用于电动车转换器的控制方法和控制系统的制作方法

文档序号:7342249阅读:376来源:国知局
专利名称:用于电动车转换器的控制方法和控制系统的制作方法
技术领域
本发明涉及用于电动车转换器的控制,更特别涉及一种用于电动车转换器的控制方法及其控制系统,以便在电动车的转换器失灵时用来控制转换器。
背景技术
通常,电动车是指仅由电力驱动的车辆。混合动力车是结合了汽油车和电动车的功能从而矫正汽油车和电动车各种缺点的车辆。因此,根据不同场合的需要,混合动力车的驾驶者可选择汽油引擎驱动模式、电动机驱动模式、和混合动力模式。如上所述,电动车在广义上包括混合动力车。因此,在本说明书中,将狭义的电动 车和混合动力车统称为“电动车”。由于在电动车的电动机驱动模式下不使用石油作为燃料,因此不会产生废气且噪音低。同时,电动车设有转换器,其中转换器将由高压电池产生的高电压转换成低电压。在电动车由电动机驱动时,转换器将电力供应给电气组件或者对低电压电池充电。将升高或降低电压的DC-DC转换器用作这种转换器使用。用于电动车的转换器控制系统,可与因系统处理高电压的特征而损坏电动车电气组件的危险有关。根据常规技术,如果检测到PWM (脉宽调制)的错误输出,则确定检测器失灵并结束PWM信号的输出。在此,由于电路的时间延迟或CPU的失灵,可出现PWM信号的错误输出。如果不输出PWM信号,则转换器停止工作并且电动车的功能也停止。如果在运行过程中电动车的功能停止,则会降低车辆的燃料消耗和驾驶者的满意度。此外,只在错误地输出PWM信号之后,转换器的控制才开始失灵。因此,因从转换器失灵的时间点到激活转换器控制失灵的时间点PWM信号的错误输出而产生的高电压和高电流,严重加压于车辆的电气组件。因此,具有高可靠性和快速保护功能的转换器控制是必需的,以便在转换器失灵或异常操作时防止对车辆电气组件造成损害或使损害降至最低。同时,根据用于确定转换器失灵的常规技术,安装在转换器高压端的电流传感器检测由于PWM信号的错误输出而产生的过电流。如果电流传感器检测到过电流,则确定出转换器失灵并且PWM信号的输出停止。根据常规技术,如果电流传感器敏感地操作,则由于PWM信号的错误输出可严重损害电气组件,并且如果电流传感器过于敏感地操作,则由于电流传感器的噪音,可异常地停止PWM信号的输出。为解决这个问题,响应噪音的组件、高精度元件、以及用于获得过电流阈值的测试是必要的。因此,研究时间可能会非常长且生产成本可能非常高。在背景技术部分中公开的上述信息仅仅用于增强对本发明背景的理解,因此可能包含不构成在本国中本领域普通技术人员公知的现有技术的信息。

发明内容
本发明致力于通过快速确定PWM信号的错误输出且减小转换器失灵的点和激活转换器失灵控制的点之间的时间间隔,提供用于电动车转换器的控制方法及其控制系统,具有增加失灵确定的可靠性和使电气组件损害降至最低的优势。本发明致力于提供一种用于电动车转换器的控制方法及其控制系统,其还具有减少研发时间和成本的优势,不使用电流传感器来确定转换器的失灵,因此响应噪音的组件、高精度元件,以及获得过电流阈值的测试都不是必需的。根据本发明一个示例性实施例,用于电动车转换器的控制方法控制电动车的转换器,其中转换器适于降低电压,计数单元适于对由转换器生成的信号进行计数。在一个或多个实施例中,控制方法包括在转换器工作期间将由转换器生成的信号 输入到计数单元;通过计数单元对信号进行计数、确定计数单元的计数结果是否与预定间隔相对应;以及在计数结果与预定间隔不对应的情况下确定转换器失灵。由转换器生成的信号可以是PWM信号。在转换器失灵的情况下,计数单元可停止转换器的工作。在转换器停止的情况下,计数单元可将转换器的失灵信号报告给CPU。在计数结果与预定间隔相对应的情况下,确定转换器未失灵并重置计数单元。根据本发明另一个示例性实施例,用于电动车转换器的控制系统控制电动车,其中转换器转换电压,并且电流传感器安装在转换器电的路中。在一个或多个实施例中,控制系统包括信号处理单元,适于从电流传感器接收信号;CPU,适于从信号处理单元接收信号;PWM输出缓冲器,适于从CPU接收并输出PWM信号;计数单元,适于在CPU和PWM输出缓冲器之间提取PWM信号并确定转换器是否失灵。转换器可以是升高或降低电压的DC-DC转换器。转换器可以降低由高压电池产生的电压,并将该电压供应给电负载或者对低电压电池充电。电流传感器可检测过电流。PWM输出缓冲器可根据计数单元的确定而有选择地输出或不输出PWM信号。在一个或多个实施例中,控制系统还包括“与”门,适于在所有输入端接收到输入的情况下生成输出值;和“或”门,适于在至少一个输入端接收到输入的情况下生成输出值;其中计数单元通过“与”门和“或”门接收CPU的PWM信号。计数单元可以将从“与”门输出的PWM信号的时间间隔和从“或”门输出的PWM信号的时间间隔与各自的预定间隔进行比较。在一个或多个实施例中,控制系统还包括时钟生成单元,适于在电动车行驶时总是生成时钟信号,其中计数单元适于在“与”门和“或”门分别输出PWM信号期间对时钟信号进行计数,并计算从“与”门输出的PWM信号的时间间隔和从“或”门输出的PWM信号的时间间隔。计数单元在从“与”门输出的PWM信号的时间间隔和从“或”门输出的PWM信号的时间间隔与各自的预定间隔相对应的情况下,确定转换器未失灵并接通PWM输出缓冲器。计数单元在从“与”门输出的PWM信号的时间间隔和从“或”门输出的PWM信号的时间间隔与各自的预定间隔不对应的情况下,确定转换器失灵并关断PWM输出缓冲器。


图I是根据本发明示例性实施例的用于电动车转换器的控制系统的电路图;图2是用于说明施加到本发明示例性实施例的PWM信号和时钟信号的图;图3是根据本发明示例性实施例的用于电动车转换器的控制方法的流程图。附图标记说明100 :转换器;
200 电流传感器;300 :转换器的控制系统;310,信号处理单元;320 :CPU ;330 :PWM输出缓冲器;340 :计数单元;342 与”门;344:“或”门;以及350:时钟生成单元。
具体实施例方式下面参考附图对本发明的示例性实施例作出细节说明。应该理解的是,本文中所使用的术语“车辆”或“车辆的”或其它类似的术语包括一般而言的机动车辆,比如包含运动型多用途车辆(SUV)、公共汽车、货车,各种商用车辆的客车、包含各种轮船和舰船的船只、飞行器等等,并且包括混合动力车辆、电动汽车、混合动力电动汽车、氢动力汽车和其它替代燃料汽车(例如,从除了石油以外的资源中取得的燃料)。如在本文中所引用的,混合动力车辆是具有两种或多种动力来源的车辆,例如汽油动力车辆和电动动力车辆二者。本发明的一个示例性实施例提供一种用于电动车转换器的控制方法及其控制系统,其独立确定转换器失灵和过电流的产生。参考图1-3,详细说明根据本发明示例性实施例的用于电动车的转换器的控制方法及其控制系统。图I是根据本发明示例性实施例的用于电动车的转换器的控制系统的电路图。如图I所示,根据本发明示例性实施例的用于电动车的转换器的控制系统300,控制转换器100的转换电压。电流传感器200固定在被包含在转换器100中的电路上。转换器的控制系统300包括信号处理单元310、CPU320、PWM输出缓冲器330,和计数单元340。转换器100固定在电动车中,并降低由高电压电池生成的电压以便为电负载供电或为低电压电池充电。在一个或多个实施例中,转换器100为DC-DC转换器。电流传感器200将由转换器100生成的PWM信号传送至信号处理单元310。此外,电流传感器200检测电路的过电流并将其传送至信号处理单元310。在一个或多个实施例中,传送PWM信号,电流传感器200仅仅将由转换器100生成的PWM信号传送至信号处理单元310,而并不涉及确定和PWM信号的控制。此外,独立于由电流传感器200传送PWM信号来执行过电流的确定。信号处理单元310将从电流传感器200接收到的PWM信号和过电流发生信号传送给CPU320。此外,信号处理单元310接收来自一个或多个传感器的信号并将每个传感器被固定的装置的操作环境报告给CPU320。在一个或多个实施例中,传送PWM信号,信号处理单兀310仅仅将从电流传感器200接收到的PWM信号传送至CPU320,但不涉及确定和控制PWM信号。此外,PWM信号的传送,与由信号处理单元310报告过电流的产生独立进行。CPU320指的是管理设置在电动车中的一个或多个控制系统的中央处理单元。因此,CPU320接收一个或多个来自信号处理单元310的信号并控制一个或多个装置。此外,CPU320接收来自信号处理单元310的PWM信号,将其处理成PWM输出信号,然后将PWM输出 信号传送至PWM输出缓冲器330。PWM输出缓冲器330接收来自CPU320的PWM输出信号,将其处理成PWM信号,然后输出PWM信号。此外,PWM输出缓冲器330不会根据从计数单元340接收的控制信号而有选择地输出PWM信号。在此,PWM信号和PWM输出信号可以是相同的,也可以是不同的。计数单元340在CPU320和PWM输出缓冲器330之间提取PWM信号并确定转换器100是否失灵。更详细地,计数单元340对PWM信号进行计数并确定计数结果是否与预定间隔相对应。如果计数结果与预定间隔相对应,则计数单元340确定转换器100没有失灵并接通PWM输出缓冲器330。如果计数结果与预定间隔不对应,则计数单元340确定转换器100失灵并关断PWM输出缓冲器330。如果PWM输出缓冲器330被关断,则计数单元340将转换器100的失灵报告给CPU320。当将PWM信号输入到计数单元340时,通过“与”门342,将在CPU320和PWM输出缓冲器330之间提取的一部分PWM信号输入到计数单元340,通过“或”门344将其余的PWM信号输入到计数单元340中。在此,在电路的所有输入端接收到输入时,“与”门342生成输出。此外,在至少一个输入端接收到输入时,“或”门344生成输出。通过“与”门342的PWM信号和通过“或”门344的PWM信号具有各自的预定间隔。此外,“与”门342的PWM信号和“或”门344的PWM信号可具有相同或不同的预定间隔。将转换器正常工作时生成的PWM信号的时间间隔设置成预定间隔。转换器正常操作计数单元340时生成的PWM信号的时间间隔被预存储。因此,从“与”门342输出的PWM信号的正常时间间隔和从“或”门344输出的PWM信号的正常时间间隔被预存储在计数单元340中。计数单元340连接于时钟生成单元350。时钟生成单元350在恒定短周期内连续生成时钟信号。因此,计数单元340在“与”门342输出PWM信号期间对时钟信号进行计数,并且在从“或”门344输出PWM信号期间对时钟信号进行计数。通过将已计数的时钟信号的数目与周期相乘,来计算得出从“与”门342和“或”门344输出的PWM信号的时间间隔。通过将从“与”门342和“或”门344输出的PWM信号的时间间隔与PWM信号的正常时间间隔相比较,来确定转换器100是否正常操作。图2是用于说明本发明不例性实施例的PWM信号和时钟信号的图。
如图2所示,根据本发明示例性实施例,将相移控制方法应用到用于电动车转换器的控制方法及其控制系统中。相移控制方法是如图2所示,在Ml和M4同步之后M2和M3同步,通过改变M2和M3的相位来控制PWM信号的一种方法。相移控制方法对于本领域技术人员是众所周知的,因此省略对其的详细说明。区域是指根据相移控制方法正常输出PWM信号的区域。Tl是指在一个周期内从“与”门342正常输出PWM信号的时间。此外,T4是在一个周期内从“或”门344正常输出PWM信号的时间。S卩,Tl和T4是指转换器100正常操作时PWM信号的输出,并分别用作“与”门342和“或”门344的预定间隔。计数单元340在PWM信号被输出的期间内,通过对时钟信号进行计数,来计算PWM 信号的时间间隔,并通过将PWM信号的时间间隔与Tl和T4进行比较来确定转换器100是否正常运行。B区域是因PWM信号的错误输出的硬切换区域(hard switching region)。此外,C区域是因PWM信号的错误输出的相位间的短路。通常,相位间的短路是指在三相电路中的两个相位的短路。在此,相位间的短路是指场效应晶体管(FET)的相位间短路。在B区域和C区域中,从“与”门和“或”门输出的PWM信号的时间间隔不分别对应于Tl和T4。即,在B区域中,从“与”门和“或”门输出的PWM信号的时间间隔小于Tl和T4。在C区域中,从“与”门输出的PWM信号的时间间隔大于Tl,而“或”门输出的PWM信号的时间间隔小于T4。在此情况下,计数单元340确定转换器100失灵。根据本发明的示例性实施例,由于直接检查PWM信号的输出,因此可快速检测到PWM信号的错误输出。因此,增加了转换器100失灵确定的可靠性。参考图3,详细说明根据本发明示例性实施例的用于电动车转换器的控制方法。图3是根据本发明示例性实施例的用于电动车的转换器的控制方法的流程图。如图3所示,在步骤SlOO中重置计数单元340之后,在步骤SllO中转换器100工作并生成PWM信号。此外,由转换器100生成PWM信号的开始还意味着转换器100失灵确定的开始。在转换器100工作的情况下,在步骤S120中将由转换器生成的PWM信号输入到计数单元340。在步骤S120中,由转换器100生成的PWM信号可以在相继穿过固定在转换器100的电路中的电流传感器200、布置在转换器100外部的信号处理单元310,和管理电动车的一个或多个控制系统的CPU320之后,被输入到计数单元340。CPU320将PWM输出信号传送到PWM输出缓冲器330。此外,计数单元340在CPU320与PWM输出缓冲器330之间提取PWM输出信号。如果从CPU320和PWM输出缓冲器330之中提取的PWM信号被输入到计数单元340,则在步骤S130中计数单元340对PWM信号进行计数。如图I和图2所示,在步骤S130中可以使用由时钟生成单元350生成的时钟信号。如果在步骤S130中计数PWM信号,则计数单元340在步骤S140中确定计数结果是否与预定间隔相对应。如图2所示,在计数单元340中预存储从“与”门342输出的PWM信号的正常时间间隔和从“或”门344输出的PWM信号的正常时间间隔。此外,可以考虑允许误差来设置预定间隔。即,将通过将允许误差加到PWM信号的正常时间间隔中或者从PWM信号的正常时间间隔中减去允许误差而计算出的值,设定成预定间隔。如果在步骤S140中计数结果与预定间隔不相应,则在步骤S150中计数单元340确定转换器100失灵。
如果确定出转换器100失灵,则计数单元340停止转换器100的操作,以便在步骤S160中不将PWM信号输入到转换器100。如果转换器100停止,则在步骤S170中,计数单元340将转换器的失灵信号报告到CPU。此外,如果误差报告完成,则本发明的示例性实施例结束。如果在步骤S140中的计数结果与预定间隔相对应,则在步骤S180中,计数单元340确定出转换器100未失灵。如果确定出转换器100未失灵,则在步骤S190中,CPU320重置计数单元340并返回至步骤S120。如图I所示,CPU320可以在步骤SlOO或步骤S190中重置计数单元。同时,应当理解的是,在该说明书中的电动车包括所有由电力驱动的车辆。如上所述,由于实时检查PWM信号的输出并快速检测PWM信号的错误输出,因此根据本发明的示例性实施例,可使因PWM信号的错误输出造成的车辆电气组件的损害降至最低。此外,由于设定了 PWM信号的正常操作范围,因此电动车的功能不会被不必要地停止。因此,可增加转换器的可靠性并使电气组件的损害最少。由于电流传感器不用于确定转换器是否失灵,因此响应噪音的组件、高精度元件,以及用于获得过电流的阈值的测试不是必需的。因此,可以减少研发的时间和费用。尽管上面已经结合目前被认为是实用的示例性实施例对该发明进行了说明。然而,应当理解的是,本发明并不局限于所公开的实施例,相反地,本发明意图覆盖包含在所附权利要求的精神和范围中的各种变型和等同布置。
权利要求
1.一种用于控制电动车转换器的方法,其中所述转换器适于降低电压,所述方法包括 在所述转换器工作期间,将由所述转换器生成的信号输入到所述电动车的计数单元; 通过所述计数单元对所述信号进行计数; 确定所述计数单元的计数结果是否与预定间隔相对应;以及 在所述计数结果与所述预定间隔不对应的情况下,确定所述转换器失灵。
2.如权利要求I所述的方法,其中由所述转换器生成的所述信号是脉宽调制(PWM)信号。
3.如权利要求I所述的方法,其中在所述转换器失灵的情况下,所述计数单元停止所述转换器的工作。
4.如权利要求3所述的方法,其中在所述转换器停止的情况下,所述计数单元将所述转换器的失灵信号报告给CPU。
5.如权利要求I所述的方法,其中在所述计数结果与所述预定间隔相对应的情况下,确定所述转换器未失灵并重置所述计数单元。
6.一种用于电动车转换器的控制系统,其中所述转换器适于转换电压,并且电流传感器安装在所述转换器的电路中,所述系统包括 信号处理单元,被配置成从所述电流传感器接收信号; CPU,被配置成从所述信号处理单元接收信号; 脉宽调制(PWM)输出缓冲器,被配置成从所述CPU接收并输出PWM信号;以及计数单元,被配置成在所述CPU和所述PWM输出缓冲器之间提取所述PWM信号并确定所述转换器是否失灵。
7.如权利要求6所述的控制系统,其中所述转换器是被配置成升高或降低电压的DC-DC转换器。
8.如权利要求7所述的控制系统,其中所述转换器被配置成降低由高压电池产生的电压,并将所述电压供应给电负载或者对低压电池充电。
9.如权利要求6所述的控制系统,其中所述电流传感器被配置成检测过电流。
10.如权利要求6所述的控制系统,其中所述PWM输出缓冲器被配置成根据所述计数单元的确定而有选择地输出或不输出所述PWM信号。
11.如权利要求6所述的控制系统,还包括 “与”门,其被配置成在所有所述输入端接收到输入的情况下生成输出值; “或”门,其被配置成在至少一个所述输入端接收到输入的情况下生成输出值; 其中所述计数单元通过所述“与”门和所述“或”门接收所述CPU的所述PWM信号。
12.如权利要求11所述的控制系统,其中所述计数单元被配置成将从所述“与”门输出的所述PWM信号的时间间隔和从所述“或”门输出的所述PWM信号的时间间隔与各自的预定间隔进行比较。
13.如权利要求12所述的控制系统,还包括时钟生成单元,其被配置成在所述电动车行驶时生成时钟信号, 其中所述计数单元被配置成在所述“与”门和所述“或”门分别输出所述PWM信号期间对时钟信号进行计数,并计算从所述“与”门输出的所述PWM信号的时间间隔和从所述“或”门输出的所述PWM信号的时间间隔。
14.如权利要求11所述的控制系统,其中所述计数单元被配置成在从所述“与”门输出的所述PWM信号的时间间隔和从所述“或”门输出的所述PWM信号的时间间隔与所述各自的预定间隔相对应的情况下,确定所述转换器未失灵并接通所述PWM输出缓冲器。
15.如权利要求11所述的控制系统,其中所述计数单元被配置成在从所述“与”门输出 的所述PWM信号的时间间隔和从所述“或”门输出的所述PWM信号的时间间隔与所述各自的预定间隔不对应的情况下,确定所述转换器失灵并关断所述PWM输出缓冲器。
全文摘要
本发明涉及用于电动车转换器的控制方法和控制系统,其中转换器适于降低电压,计数单元适于对转换器生成的信号进行计数。该控制技术包括在转换器操作期间将由转换器生成的信号输入到计数单元;通过计数单元对信号进行计数;判断计数单元的计数结果是否与预定间隔相对应;并且在计数结果与预定间隔不对应的情况下确定转换器失灵。
文档编号H02M3/335GK102790530SQ20111043156
公开日2012年11月21日 申请日期2011年12月21日 优先权日2011年5月20日
发明者李在远, 李基淙, 林钟京, 郑泰焕, 郭相勋, 金成奎 申请人:现代自动车株式会社, 起亚自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1