可用作抗微生物剂的中链脂肪酸的制作方法

文档序号:349491阅读:480来源:国知局
专利名称:可用作抗微生物剂的中链脂肪酸的制作方法
技术领域
本发明涉及特定范围的中链脂肪酸(MCFA)作为微生物,特别是细菌和真菌污染和生长的抑制剂的用途。具体地说,本发明涉及己酸(C6)、庚酸(C7)、辛酸(C8)、壬酸(C9)和癸酸(C10)或其盐或衍生物或混合物或其乳剂抑制细菌和真菌污染及生长的用途,并且其中适合抑制这些微生物随后产生的毒素。
更具体地说,本发明涉及一种混合物,含有重量基本上相等的C8和C10作为抗微生物剂,它们主要在酸性环境例如胃中有活性。
背景技术
微生物是食品和饲料变质的最大根源并且引起主要营养素相当大的损失(Bartov等,1982)。所有食品和饲料组分天生受到细菌、酵母和(主要是发霉)真菌的污染,最后一种经常为孢子的形式。在约4℃以上的温度下,大多数食品和饲料是微生物生长的理想的培养基,并且大多数时间微生物通过就地发育随后产生有毒代谢物(内毒素、霉菌毒素...)(Smith等,1983;Russel等,1991)。
在本文中,农产品被真菌污染是一个非常有说服力的例子。经常不可避免地被产霉菌毒素的真菌污染并且这一点也是全世界关注的(Tuite,1979,Jelinek等,1989)。而且,由于湿度和温度是真菌生长的重要参数,因此液态食品和饲料特别易被真菌污染并生长,随后产生霉菌毒素。
尽管一些霉菌和真菌没有毒性并且不难控制甚至允许其繁殖,但是其它就造成相当大的麻烦。而且,在标准控制实践中不可能区分非毒性和毒性形式的霉菌和真菌(Hirooka等,1996)。
造成人和动物疾病的真菌和酵母,可以通过直接感染(霉菌病)或者通过产生霉菌毒素引起,这样进一步摄取(霉菌毒素中毒)(wyatt,1995)。霉菌病的实例是家禽的曲霉病、家畜的Fog热(Fog Fever)和农民肺。这些疾病有时非常难以治愈。另一方面,在二十世纪六十年代早期全世界关注霉菌毒素中毒,因为当时英国约1百万只鸟(火鸡)因黄曲霉毒素中毒(黄曲霉毒素引起的霉菌毒素中毒)死亡。霉菌毒素中毒是由以下霉菌毒素引起的黄曲霉毒素、赭曲霉素、单端孢霉烯、玉米赤霉烯酮、桔霉素、…。
根据存在的霉菌毒素的性质和浓度、接触时间、动物种类、其年龄和与污染的食品和饲料接触时的营养健康状况,霉菌毒素引起各种有害的临床征兆(Reiss,1978;Bartov等,1982;Harvey等,1989;Hamilton,1990;Pier,1992)。霉菌生长和随后产生霉菌毒素导致许多影响真菌侵入和在植物部分形成菌落的能力的植物和环境因素。为此,过去采用了几种技术以便将真菌菌落形成、污染和生长以及随后霉菌毒素的产生最小化。
在用于防止食品和饲料的真菌污染的最古老的那些系统可能是,进行风干、晒干、通过人工方式干燥、烟熏、于厌氧条件下贮藏、发酵、腌制、盐制、糖制和向一些食品和饲料中加入香料。然而,这些传统方法的成本相对较高并且非常费时。此外,如果这些食品和饲料处于运输中或者在完全膳食中已与其它组分混合,那么这些方法不能真正有用。
因此,例如化学防腐的其它方法在最后十几年中成为较吸引人的选择。(高水分)食品和饲料的化学真菌防腐及其喂食给人和牲畜已得到充分证明(Jones等,1970;English等,1973;Foster等,1987;Yasin和Hanna,1989)。但是现在,为了消除食品和饲料中的真菌生长,通常使用没有延迟的情况下贮藏、将水分保持尽可能低和加入霉菌抑制剂(例如丙酸盐)或其它化学防腐剂(例如酸抑制剂,如苯甲酸、山梨酸、乙酸及其盐)或其衍生物或其混合物(Smith等,1983)。
丙酸和所有传统酸防腐剂是非常有效的霉菌抑制剂,但是由于其挥发性和刺激性以及腐蚀性,这些酸已不被广泛地使用(Marin等,1999)。为此,目前市售各种缓冲形式的丙酸(干和液体),但对这些类型的“混合”化学物质的功效仅能获得有限和不确定的信息(Rahnema和Neal,1992)。为了评价这些新型“混合”化学物质,进行了一些工作(Rahnema和Neal,1994)。再向前,如今可以获得一些非酸抗真菌剂,例如纳他霉素、制霉菌素...(Rybinska等,1997;Emele等,2000)。但是这些新抗真菌剂中一部分受到伦理、情感和经济方面的约束。
尽管最近百年来,注意力更集中在人营养的微生物污染上,但是动物饲料防腐的实践如今也变得重要起来。随后的实例描述了抗微生物污染的饲料防腐的重要性。
鉴于现代动物饲养系统为了增加生产率并保持利润的经济利益,通常实践是通过使特定动物(例如猪仔...)提前断奶来增加其生长速度。然而提前断奶使得动物承受许多不利压力,主要是营养源(Zijlstra等,1996)。这种不利压力经常伴随有饲料吸收或多或少严重降低和能量不足,因此引起动物身体储备的动员。消化不良和吸收不良可能使这种状况进一步恶化并导致主要因胃肠道内的细菌和真菌过度生长和/或病毒感染引起的消化失调(Eckel,1999)。
通常认为,早期断奶的动物的消化疾病主要是由于革兰氏阴性菌,特别是大肠杆菌属和沙门氏菌属种(它们通常存在于动物的小肠内或者可以通过饲料进入胃肠道)引起的(Guillot,1989)。为了克服消化疾病(经常引起动物中体重严重下降并且死亡率增加)的问题,通常是采用低剂量的药用抗微生物物质(例如抗生素)或治疗剂量的抗生素(以前命名为“抗生素)补充到动物饲料中(Dupont和Steele,1987;Prescott,1997)。然而如今向饲料中加入抗生素日益受到关注(Guillot,1989;Barton,1998)。害怕发生用于人药的最终手段的抗生素出现对这些抗生素的抗性的情况,这样需要增加其剂量或者开发新的、更强的抗生素。还害怕生物在食用已用这些抗生素治疗的动物之后可能出现抗性。现在化学物质对环境干扰的关注和大多数这些抗生素已在欧共体受到禁止或者将来将要禁止的事实,证明需要起抗微生物剂作用的替代品(Muirhead,1998;Ross,1999)。
因此从所给实例可以得出,需要发现新的抗微生物剂代替已知的抗微生物剂并且同时代替受到禁止的抗生素,从而克服微生物(过快)生长并克服动物呈现的消化疾病。
另一目的是提供一种在胃中存在的低pH值下有活性的抗微生物饲料添加剂。这进一步避免了消化疾病转移到肠中。
在本文中,由于特定的中链脂肪酸MCFA(C6、C7、C8、C9和C10)可用作新型且创新的抗微生物剂,因此它们是一种有价值的替代品,以便控制微生物污染和生长以及随后在胃肠道,尤其是在胃中产生毒素。
EP-A1-0 089 376描述了一种加速动物生长的饲料添加剂或饲料,含有至少一种脂肪酸盐或至少一种脂肪酸盐和糖的脂肪酸酯。在所述文献中脂肪酸由约6-24个碳原子组成并且描述了非常宽广的链长。没有提供比该宽广范围效果更好的特定亚范围。
EP-A1-0 519 458描述了一种家畜的饲料添加剂和家畜的饲料,包括(a)具有6-12个碳原子的中链脂肪酸的甘油三酸酯和(b)至少一种选自以下的物质具有6-12个碳原子的中链脂肪酸、所述脂肪酸的甘油一酸酯和脂肪酸的甘油二酸酯。该组合物公开了脂肪酸的组合。
本发明的主要目的是提供一种更特定和更活性范围的中链脂肪酸,它们具有提高的抗微生物性能,特别是组合的抗细菌和抗真菌性能。据信所述特定组合的活性出人意料地获得一种有效的饲料添加剂,从而获得一种提高的饲料转化率(为食用的饲料重量/kg增加的体重)。
因此本发明提供了一种或多种C6-C10中链脂肪酸、盐、衍生物或乳剂或其混合物用于抑制微生物污染、生长和随后产生毒素的用途。优选其范围选自C8-C10,更优选基本上等量的C8和C10乳剂。
知道脂肪酸及其皂的抗微生物效果已经很长时间了并已由J.J.Kabara(1978)于″The pharmacological effects of lipids″中得到评论。在该评论中公开了在相应系列的脂肪酸中,已发现杀菌效果随链长增加而增加。大肠杆菌属和志贺氏菌属种呈现被适中浓度的含12个碳原子的月桂酸和含18个碳原子的硬脂酰脂肪酸的饱和皂杀死。链长为10-12个碳原子的脂肪酸呈现最佳的抗微生物活性,而具有4-10个碳原子的低级脂肪酸呈现没有或者几乎没有杀菌效果。
在文献中已公开了脂肪酸产生抗微生物活性的机理。目前接受的理论是脂类微生物细胞膜对未离解的脂肪酸可以透过,因此该脂肪酸能够通过微生物细胞膜到达更碱性的内部。由于细胞内碱性较高,脂肪酸离解,因此细胞内pH降低至低于其存活水平。因此该脂肪酸事实上起质子层(protonophore)的作用,这样向内泄漏的H+增加并且H+的溢出太慢而不能使内部的pH再次增加。使它们起质子层的作用的脂肪酸的物理化学性能,可以改变并且取决于许多参数。这些参数的实例是脂肪酸的链长和pKa,以及物理化学环境、沉淀、作用位置的pH和决定脂肪酸通过该膜的微生物包膜的化学组成。在这一方面,根据本发明含8-10个碳原子的脂肪酸的较好性能归因于微生物细胞膜对该脂肪酸的极度可透过性。这是十分出人意料的,因为Kabara(1978)公开了含有4-10个碳原子的低级脂肪酸显示很小的杀菌活性。pH从6.5增加到7.5增加了含有6-8个碳原子的短链脂肪酸的最小抑制浓度,并降低了含12-14个碳原子的两个中链脂肪酸(月桂酸、肉豆蔻酸)的最小浓度。
然而在Kabara(1978)中没有教导含有8-10个碳原子的脂肪酸将能够控制细菌。
C8-C10MCFA的这种特定抗微生物作用特别有效地组合抑制真菌、酵母和革兰氏阴性菌。真菌可以包括以下属曲霉属(Aspergillus)、念珠菌属(Candida)、头孢霉属(Cephalosporum)、镰刀菌属(Fusarium)、青霉菌属(Penicillium)以及其它属于不完全菌纲的真菌。酵母可以包括,糖酵母属(Saccharomyces)和其它半子囊菌类(hemiascomycetes)(酵母类)。革兰氏阴性菌包括大肠杆菌(Escherichia coli)、沙门氏菌属(Salmonella sp.)、志贺氏菌属(Shigella sp.)和其它革兰氏阴性和大肠菌和酸败菌(spoiler)。通过抑制生长和杀死微生物细胞,各种微生物不再能引起细胞内在疾病和进一步产生毒素。
从本领域其他人的这些结果和这些观察,应希望其它MCFA也可用于本申请。其它MCFA可以包括月桂酸(C12)和肉豆蔻酸(C14)。高达约100000ppm MCFA的浓度最后与其它(有机)(脂肪)酸、抗微生物和添加剂,例如芳香剂...混合,可用于实现其特定目标。已发现1200ppm的MCFA混合物特别适用(参见实施例)。
最后,MCFA(或其盐或衍生物或混合物或其乳剂)通过杀死微生物细胞抑制微生物生长。
本发明尤其涉及特定小范围的MCFA(C8-C9-C10),特别是大约相等重量量的C8和C10适宜作为抗微生物剂。结果,污染期间、生物淤积期间、发酵期间、生态系统例如胃肠道中微生物的生长可以与使用传统抗生素如丙酸、生长促进剂和抗生素相比更温和的方式加以控制。
用与甘油酯结合的MCFA、游离MCFA和/或用其盐形式或作为该MCFA的乳剂获得观察到的效果。
为了更清楚地理解本发明,将参照以下实施例描述其优选形式。
可能的用途是微生物污染是不利的并且必须监控和控制的所有情况。为此,可以使用特定的MCFA以保护谷物生长、收获和贮藏的植物,在粉状和液体食品和饲料中,作为管和罐中的防腐剂(液体消毒),在人保健(在腹泻时或者作为呼吸疾病的气溶胶或者在局部涂敷期间,例如用于伤口愈合和当为阴道感染时、在皮肤病时、在口腔疾病时...),在食品和饲料防腐时(水果、干酪、蛋糕、面包...),在饮料中,在清洁(消毒)剂和洗涤剂中...。
下面几个实施例将证实MCFA为50/50wt的C8和C10混合物的抗微生物效果的有效性。显然,这些实施例将具有例证的目的并且不限制本发明的范围,本发明的范围是由其权利要求书定义的。


图1显示了OD600nm和大肠杆菌K88细胞的量之间的线性关系。
图2显示了在给药MCFA之后作为时间(以天计)的函数的对照动物中胃肠道不同部分的大肠杆菌计数(以log10CFU计)。
图3显示了在给药MCFA之后作为时间(以天计)的函数的处理动物中胃肠道不同部分的大肠杆菌计数(以log10CFU计)。
图4显示了在给药MCFA之后作为时间(以天计)的函数的对照动物中胃肠道不同部分的肠杆菌科计数(以log10CFU计)。
图5显示了在给药MCFA之后作为时间(以天计)的函数的处理动物中胃肠道不同部分的肠杆菌科计数(以log10CFU计)。
图6显示了在给药MCFA之后作为时间(以天计)的函数的对照动物中胃肠道不同部分的细菌总计数(以log10CFU计)。
图7显示了在给药MCFA之后作为时间(以天计)的函数的处理动物中胃肠道不同部分的细菌总计数(以log10CFU计)。
图8显示了在给药MCFA之后作为时间(以天计)的函数的对照动物中胃肠道不同部分的乳酸菌计数(以log10CFU计)。
图9显示了在给药MCFA之后作为时间(以天计)的函数的处理动物中胃肠道不同部分的乳酸菌计数(以log10CFU计)。
实施例1MCFA对真菌和酵母在pH4下的生长和存活的影响(主要为酸形式的MCFA)对以下六个真菌/酵母菌株进行评价产黄青霉菌(Penicilliumchrysogenum)MUCL 28658、黑曲霉(Aspergillus niger)MUCL 19001、白色念珠菌(Candida albicans)MUCL 29800、尖镰孢菌(Fusariumoxysporum)MUCL 781、产黄头孢(Cephalosporum chrysogenum)MUCL9718和啤酒糖酵母(Saccharomyces cerevisiae)MUCL 31497。每一菌株在25℃下于具有以下pH值和以下浓度的特定MCFA50%/50%wt(C8-C10)的P(马铃薯)D(葡萄糖)肉汤培养基中培养2400ppm(pH4.0)、1200ppm(pH4.0)、600ppm(pH4.0)、300ppm(pH4.0)、0ppm(pH4.0)、0ppm(pH7.0)。7天之后,评价所有发酵肉汤培养基的生长。为了测定抑制类型(杀死或静止的作用模型),进行平皿计数。表1概括了生长结果。在300ppm的特定MCFA下并对所有微生物菌株而言,在PD琼脂上平皿计数之后不能观察到生长。
表1.真菌/酵母在不同浓度的MCFA下于pH4.0的生长(″+″生长,″-″不生长)。

从表1可以看出,特定MCFA(C8-C10)在pH4.0下对黑曲霉MUCL19001、白色念珠菌MUCL 29800、尖镰孢菌MUCL 781和啤酒糖酵母MUCL31497具有抑制活性。这些菌株被杀死,使得生长受到抑制。产黄青霉菌MUCL 28658和产黄头孢菌MUCL 9718在pH4下不生长(不是最佳pH范围)。为此,对这两种菌株不能得出结论。
实施例2MCFA对真菌和酵母在pH7下的生长和存活的影响(主要为盐形式的MCFA)使用如实施例1所述相同的试验条件。然而,在本试验中,所有发酵肉汤培养基定在pH7.0。结果汇总于表2。菌株不生长的,细胞也被杀死(通过在PD琼脂上平皿计数证实)。
表2.真菌/酵母在不同浓度的MCFA下于pH7.0的生长(″+″生长,″-″不生长)。

从表2可以得出结论,使用特定的MCFA(C8-C10)对产黄青霉菌MUCL28658、黑曲霉MUCL 19001、白色念珠菌MUCL 29800、尖镰孢菌MUCL781、产黄头孢菌MUCL 9718和啤酒糖酵母MUCL 31497有抑制效果。同样在这里,这些菌株被杀死,从而抑制了生长。
从实施例1和2可以得出结论,可以将特定MCFA(C8-C10)用作黑曲霉MUCL 19001、白色念珠菌MUCL 29800、尖镰孢菌MUCL 781、啤酒糖酵母MUCL 31497、产黄青霉菌MUCL 28658、产黄头孢菌MUCL 9718的非常有效的抗微生物剂。在广泛的pH范围内观察到该抗真菌效果。实施例3MCFA在早期断奶的猪仔的体内评价断奶猪仔的胃肠道对大肠杆菌K88污染非常敏感。大肠杆菌K88污染主要导致腹泻和能力降低(反应在每日生长和饲料转化上)。为了描述借助MCFA控制猪仔中大肠杆菌K88的污染,进行以下试验。
制备根据本发明的混合物,它含有约40重量份的大麦、14重量份的小麦、10重量份的玉米产品、11重量份的大豆产品和20重量份的含有0.8重量份的具有8-10个碳原子的特定MCFA的饲料补充组合物。每克饲料中还加入108个致病菌(大肠杆菌K88)。
制备一对照饲料,它含有与上述混合物相同的组分,只是对照饲料不含特定MCFA。
在21天之后将一组10头猪断奶。所有猪自由地接受水和饲料。第一对照组(组1)喂食对照饲料。第二组(组2)喂食如上所述的本发明饲料组合物。
断奶5天之后将所有动物屠宰。对每克胃内容物的细菌数进行计数。结果汇总于表3。
表3.每克胃内容物中的细菌数(以计数量的log计)。

从表3看出,通过加入含有8-10个碳原子的MCFA,已在动物胃(酸性条件)中将细菌杀死。在80%喂食含有本发明饲料补充物的猪仔中,在胃中几乎不能发现任何细菌,而用对照饲料在胃中仅能杀死20%的现有菌。
显然,饲料中补充一种或多种含有8-10个碳原子的脂肪酸可以控制幼小动物的消化道中细菌的生长。最有可能该效果可以通过以下事实解释由于这些脂肪酸存在于动物的胃中,产生一能够调节和稳定胃肠微生物区系的生理环境。这里已发现,含有8-10个碳原子的脂肪酸能够杀死已经存在于胃中的主要致病菌(例如大肠杆菌K88),这样可以阻止致病剂量的细菌向肠内转移并且可以防止胃肠道紊乱的发生。
而且从本实施例可以得出结论,MCFA能够降低非常复杂环境下的大肠杆菌污染,所述复杂环境由非常复杂的生态系统和有机和无机物质、添加剂、芳香物....的复杂混合物组成。实施例4特定MCFA对动物行为的影响重复实施例3公开的试验。还发现用本发明饲料组合物喂食的这组猪显示生长性能比对照组提高约7.5%。在55天龄猪仔的平均重量为约19kg。预期这些猪仔在其生活60天之前达到20kg的重量,这是长时间内不能达到的目的。这意味着本发明的饲料组合物获得较高的日生长。而且,由于对两种饲料的饲料摄取非常相似,因此本发明的饲料组合物也获得较低的饲料转化率。
换句话说,可能通过调节胃肠道的微生物生态系统并通过MCFA非常快地从胃肠道吸收并进一步转化为能量(可为动物利用的),可以将特定MCFA喂食给动物以便提高其行为(反应在日生长和饲料转化率上)。这样,特定的MCFA可以代替传统生长促进剂。实施例5MCFA和粘菌素对控制大肠杆菌K88生长的比较将3个100ml发酵肉汤培养基(脑心浸剂)样品等量接种有大肠杆菌K88的过夜培养物(猪仔胃肠道的致病菌)并在37℃下进一步培养。测定600nm(OD600nm)下的光密度-它与大肠杆菌细胞的存在量成正比(
图1)。一获得OD600nm为0.2-0.5就(1)第一个样品中什么都不加入,(2)向第二个样品中加入12ppm的粘菌素和(3)向第三个样品中加入1200ppm的MCFA(含50%具有8个碳原子的脂肪酸和50%具有10个碳原子的脂肪酸的混合物)的钠盐。
这些样品在37℃、pH4.0下进一步培养4小时。每小时测定其OD600nm。培养4小时之后取出样品,为了记录培养期间可能的pH变化,测定其pH。结果汇总于表4。表4.MCFA和粘菌素(阳性对照)对大肠杆菌K88的影响

*由MCFA引起的内在浊度使得OD600nm值较高从表4看出,加入粘菌素,大肠杆菌的生长延缓56%,加入本发明的MCFA,大肠杆菌的生长延缓96%。由于这三个样品的pH大致相同,因此本发明的MCFA的效果非常显著。可以得出结论,作为传统抗生素的粘菌素能够被MCFA有效地取代。实施例6MCFA(50/50 C8和C10)和可商购获得的抗微生物剂的抗微生物活性的体外比较试验数量随已知产品的零售商提供的技术信息而变化。其目的是评价C8/C10MCFA和可商购获得的CRINA产品(Akzo Nobel产品)在胃中的抗微生物活性。使用4个试验物质a.空白b.MCFA →8g/kg饲料c.CRINAHC 猪仔 →100mg/kg饲料d.CRINAHC 739→50mg/kg饲料e.CRINAHC 成猪/母猪 →75mg/kg饲料如下制备试验溶液。向1kg饲料(组成表5)中加入精确测定量的大肠杆菌K88。接着,产生20%饲料和80%生理溶液(0.85%生理盐水)的悬液。为了模拟在胃环境中的20%悬液,用0.1HCl使pH为3.5-4.0。表5.试验饲料组成

现在将酸化悬液分散在100ml的样品中。完成t=0时的微生物计数。将样品于37℃下培养3小时。3小时之后取出样品并测定pH和微生物计数。在Coli ID培养基(Bio Merieux,42017)上对大肠杆菌菌株计数。
有计划的观察是a.t=0时对照样品(空白)和处理样品的微生物计数b.t=3小时时对照样品(空白)和处理样品的微生物计数。
表6描述了证明本发明MCFA(50/50 C8/C10)化合物在胃中抗微生物效力的有效性的计算结果。表6.在37℃和pH4.0下培养3小时之后不同处理对大肠杆菌的影响。这些值以log10CFU/ml溶液表示。

实施例7MCFA盐水溶液和MCFA乳剂的抗微生物效力本实施例的目的是研究以饮用水中的盐水溶液提供的C8和C10(等于50%wt)MCFA的混合物对小鸡的畜牧学行为(生长、饲料转化率、饲料摄取、死亡)的效力。
40只ROSS 308公鸡放在4个不同栅栏中。随意给予饮用水和饲料。试验耗时36天。在整个期间向所有小鸡给予相同的饲料。饲料既不含任何生长促进剂也不含抑球虫剂(coccidiostaticum)。在试验期间对栅栏2、3和4提供C8-C10混合物的饮用水。栅栏1提供有纯饮用水,栅栏2、3和4提供有依次为以下量的MCFA盐0.5kg、1kg和2kg/1000L。
这些试验的结果列于表7、8、9、10和11。表7.0-12天的畜牧学结果

表8. 12-23天的畜牧学结果

表9.23-28天的畜牧学结果

表10. 29-36天的畜牧学结果

表11. 0-36天的畜牧学结果

*1DFI每日饲料摄取量*2BW体重*3DWG每日体重增加*4FCR饲料转化率,为每公斤体重增加所消耗的饲料重量。
从表7-11可以看出,在头3周内在这4组中没有显示出特定的差异。然而显然在第36天,在给予MCFA处理的3个栅栏中获得较高的体重和较好的FCR。显然本发明的特定MCFA组合物对小鸡的畜牧学行为具有正面效果。
将MFCA(50/50wt C8-C10)以乳剂提供进行另一试验。当使用以盐加入到饮用水中的MCFA高达几公斤的较高浓度时,可能形成泡沫。为了避免这些问题,可以向饮用水中加入几种消泡剂。然而,本发明出人意料地发现,本发明的MCFA的特定部分可以较好地以乳剂形式呈现。这种方案避免了产生泡沫。
将其盐形式(1200ppm)与使用共嵌段聚合物丙烯-乙烯作为黄原胶和水中的乳化剂的50% MCFA乳剂(0.3%)比较进行另一试验。显然,可以选择例如本领域已知的其它乳化剂。尽管其盐形式获得抗微生物效果,但是试验乳剂的活性要大几倍。实施例8MCFA在猪上的用途本试验的目的是评价MCFA(50%/50%wt)在猪试验(从30到105kg)中的效果。
试验农场位于West-Flanders并由2个区域组成,每个区域含有10个栅栏。
每个栅栏(2m×4m)内有14头猪。每个栅栏,在走廊侧安装有一饲料供应器(随意)。在栅栏的另一侧供应水(随意)。小母猪和公猪混合。在整个试验期间,栅栏通风。
饲料以这种方式供应,在动物试验开始时对所有饲料的平均猪重/饲料是相似的(±30kg)。
在试验期间监控以下饲料饲料1对照饲料2对照+0.1% MCFA(生长阶段)对照+0.05% MCFA(成熟阶段)观察以下参数猪重和饲料摄取。
这些猪分别称重为’30kg’、’50kg’和’100kg’。动物试验在2000年5月19日开始。所有猪分别称重。第二次称重在2000年6月26日进行。最后称重在2000年9月25日进行。每头猪按照其Sanitel号进行追踪。从所得数据(表12)可以获得以下结论表12.接受不同膳食的猪生长重量膳食19/05/2000 26/06/200025/09/2000(开始) (最后生长阶段)(最后成熟阶段)1 29,80±5,6551,64±8,26105,06±15,302 29,94±4,9453,29±7,68104,87±15,04从表12看出,膳食2使得在生长阶段生长最高。在试验结束时,该效果消失。似乎该MCFA可以有效地用作生长阶段的生长促进剂。
还记录了饲料摄取/栅栏。在2000年6月26日,将最初(生长物)饲料改变并对猪进一步喂食精制饲料。在生长阶段和成熟阶段测定饲料摄取/猪(表13)。从这些数据可以进一步计算饲料转化率(表14)。表13.接受不同膳食的猪的饲料摄取饲料 摄取(kg)/猪生长阶段 成熟阶段

表14.接受不同膳食的猪的饲料转化率饲料转化率生长阶段成熟阶段

从表13和14看出,向饲料中补充MCFA使得在结束阶段饲料转化率低。尽管MCFA对生长没有任何影响,但是在成熟阶段对饲料转化率具有正面效果。
最后,MCFA可以有效地用作生长阶段的“生长促进剂,而该效果后来消失。实施例9MCFA的MIC值测定本试验转包给University Gent。
进行试验以测定通常与肠道有关的不同收藏的细菌菌株对MCFA的体外敏感性。产品对收藏菌株的最小抑制浓度(MIC)从0.25%到0.005%不同。在pH7.2,看到在低pH下厌氧生长的肠球菌(enterococci)的活性最高。注意到肠杆菌科(Enterobacteriaceae)和需氧生长的假单胞菌(Pseudomonas)的活性最低。
在该研究中包括17种收藏菌株,它们代表了各种兼性需氧生长的肠道菌(表15)。还测定了3种抗菌谱对照菌株金黄色葡萄球菌(S.aureus)ATCC 25922、粪肠球菌(Enterococcus faecalis)ATCC29212和大肠杆菌(E.coil)25923。
在蒸馏水中制备3个10倍稀释的10%产品悬液。为了获得所需最终浓度,将1.5、0.75和0.36ml的这些稀释物吸移到陪替氏培养皿中并小心地与熔融生长培养基混合。3个培养基使用pH为7.2的Mueller-Hinton II培养基(BBL)、pH6.2的MRS培养基(Oxoid)平皿和pH调整到4.6的MRS培养基。
将保存菌株于Columbia血液琼脂平皿或MRS培养基上生长。由37℃下培养的过夜16-26小时肉汤培养物制备接种物。这些是通过适应McFarland等级测定(bioMerieux)的光度计中于无菌盐水中悬浮生长获得的。将匹配0.5McFarland的溶液在盐水中稀释10倍并使用Denley多点接种器(Mast)接种在抗生素和对照平皿上。这样,将约10,000菌落形成单位的每一菌株接种到这些平皿上。这些MRS平皿在H2+CO2环境中无氧培养。将Mueller-Hinton平皿有氧培养。
在37℃下培养2天之后进行读数。该MIC是以生长完全受到抑制或者几乎完全受到抑制,因此生长或单菌落引起的模糊生长可忽略不计的最低浓度。
最小抑制浓度示于表1。仅4种乳酸杆菌菌株在pH4.6下生长得非常好。大多数肠球菌菌株的生长在该pH下生长相当好,但是在其它培养基上差得多。剩余菌株没有生长。除革兰氏阴性的之外的所有菌株在MRS上于pH6.2下生长。乳酸杆菌在Mueller-Hinton琼脂上仅呈现模糊生长。
所有分离物的MIC都位于0.25%-0.0025% MCFA乳剂之间。产品于pH4.6下对能够生长的肠球菌和乳酸杆菌活性最高。在最佳体外生长条件下该MIC从0.25到0.1%变化。
表15.MCFA对细菌菌株的体外抑制活性

实施例10MCFA对猪仔(7-20kg)的效力对肠杆菌的效力将是实施例10的目的。使用一群猪仔(7-20kg)评价50%MCFA的抗微生物活性。
将早期断奶的猪(7kg)分2群各10个样品放置。提供水和饲料随意摄取。群体(C)提供有不含抗生素也不含生长促进剂的基本饲料。
种群(B)给予补充有0.50% 50% MCFA乳剂(50/50 C8-C10,具有乳化剂共嵌段聚合物乙烯-丙烯)的基本饲料。对每一样品,从对照和处理组分两次选择2个动物,并根据批准的伦理过程进行解剖。从胃肠道的以下几个部分胃、十二指肠、回肠和盲肠的前面部分收集其内容物。于胃肠道每一部位各制备两个混合样品分别用做对照和处理样本并在4个不同的培养基上分析营养琼脂,用于计数总污染物;紫红色胆汁葡萄糖琼脂,用于计数肠杆菌;大肠菌群ID,用于计数大肠杆菌;和Rogosa琼脂,用于计数乳酸杆菌。
这些不同计数的结果描述于图2-9。显然,大肠杆菌和肠杆菌菌群降低,尤其是开始部分,它是胃肠道的最酸性部分。
图8和9显示了对微生物的出人意料的选择效果。不想要的和可能的致病菌如大肠杆菌、肠杆菌的菌群基本上消灭掉。想要的菌种菌群如乳酸杆菌保持不受影响。
显然,这些实施例仅是描述性的,并不限制本发明。本发明的饲料补充物的可能范围的重量%以20-50% C8、20-50% C10和高达约100%的C6-C24的任何其它MCFA的混合物可能是适宜的。
对几种这些饲料补充物进行测定并且与用于引证的实施例中的标准50%/50% C8-C10组合物相似地进行。
使用后面的范围也呈现了对特定菌株的出人意料的选择作用。
参考文献BARTON,M.D.(1998).Does the use of antibiotics in animalsaffect human health.Aust.Vet.J.,76,177.
BARTOV,I.、PASTEUR,N.和USHER,N.(1982).The nutritionalvalue of moldy grains for broiler chicks.Poult.Sci.,61,2247.
DUPONT,H.L.和STEELE,J.H.(1987).Use of antimicrobialagents in feedsimplications for human health.Rev.Infect.Dis.,9,447.
ECKEL,B.(1999).Probiotics can improve intestinal microbebalance and feed hygiene.Feed Tech.,3,39.
EMELE,F.E.、FADAHUNSI,A.A.、ANYIWO,C.E.和OGUNLEYE,O.(2000).A comparative clinical evaluation of econazole nitrate,miconazole and nystatin in the treatment of vaginal candidiasis.West Afr.J.Med.,19,12.
ENGLISH,P.R.、TOPPS,J.H.和DEMPSTER,D.G.(1973).Moistbarley preserved with propionic acid in the diet of pigs.Anim.Prod.,17,75.
FOSTER,B.C.、TRENHOLM,H.L.和FRIEND,D.W.(1987).Theeffect of a propionate feed preservative in deoxynivalenol(Vomitoxin)containing corn diets fed to swine.Can.J.Anim.Sci.,67,1159.
GUILLOT,J.F.(1989).Apparition et evolution de laresistance bacterienne aux antibiotiques.Ann.Rech.Vet.,20,3.
HAMILTON,P.B.(1990).Problems with mycotoxins persist butcan be lived with.Feedstuffs,January 22,22.
HARVEY,R.B.、HUFF,W.E.、KUBENA,L.F.和PHILIPS,T.D.(1989).Evaluation of diets contaminated with aflatoxin and ochratoxinfed to pigs.Am.J.Vet.Res.,50,1400.
HIROOKA,E.Y.、YAMAGUCHI,M.M.、AOYAMA,S.、SUGIURA,Y.和UENO,Y.(1996).The natural occurrence of fumonisins inBrazilian corn Kernels.Food Addit.Contam.,13,173.
JELINEK,C.F.、POHLAND,A.E.和WOOD,G.E.(1989).Worldwideoccurrence of mycotoxins in foods and feeds-an update.J.Assoc.Off.Anal.Chem.,72,223.
JONES,G.M.、DONEFER,E.和ELLIOT,J.I.(1970).Feedingvalue for dairy cattle and pigs of high-moisture corn preservedwith propionic acid.Can.J.Anim.Sci.,500,483.
KABARA,J.(1978).Fatty acids and derivatives asantimicrobial agents-a review.InKABARA,J.(ed.).Thepharmaceutical effects of lipids,AOCS,Champaign,111,USA,1.
MARIN,S.、ANCHIS,V.、SANZ,D.、CASTEL,I.、RAMOS,A.J.、CANELA,R.和MAGAN(1999).Control of growth and fumosin B1production by Fusarium verticillioides and Fusariumproliferatum isolates in moist maize with propionatepreservatives.Food Addit.Contam.,16,555.
MUIRHEAD,S.(1998).EU ban of antibiotics draws sharpcriticism.Feedstuffs,70,1.
PIER,A.C.(1992).Major biological consequences ofaflatoxicosis in animal production.J.Anim.Sci.,70,3964.
PRESCOTT,J.F.(1997).Antibioticsmiracle drugs or pigfood.Can.Vet.J.,38,763.
RAHNEMA,S.和NEAL,S.M.(1992).Preservation and use ofchemically treated high-moisture corn by weaning pigs.J.Prod.Agric.,5,458.
RAHNEMA,S.和NEAL,S.M.(1994).Laboratory and fieldevaluation of commercial feed preservatives in the diet ofnursery pigs.J.Anim.Sci.,72,572.
REISS,J.(1978).Mycotoxins in foodstuffs.XI.Fate ofaflatoxin B1 during preparation and baking of whole wheat bread.Cereal Chem.,55,421.
ROSS,I.W.(1999).Antibiotics in animal feed stocks andimplications of the European Commission ban.Food Test Anal.,5,8.
RUSSELL,L.、COX,D.F.、LARSEN,G.、BODWELL,K.和NELSON,C.E.(1991).Incidence of molds and mycotoxins in commercialanimal feed mills in seven midwestern states.J.Anim.Sci.,69,5.
RYBINSKA,K.、POSTUPOLSKI,J.和SZCZESNA,M.(1997).Determination of natamycin residues in ripening cheese byperformance liquid chromatography.Rocz.Panstw.Zakl.Hig.,48,173.
SMITH,P.A.、NELSON,K.L.、KIRBY,Z.B.、JOHNSON,Z.B.和BEASLEY,J.N.(1983).Influence of temperature,moisture andpropionic acid on mold growth and toxin production on corn.Poult.Sci.,62,419.
TUITE,J.(1979).Field and storage conditions for theproduction of mycotoxins and geographic distribution of somemycotoxin problems in the United States.InInteractions ofmycotoxins in animal production.National Academy of Sciences,Washington.
WYATT,R.D.(1995).Molds,mycotoxins,and the problemsthey cause.Alltech symposium.
YASIN,M.和HANNA,M;(1989).Potassium sorbate as apreservative for high moisture corn.Rans.Am.Soc.Agric.Eng.,32,280.
ZIJLSTRA,R.T.、WANG,K.Y.、EASTER,R.A.和OLDE,J.(1996).Effect of feeding a milk replacer to early-weaned pigs on growth,body composition,and small intestinal morphology,comparedwith suckled littermates.J.Anim.Sci.,74,2948.
权利要求
1.一种或多种C6-C10中链脂肪酸(MCFA)、盐、衍生物或其混合物用于抑制微生物污染、生长和/或随后产生毒素的用途。
2.如权利要求1的用途,其中所述MCFA选自己(C6)酸、庚(C7)酸、辛(C8)酸、壬(C9)酸和癸(C10)酸。
3.如权利要求2的用途,其中所述MCFA选自辛(C8)酸、壬(C9)酸和癸(C10)酸。
4.如权利要求3的用途,其中所述MCFA选自C8和C10,优选重量大致相等,更具体地说重量%是-20-50% C8-20-50% C10-和任选选自C6-C24的其它MCFA。
5.如权利要求1-4任意的用途,其中所述MCFA以甘油一酸酯、甘油二酸酯和/或甘油三酸酯存在。
6.如权利要求1-4的用途,其中所述MCFA是以乳剂或溶液存在的NH4+-、Na+-、K+-和/或Ca2+-盐。
7.如权利要求1-6的用途,与其它MCFA如月桂酸(C12)和肉豆蔻酸(C14)、其它抗真菌剂或其它(有机)(脂肪)酸或添加剂如香料和植物提取物组合。
8.如权利要求1-7任意的用途,用于对抗选自以下的真菌和酵母的生长青霉菌属、曲霉属、镰刀菌属、头孢霉属、糖酵母属、念珠菌属、以及其它不完全菌和半子囊菌类(酵母类)。
9.如权利要求1-7任意的用途,用于选择性对抗革兰氏阴性菌如大肠杆菌、沙门氏菌属、志贺氏菌属和其它革兰氏阴性和大肠菌和食品/饲料酸败菌的生长。
10.如权利要求8-9任意的用途,用于选择性地控制和调节任何动物或人的胃肠道中的微生物生态系统。
11.如权利要求10的用途,其中所述动物处于其早期断奶阶段。
12.动物用饲料组合物,包括含选自辛(C8)酸和癸(C10)酸中的一种或多种中链脂肪酸(MCFA)、盐、乳剂或其混合物的饲料补充物,其重量%为-20-50% C8-20-50% C10-和任选选自C6-C24的其它MCFA。
13.如权利要求12的饲料组合物,其中所述MCFA是NH4+-、Na+-、K+-和/或Ca2+-盐或者存在于乳剂中。
14.如权利要求12或13的用途,其中所述MCFA浓度高达约100000ppm。
15.如权利要求14的用途,其中所述MCFA浓度是100-3000ppm,优选约1200ppm。
全文摘要
本发明涉及一种或多种C
文档编号A01N37/02GK1437467SQ01811409
公开日2003年8月20日 申请日期2001年6月20日 优先权日2000年6月20日
发明者K·莫利, G·布鲁格曼 申请人:营养科学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1