中,最高电压绝对不会超过此界定 值,因此充电安全可靠。图3中的场效应管Q1控制充电电源VI的接入和断开,对电池组进行恒流串联充 电,同时,对单体电池进行恒压并联控制,在整体串联恒流充电和单体并联恒压控制的过程 中,恒流电源VI的输出电压是变化的,视各单体电池充电时的端电压而定,这种变化反映 在电阻R1上,当电池组电压低时,电阻R1上的电压高,反之电阻R1上的电压低,电阻R1上 的电压降因发热而损失掉。为了提高充电效率,把这部份功率通过功率变换,进行回授。图 7的电压切割电路就具备这种功能变压器TX1接在M0S管Q2的漏极,在Q2的栅极加方波 驱动信号,即电压切割信号,在其源极可得到稳定的直流输出电压Voa,在变压器付边得到 回授电压Vob。图8是电压切割电路输出电压的仿真波形从上到下依次是输入馒头波电 压Vd、包络为正弦波的方波驱动信号Vc、栅极输出电压Voa、变压器付边包络为正弦波的双 边带电压Vs、变压器输出电压Vob。恒流恒压电源和电压切割电路属现有技术(百超功率 变换器,申请号201010130192X,具体实施方式
10、19),详细论述从略。
具体实施例方式具体实施方式
1 电动汽车锂离子动力电池无损充电机。
电动轿车采用直流电机驱动时,所需电池组端电压为96V,图9是电动轿车96V锂 离子动力电池组充电的实际电路,由26个完全相同的电路级联而成,图10是充电曲线的仿 真波形,单体电池26个,端电压3. 7V,充电时,26个单体电池端电压从2V到3. 3V,依次相差 0. 05V,充电终了时,每个单体电池端电压完全相等,都等于与每个单体电池并联的并联稳 压电路输出电压的设定值3. 75V,单体电池充电终止端电压,等于与其并联的并联稳压电路 输出电压的设定值,此设定值可以人为调整,所以单体电池充电终止端电压可以人为控制。图11、图12是图10电路(A)、⑶两部份的放大电路图。电动轿车采用三相电机驱动,则锂离子动力电池组端电压为288V,需3. 7V单体电 池78个串联,充电电路由78个完全相同的电路级联而成,且无大电流、高电压开关的通断 操作,实现起来非常容易,具体电路和充电曲线的仿真波形与96V充电机同。
具体实施方式
2 铅酸蓄电池无损充电机。充电电路与具体实施方式
1相同,不同之处是1)并联稳压电路中的齐纳二极管的击穿电压要与铅酸蓄电池端电压12V相对应;2)串联恒流充电电流要与铅酸蓄电池的充电特性曲线相对应;3)串联恒压充电电压要与铅酸蓄电池组的端电路相对应。图13是铅酸蓄电池无损充电机充电曲线的仿真波形,可以看到,当蓄电池端电压 从8V到10. 6不等时开始充电后,端电压高的单体电池先行到达充电终了值,然后成直线并 保持到最后,端电压低的单体电池最后到达充电终了值,无论是最低端电压还是最高端电 压,也无论是其间的任意端电压,它们最后均到达充电终了值,并保持到最后。并联充电在实际应用中几乎是无法实现的,其效果可望不可及,而均衡充电必须 有专门电路,在增加功率损耗和成本的同时,伴有电池荷电能力的下降;无损充电机采用简 单的串联充电,不但达到了并联充电的效果,而且还达到了均衡充电的效果,不但没有荷电 能力的下降,而且大大提升了电池的荷电能力。几点说明1)无损充电机采用整体串联恒流、单体并联恒压的充电方法,实现了对锂离子动 力电池的无损充电,实际进行的是串联充电,却产生了并联充电的效果,充电全过程无过 充、过热,同时使均衡充电成为多余;2)无损充电机同时包括了放电电路,用弱电小开关,取代强电大电流、高电压开关 的通断,使得放电电路安全可靠,当过放、过流或外部短路发生时,无延时地切断锂离子动 力电池;3)无损充电机电路简单,免除电池管理系统和各种复杂的控制芯片及软件,而充 放电性能却大幅提升;4)无损充电机采用百超功率变换器中的恒流恒压电源和电压切割电路进行串联 充电,使得充电效率接近100% ;5)单体电池充电终了时的端电压,等于与其并联的并联稳压电源输出电压的设定 值,此设定值可以人为调整,因此,无损充电机适合对任意端电压的各类电池进行充放电。6)本文电路图均出自电力电子仿真软件SIMetrix/SIMPLIS 5. 60,可不加修改直 接仿真,获得相同的输出波形。
权利要求
一种锂离子动力电池无损充电机,不采用PWM控制技术和高频功率变换,其特征是整机由充电电路(1)、放电电路(2)和电池控制级(3)级联而成。
2 .根据权利要求1所述的锂离子动力电池无损充电机,其特征是充电电路(1)由第 五M0S管(Q5)等组成,第五M0S管(Q5)的栅极接第三驱动电压(V3)的正极,其源极接第 三驱动电压(V3)的负极,其漏极通过第一电阻(R1)接充电电源(VI),充电电源(VI)的的 负极接地。
3.根据权利要求1所述的锂离子动力电池无损充电机,其特征是放电电路(2)由第 六M0S管(Q6)等组成,第六M0S管(Q6)的栅极通过第一开关(S1)接第二驱动电压(V2)的 负极,其源极接第二驱动电压(V2)的正极,其漏极通过第四电阻(R4)接地;第一开关(S1) 控制边的正极通过第六电阻(R6)接第二驱动电压(V2)的正极,其负极通过第二开关(S2) 与电池控制级中的对应开关串联;第二开关(S2)控制边的正极接第四齐纳二极管(D4)的 正极,其负极通过第七电阻(R7)接地,第四齐纳二极管(D4)的负极接第六M0S管(Q6)的 源极。
4.根据权利要求1所述的锂离子动力电池无损充电机,其特征是电池控制级ST1由 一节锂离子动力电池及与之并联的一个并联稳压电路Va和一个开关电路SW组成,并联稳 压电路Va中的第一、第二三极管(Q1、Q2)的集电极和第二齐纳二极管(D1)的正极接蓄电 池E1的正极,第二电阻(R2)的一端和第二三极管(Q2)的发射极接蓄电池E1的负极,第二 电阻(R2)另一端接第二齐纳二极管(D1)的负极和第一三极管(Q1)的基极,第一三极管 (Q1)的发射极接第二三极管(Q2)的基极;开关电路SW中的第三开关(S3)与上一级和下一 级电池控制级中的对应开关串联,第三开关(S3)控制边的正极接第三齐纳二极管(D3)的 正极,其负极通过第六电阻(R6)接本级蓄电池的负极,第三齐纳二极管(D3)的负极接本级 蓄电池的正极。
5.根据权利要求4所述的锂离子动力电池无损充电机,其特征是电池控制级可以依 次级联,第一级的蓄电池正极接充电电路中第五M0S管(Q5)的源极,其负极接下一级电池 控制级中电池的正极,第二级电池控制级中蓄电池的正极接上一级电池控制级的负极,其 负极接下一级电池控制级的正极,最后一级中电池的负极接地,按此级联方法,蓄电池控制 级可由1-N级级联而成。
全文摘要
锂离子动力电池无损充电机采用整体串联恒流、单体并联恒压的充电方法,对锂离子动力电池实现无损充电,无损的含意有两层,一是充电效率接近100%,充电功率基本无损耗,二是充、放电完全依据电池的特性曲线,电池本身在充、放电过程中完全无损害。该无损充电机免除电池管理系统,仅由简单的电路实现电池系统、充电系统、放电系统和维护管理系统的所有功能,无过充、过热、过放、过流、短路现象,充电终了时所有单体电池的端电压完全相等,无须进行均衡充电,同时不易受干扰的复杂控制芯片和软件,安全可靠,简单实用,其成本、体积、重量、功耗都是传统充电机的十分之一。
文档编号H02J7/00GK101826745SQ20101017419
公开日2010年9月8日 申请日期2010年5月18日 优先权日2010年5月18日
发明者郁百超 申请人:郁百超
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1