β-内酰胺酶的底物及其应用的制作方法

文档序号:450075阅读:1213来源:国知局
专利名称:β-内酰胺酶的底物及其应用的制作方法
背景技术
本发明总的来说涉及化学和生物领域。更具体地说,本发明涉及测定基因表达所使用的组合物和方法。
报告基因测试可测定基因启动子的活性,该测定吸取分子生物技术之优点,该技术使人们可将异源基因置于任何启动子控制之下,并将该构建体导入哺乳动物细胞的基因组中[参见Gorman,C.M.等人,Mol.Cell Biol.21044-1051(1982);Alam,J.和Cook,J.L.,Anal.Biochem.188245-254(1990)]。启动子激活还诱导报告基因,或者代替内源基因。通过设计,报告基因编码容易检测和测量的蛋白,一般是一种能将市售底物转变为产物的酶。此种转换便于接着进行色谱测量或直接光学测定,并可定量分析所产生的酶量。
报告基因在许多研究不同生物体基因调节的各种质粒上,可从市场购得[Alam和Cook上述文献]。所研究的启动子可以插入质粒上报告基因前为此目的所提供的多克隆位点上[Rosenthal,N.,Methods Enzymol152704-720(1987);Shiau,A.和Smith,J.M.,Gene 67295-299(1988)]。使用标准技术将这些基因导入细胞型或整个生物体中(例如Sambrook,J.,Fritsch,E.F.和Maniatis,T.克隆基因在培养哺乳动物细胞中的表达,见《分子克隆》,Nolan,C.编辑,New YorkCold Spring Harbor Laboratory出版社出版,1989)。然后可用质粒上提供的抗性标志挑选成功地被转染的细胞。
因容易使用,且大量信号扩增,使得该技术在基因调节研究中颇为流行。DNA→RNA→酶→产物→信号这一连串步骤的每一步均使该序列在下一步扩增。越往下测量这一连串步骤的下一步,则获得的信号越多。
在理想的报告基因测试中,所研究的启动子控制下的报告基因,被暂时地,或稳定地转染进细胞中。受体激活作用导致通过转录和转译活动而改变酶的水平。通过底物上的酶促作用,可以测量存在的酶量。当加入到胞外溶液中时,该底物是小型不带电分子,可以穿透浆膜与酶相遇。也可以采用带电分子,但该电荷需用基团掩蔽,而所述基团将被内源细胞酶裂解(例如可由胞质酯酶裂解的酯类)。
因为很多原因,对于与酶相互作用时其荧光光谱显示变化的底物之应用,特别令人青睐。某些测试中,产生荧光的底物被转换成发荧光产物。另外,随报告基因酶中的转换作用,发荧光底物改变其荧光性质。该产物应是获得极大信号的真正发荧光的,并是真正极性的,能陷入细胞内。
为了使报告基因检测中达到可能的最高敏感度,不得不使单个报告基因酶所产生的信号量达极大值。最佳酶在饱和条件下每秒钟能转换105个底物分子[Stryer,L.,Introduction to enzymes.InBiochemistry,New TorkW.H.Freeman and company,1981,pp.103-134]。β-内酰胺酶每秒钟能裂解其适意之底物约103个分子[Chang,Y.H.等人,Proc.Natl.Acad Sci.USA 872823-2827(1990)]。使用一种产生荧光的底物,当以适当波长的光激发时,取决于所用染料类型,每产生一个发荧光产物,可获得至多106个光子。该信号随荧光团的退色而终止[Tsien,R.Y.and Waggoner,A.S.Fluorophores forconfocal microscopyPhotophysics and photochemistry.InHandbook of Biological Confocal Microscopy,edited byPawley,J.B Plenum Publishing Corporation,1990,pp.169-178]。这些数值说明此类测量中可获取信号的理论值。在实践中,将检测出所产生光子的精确分数,但这实际包括荧光、生物发光或化学发光。一种报告基因酶的良好产生荧光底物,除了良好的光学特性,例如高消光和高荧光量子产率外,还必需具有对酶的高转换作用。
发明概述本发明的目的是提供β-内酰胺酶底物化合物。本发明的另一目的是提供透膜化合物。该透膜化合物可以转化为基本上不透膜的化合物。
本发明的又一目的是提供β-内酰胺酶报告基因。本发明的另一目的是创建含功能性连接于启动子上的β-内酰胺酶报告基因的细胞,以便当启动子启动时,该报告基因得以表达。用β-内酰胺酶水解之后能发光的β-内酰胺酶底物来测量β-内酰胺酶的表达。
本发明还有一个目的是利用细胞中的β-内酰胺酶报告基因及本发明β-内酰胺酶底物化合物筛选生物化学活性。
根据本发明,提供的产生荧光的底物具有通式I结构,
其中X和Y之一是发荧光的供体部份,或其透膜衍生物,而另一个是猝灭体部份、受体荧光团部份或其透膜衍生物;R′选自H、低级烷基、(CH2)nOH、(CH2)nCOOR″和=NOJ,(其中n是0或1-5的整数,而J是H、Me、CH2COOH、CHMeCOOH及CMe2COOH);R″选自H、生理学上可接受的金属和铵阳离子、-CHR2OCO(CH2)nCH3、-CHR2OCOC(CH3)3、酰硫甲基、酰氧基-α-苄基、δ-丁内酯基、甲氧羰氧甲基、苯基、甲基亚磺酰甲基、β-吗啉代乙基、二烷氨基乙基、二烷氨基羰氧甲基,其中R2选自H和低级烷基;A选自S、O、SO、SO2和CH2;Z′是X的接头;Z″是Y的接头。
另一方面,本发明提供测定样品中是否具β-内酰胺酶活性的方法。该方法包括将样品与本发明化合物底物接触(当化合物被激发时它表现出荧光共振能量转移);激发化合物;和测定样品中荧光共振能量转移的程度。荧光共振能量转移程度若低于预期值,则表明存在β-内酰胺酶活性。该方法的一个实施方案是测定样品中的酶量。根据该方法,测定样品中荧光共振能量转移程度包括测定样品与底物接触后第一次和第二次的转移程度,并测定该荧光共振能量转移程度之差,该差值反映出该样品中的酶量。
另一方面,本发明提供重组核酸分子,该分子包含适宜于在脊椎动物细胞中起作用的表达控制序列,该表达控制序列按人工操作方式(operably)连接于编码β-内酰胺酶表达的核苷酸序列上。也提供包含适宜于在真核细胞中发挥作用,且按人工操作方式连接于编码胞液β-内酰胺酶表达的核苷酸序列上的表达控制序列的重组核酸分子。在某些实施方案中,本发明涉及用这些重组核酸分子转染的哺乳动物宿主细胞。
另一方面,本发明提供测定细胞中β-内酰胺酶活性量的方法。该方法包括提供以重组核酸分子转染的宿主细胞,所述重组核酸分子包含按人工操作方式连接于编码β-内酰胺酶表达的核酸序列上的表达控制序列;将含细胞或细胞提取物的样品与β-内酰胺酶底物接触;以及测定裂解底物之量,而裂解底物之量与β-内酰胺酶活性量有关。
再一个方面,本发明提供监测按人工操作方式连接于一套表达控制序列的基因的表达的方法。该方法包括提供以重组核酸分子(该分子含按人工操作方式连接于编码β-内酰胺酶表达的核酸序列上的表达控制序列,除了真核细胞是真菌的情况例外,其中所述β-内酰胺酶是胞液β-内酰胺酶)转染的宿主细胞;将含细胞或细胞提取物,或其条件培养基之样品与β-内酰胺酶底物相接触;并测定裂解的底物之量。所述裂解底物之量与β-内酰胺酶活性量相关。
再一个方面,本发明提供测定是否一种试验化合物能改变按人工操作方式连接于一套表达控制序列的基因之表达的方法。该方法包括提供由重组核酸构建体转染的细胞(所述构建体含有按人工操作方式连接于编码β-内酰胺酶表达的核酸序列上的表达控制序列,除了真核细胞是真菌的情况例外,其中β-内酰胺酶是胞液β-内酰胺酶);将该细胞与试验化合物接触;将含细胞或细胞提取物之样品与β-内酰胺酶底物接触;并测定裂解的底物之量,而所裂解的底物量与β-内酰胺酶活性量相关。该方法的一个实施方案中,底物是本发明化合物。测定裂解的底物量之步骤包括激发化合物;并测定样品中荧光共振能量转移程度。若荧光共振能量转移程度低于预期值,则表明存在β-内酰胺酶活性。
还有一个方面,本发明提供克隆选择的方法,该方法包括提供用重组核酸分子转染的细胞(所述重组核酸分子含有按人工操作方式连接于编码胞液β-内酰胺酶表达的核酸序列上的表达控制序列);将该细胞与激活或抑制表达控制序列活化作用的底物接触;将该细胞与转换成底物的权利要求9的化合物接触;测定在各个体细胞中是否底物被裂解,而裂解反映β-内酰胺酶活性;选择及繁殖挑选出的具β-内酰胺酶活性水平的那些细胞。在另一实施方案中,该方法还包括将挑选出的细胞在不存在激活剂的条件下培养足够长时间,使裂解的底物从细胞中基本上消失,且使β-内酰胺酶水平回复到未激活水平;将挑选出的细胞与转换成底物的权利要求9的化合物一起保温;并挑选基本上不裂解该底物的细胞。
有关附图的简单描述

图1(a)和1(b)表示β-内酰胺环在经β-内酰胺酶裂解前后,化合物11(实施例1)的荧光素(a)和若丹明(b)成份之发射光谱;图2表示β-内酰胺环经β-内酰胺酶裂解前后化合物17的发射光谱;图3表示β-内酰胺环经β-内酰胺酶裂解前后化合物22的发射光谱;图4表示β-内酰胺环经β-内酰胺酶裂解前后化合物25的发射光谱;图5表示β-内酰胺环经β-内酰胺酶裂解前后化合物CCF2的发射光谱;图6表示β-内酰胺环经β-内酰胺酶裂解前后化合物CCF1的发射光谱;图7A列出介绍本发明所用各种核苷酸和氨基酸序列的表;图7B-C描绘序列1,即如Kadonaga等人(1984)所改性的大肠杆菌RTEM的核苷酸序列,及其推断的氨基酸序列;图7D-E描绘序列2,即带有Ser→Arg、Ala23→Gly的野生型分泌RTEM酶的核苷酸及其推断的氨基酸序列;图7F-G描绘序列3,即带有β-球蛋白上游前导序列、哺乳动物Kozak序列、由Met Gly代替信号序列的RTEM酶的核苷酸及推断的氨基酸序列;图7H-I描绘序列4,即带有哺乳动物Kozak序列和由Met Asp代替信号序列的RTEM β-内酰胺酶的核苷酸及推断的氨基酸序列;图7J-K描绘序列5、即带有置换信号序列的地衣杆菌β-内酰胺酶的核苷酸及推断的氨基酸序列。
发明描述定义根据本发明,及如本文中所采用的,除非另有说明,下面的术语定义为下面之含义所谓“发荧光的供体部份”指能吸收能量,并能将能量转移到另一产生荧光的分子或化合物之部份的产生荧光的化合物基团。适宜的供体产生荧光的分子包括(但不限于)香豆素类及相关染料、呫吨染料(例如荧光素类、对甲氨基酚类、和若丹明类)、试卤灵类、花青染料、双双鬃类(bimane)、吖啶类、异吲哚类、丹酰染料、氨基邻苯二甲酸酰肼类(例如鲁米诺及异鲁米诺衍生物)、氨基邻苯二甲酰亚胺类、氨基萘二甲酰亚胺类、氨基苯并呋喃类、氨基喹啉类、二氰基氢醌类,和铕及铽配合物,以及相关化合物。
所谓“猝灭体”,指当其连接于供体上时,能减低发荧光的供体发射作用的生色团分子或化合物之部份。猝灭可以通过几种机理之任何一种发生,包括荧光共振能量转移、光诱导电子转移、体系间交叉的顺磁增涨、Dexter交换偶合、激发子偶合(例如形成黑色复合物)。所谓“受体”指通过荧光共振能量转移操作的“猝灭体”。许多受体可以使转移的能量作为荧光再发射。例子包括香豆素类及相关荧光团、呫吨类(例如荧光素类、对甲氨基酚类和若丹明类)、试卤灵类、花青类、二氟硼二氮吲丹参类(difluoroboradiazaindacene)和酞菁类。其它化学受体类一般不再发射转移能量,例子包括靛兰类苯并醌类、蒽醌类、偶氮化合物、硝基化合物、茚苯胺类、二和三苯基甲烷类。
所谓“染料”指吸收特定频率光的分子或化合物之部份,包括(但不限于)吸收紫外光。所谓“染料”和“生色团”意思相同。
所谓“荧光团”指荧光的生色团。
所谓“透膜衍生物”意指上述通式化合物的化学衍生物,所述通式中X和Y中至少一个含至少一个酰化的芳羟基,酰化胺,或烷基化的芳羟基,其中酰基含1-5个碳原子,而烷基选自-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)Oalk、低级酰氧-α-苄基、和δ-丁内酯基;其中alk是1-4碳低级烷基。这些衍生物的特点是能穿过细胞膜,即透膜性,因为其亲水基团被掩蔽而产生了疏水性较强的衍生物。同时,掩蔽基团被设计为能从细胞中的产生荧光的底物上裂解掉,从而在胞内产生衍生底物。因该底物比透膜衍生物亲水性更强,因此这时会陷入细胞内。
所谓“烷基”指1-8碳直链、支链、和环状脂肪基,优选1-6碳、更优选1-4碳。所谓“低级烷基”指1-4碳直链和支链烷基。
所谓“脂肪基”指1-10碳饱和和不饱和烷基,优选1-6碳,更优选1-4碳。底物就其最大可能具β-内酰胺水解的扩散控制催化作用而言,β-内酰胺酶几乎是最佳酶[Christensen,H.等人,Biochem.J.266853-861(1990)]。当对该类酶的其它特性进行审试时,确定它们适宜于起胞内报告基因酶之作用。它们裂解β-内酰胺抗生素,如青霉素和头孢菌素等的β-内酰胺环,在该过程中产生新的带电部份[O′Callaghan,C.H.等人,Antimicrob.Agents.Chemother.857-63(1968);Stratton,C.W.,J.Antimicrob.Chemother.22 Suppl.A23-35(1988)]。第一代头孢菌素如下式左边,其箭头指向β-内酰胺酶裂解部位。如此产生的游离氨基(下式中间结构)通过乙烯基供给电子密度,促使离核基R2从3′位不可逆地裂解。因此R2容易从R1-头孢菌素共轭体(下式右边结构)中扩散出。
β-内酰胺酶因其在临床上使细菌产生对β-内酰胺抗生素的抗性,故这类酶属已被很好鉴定过[Waley,S.G.,Sci.Prog.72579-597(1988);Richmond,M.H.等人,Ann.N.Y.Acad.Sci182243-257(1971)]。大多数β-内酰胺酶已被克隆,其氨基酸序列被测定过[见例如Ambler,R.P.,Phil.Trans.R.Soc.Lond(Ser.B.)289321-331(1980)]。
编码β-内酰胺酶的基因被分子生物学家称之为氨苄青霉素抗性基因(Ampr),并普遍用来筛选成功转导之细菌[Castagnoli,L.等人,Genet.Res.40217-231(1982)],其克隆几乎随处可得。该酶催化β-内酰胺环水解,并不接受肽或蛋白底物[Pratt,R.F.和Govardhan,C.P.,Proc.Natl.Acad.Sci.USA 811302-1306(1984);Murphy,B.P.和Pratt,R.F.,Biochemistry 303640-3649(1991)]。该反应动力学已充分了解,且无产物抑制作用[Bush,K.和Sykes,R.B.,Antimicrob.Agents.Chemother.306-10(1986);Christensen等人(1990),文献同上]。该酶底物极性小于产物之极性。
该底物中的羧基可采用乙酰氧甲基酯的方式很容易加以隐蔽[Jansen,A.B.A.和Russell,T.J.,J.Chem.Soc.2127-2132,(1965);Daehne,W.等人,J.Med.Chem.13607-612(1970)],该保护基易于借助哺乳动物内源胞内酯酶裂解掉。经这些酯酶转化,再由β-内酰胺酶裂解β-内酰胺,产生两个负电荷和质子化的叔胺。到目前为止,尚无有关具适当特性的产生荧光的底物的报道,但不同设计的多生色底物已有报道,且推入市场[Jones,R.N.等人,J.Clin.Microbiol.15677-683(1982);Jones,R.N.等人,J.Clin Microbiol.15954-958(1982);O′Callaghan,C.H.等人,Antimicrob.AgentsChemother.1283-288(1972)]。
已分离和鉴定出大量β-内酰胺酶,它们全适用于本发明。一开始,根据其底物和抑制剂特征以及其分子量,将β-内酰胺酶分成不同类(I类至V类)[Richmond,M.H.和Sykes,R.B.Adv.Microb.Physiol.931-88(1973)]。最近,引入了基于氨基酸和核苷酸序列的分类法[Ambler.R.P.,Phil.Trans.R.Soc.Lond.(Ser.B.)289321-331(1980)]。A类β-内酰胺酶在活性位点具有丝氨酸,其分子量约为29kd。该类包括质粒介导的TEM β-内酰胺酶,例如pBR 322的RTEM酶。B类β-内酰胺酶有活性位点,锌结合于胱氨酸残基。C类酶有活性位点丝氨酸,且分子量约为39kd,但没有氨基酸同源于A类酶。
用于本文中所述报告基因检测的典型β-内酰胺酶的编码区示于SEQ ID NO1(核酸序列)和SEQ ID NO2(氨基酸序列)。含有该序列的pTG2dell已有人介绍过[Kadonaga,J.T.等人,J.BiolChem.2592149-2154(1984)]。野生型pBR322 β-内酰胺酶的完整编码序列已公开过[Sutcliffe,J.G.,Proc.Natl.Acad.Sci.USA 753737-3741(1978)]。这些序列和其它相似的具有β-内酰胺酶活性的肽序列,应同样适宜于本发明使用,这对本领域专业人员来说是显而易见的。β-内酰胺酶报告基因,按本身已知的报告基因应用方式用于检测系统中(例如以适宜的质粒载体形式)。
与适宜的β-内酰胺酶一起,通式I的产生荧光的底物也应用于本发明中,
其中X和Y之一是发荧光的供体部份,而另一个是猝灭体(它可以再发射,或不可再发射);R′选自H、低级烷基、(CH2)nOH、(CH2)nCOOR″、和=NOJ,其中n是0或1-5的整数,J是H、Me、CH2COOH、CHMeCOOH、和CMe2COOH;R″选自H、生理学上可接受的金属及铵阳离子、-CHR2OCO(CH2)nCH3、CHR2OCOC(CH3)3、酰硫甲基、酰氧-α-苄基、δ-丁内酯基、甲氧羰氧甲基、苯基、甲亚磺酰甲基、β-吗啉代乙基、二烷基氨乙基、及二烷基氨羰氧甲基,其中R2选自H和低级烷基;A选自S、O、SO、SO2和CH2;而Z′和Z″是发荧光的供体和猝灭部份的接头。
接头Z′和Z″用于将发荧光的供体与猝灭体部份连接于头孢菌素衍生骨架上,并能方便通式I化合物的合成。通式I中,Z′可以代表一个直接连于骨架上的键,此外,作为Z′使用的适宜之接头包括(但不限于)下述结构-(CH2)nCONR2(CH2)m-,-(CH2)nNR2CO(CH2)m-,-(CH2)n-NR3CONR2(CH2)m-,-(CH2)nNR3CSNR2(CH2)m-,-(CH2)nCONR3(CH2)pCONR2(CH2)m-,-(CH2)n-,-(CH2)nNR3CO(CH2)pS(CH2)m-,-(CH2)nS(CH2)m-,-(CH2)nO(CH2)m-,-(CH2)nNR2(CH2)m-,-(CH2)nSO2NR2(CH2)m-,-(CH2)nCO2(CH2)m-,
其中R2和n同上面定义同;R3选自氢和低级烷基;m和p各自独立地选自0和1-4的整数。对于Z′来说特别优选其中n和m是0,也优选其中R2是H的Z′。
用于Y部份的适宜接头Z″包括(但不限于)直接连于染料生色团杂原子(如O,N,或S)上的键,或下述结构-O(CH2)n-,-S(CH2)n-,-NR2(CH2)n-,-N+R22(CH2)n-,-OCONR2(CH2)n-,-O2C(CH2)n-,-SCSNR2(CH2)n-,-SCSO(CH2)n-,-S(CH2)nCONR2(CH2)m,-S(CH2)nNR2CO(CH2)m,和
其中R2,n和m定义同上,且m是0-4的整数。特别优选的Z″是S(CH2)n,尤其优选H。
优选R′包括H和甲基,特别优选H。优选R″包括H和乙酰氧甲基。优选R2是H。优选A是-S-。
优选情况下,本发明化合物是透膜的。特别优选的是其中X和Y中至少一个含至少一个酰化的芳香羟基、酰化胺、或烷基化芳羟基(其中酰基含1-5个碳原子,而烷基选自-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)Oalk、低级酰氧-α-苄基、及δ-丁内酯基,其中alk是1-4碳低级烷基)的化合物。特别优选X和Y中至少一个含至少一个酰化的芳羟基(其中酰基是乙酰基、正丙酰基或正丁酰基)的化合物。也特别优选X和Y中至少一个在芳羟基上含乙酰氧甲基的化合物。
另一优选情况下,猝灭体或受体是式VIII-XII的荧光素、对甲氨基酚、或若丹明。优选的是其中供体是式VIII荧光素,而猝灭体或受体是式VIII-XII对甲氨基酚或若丹明的化合物。还优选的是其中供体是式VIII荧光素,而猝灭体或受体是式VIII四卤荧光素(其中Ra、Rb、Rc及Rd各自独立地是Br或Cl)的化合物。还优选的是其中猝灭体或受体是式VIII、IX和XI对甲氨基酚的化合物。另一组优选的该化合物是其中猝灭体或受体是式VIII、X和XII若丹明的化合物。
又一优选情况下,供体是式II-VII香豆素,而猝灭体或受体是式VIII-XII、XLVII、或VLVII荧光素、对甲氨基酚或若丹明,和其产生荧光的透膜衍生物。特别优选的是带有式VIII荧光素猝灭体/受体的化合物。尤其优选的是其中香豆素是7-羟基香豆素或7-羟基-6-氯香豆素,而荧光素受体是荧光素或二氯荧光素的化合物。
本领域技术人员很容易认识到荧光共振能量转移的效率,取决于供体荧光团的荧光量子产率、供体-受体之距离,以及供体荧光发射和受体吸收的叠合积分。当带有高荧光量子产率(优选接近100%)的供体荧光团,与同供体发射相一致波长处具大消光系数的受体相匹配时,能量转移效率最高。有关荧光能量转移由上述参数决定的问题,已有文献报道过[Forster,T.(1948)Ann.Physik255-75;Lakowicz,JR.,Principles of Fluorescence Spectroscopy,New YorkPlenumPress(1983);Herman,B.,Resonance energy transfer microscopy,inFluorescence Microscopy of Living Cells in Culture,PartB,Methods in Cell Biology,Vol 30,ed.Taylor,D.L.& Wang,Y.-L.,San DiegoAcademic Press(1989),pp.219-243;Turro,N.J.,Modern Molecular Photochemistry,Menlo Part;Benjamin/Cummings Publishing Co.,Inc.(1978),pp.296-361],且光谱叠合积分表对本领域专业人员来说很易获得[例如Berlman,I.B.Energy transfer parameters of aromatic compounds,AcademicPress,New York and London(1973)]。荧光共振能量转移(FRET)效率为50%时的供体荧光团和受体染料之间的距离称之为Ro,并可从光谱叠合积分计算出。常被用于蛋白中距离测量的供体-受体对,荧光素-四甲基若丹明,其距离Ro是约50-70[dos Remedios,C.G.等人,(1987)J.Muscle Research and Cell Motility 897-117]。该对中、能量转移超过90%时的距离约为45。当连接于头孢菌素骨架上时,供体和受体之间的距离在10-20范围内,取决于所用的接头和生色团的大小。对于20距离而言,若要使供体转移其90%能量至受体,生色团对不得不有30以上的计算Ro值,结果比供体荧光90%猝灭要好。由β-内酰胺酶裂解此种头孢菌素可减缓猝灭,并使得供体荧光效率提高10倍以上。因此,很明显,按照本发明于本文中之指导,为使用适当的供体-受体对而进行鉴定,是本领域专业人员的基本日常工作。
为测量活细胞胞质中的β-内酰胺酶活性,当对于较大化合物来说,底物传送成为问题时,下文所述较小分子量的生色团,一般来说优于较大分子量者。大分子,尤其是约1200 dalton以上的分子,也比小分子更倾向于与细胞成份结合,由此从β-内酰胺酶接触及裂解,至少能除去某些大分子。
适宜于应用的生色团,其X和Y对于本领域专业人员来说是已知的。宜于使用的特定类生色团的一般结构,其X和Y在下面介绍,通式II-XXXIV化合物,是通式I化合物中,作为特别适宜的供体部份之基础的荧光团典型例。该通式化合物中作为受体部份基础所用的适宜生色团包括(但不限于)通式II-LIV化合物。通式XXXV-LIV生色团通常不会有效地再发射。
香豆素类及相关染料
呫吨染料(包括荧光素类对甲氨基酚类若丹明类)
试卤灵类
花青染料
三氟硼二氮吲丹参染料 双鬃类
吖啶类
异吲哚类
丹酰染料
氨基邻苯二甲酰肼类(鲁米诺和异鲁米诺衍生物)
氨基邻苯二甲酸亚胺类
氨基萘二甲酰亚胺类 氨基苯并呋喃类
氨基喹啉类 二氰基氢醌类
靛兰染料 蒽醌染料
多次甲基染料
硝基染料及氰基衍生物
醌染料
呫吨染料
二氰乙烯基及三氰乙烯基染料
茚苯胺染料(茚三酮衍生物) 二和三苯基甲烷染料
通式II-LVI化合物优选实施方案中a和a′各自独立地是H或一个连接点(即染料部份连接于通式I核心结构之处);E选自H、OH、ORk和NRgRh;G选自O和N+Rg′Rh′;L和L′各自独立地选自CH和N;M选自H、Mg、Al、Si、Zn、和Cu;Q选自O、S、C(CH3)2和NRg;Q′选自O、CH2、C(CH3)2、NRk和SO2;T选自O和NRk;W和W′各自独立地选自O、S、Se和NH;Ra、Rb、Rc和Rd各自独立地选自一个连接点、H、卤素和低级烷基;Re选自一个连接点、H、低级烷基、(CH2)nCO2H、(CH2)nCHaCO2H、CHa(CH2)nCO2H、(CH2)nCOa、CH=CHCOa、
Rf、Rg、Rg′、Rh、Rh′和Rk各自独立地选自一个连接点、H、低级烷基和CH2(CH2)na;Ri选自一个连接点、H、卤素、低级烷基、CN、CF3、苯基、CO2H和CONRg′Rh′;Rj选自一个连接点、H、卤素、低级烷基、CN、CF3、苯基、CH2CO2H、CH2CONRg′Rh′;Rl和Rr各自独立地选自一个连接点、H、低级烷基,
Rm、Rn、Rp和Rq各自独立地选自一个连接点、H、低级烷基和苯基;Ro选自一个连接点、H和低级烷基;Rs和Rt各自独立地选自一个连接点、H、卤素、低级烷基和ORf;Ru和Rv各自独立地选自一个连接点、H、卤素、CN、和NO2;各Rw独立地选自一个连接点、H、COO-、SO3-和PO32-;Ln选自Eu3+,Ln3+和Sm3+;Chel是至少有6个,优选8-10个供体原子,可以面对4-6直径的空洞的多齿螯合体,它可以是或不是大环,包括一个吸收300-400nm波长的生色团,包括一个连接点,由此Chel可以与Z′或Z″共轭。一种适宜Chel部份是铕三(联吡啶)穴状配体。在通式XXXIX蒽醌生色团中,1-8各位可以携带取代基H或E,或作为一个连接点。
铕三(联吡啶)穴状配体供体适宜于与式XV-XVII、XXXVI、XLVI-XLVII、LIV和LVI的受体配对。铽三(联吡啶)穴状配体供体则适宜于与式VIII-XVIII、XXXVI-XLI、XLV-LIV和LVI受体配对。
铕三(联吡啶)穴状配体/酞菁之供体/受体对,对于期望通过靠近远红外区的能量发射来测定β-内酰胺酶活性时,是特别有意义的。
许多应用中,希望式I化合物衍生化,使之属疏水性,且能透过细胞膜。该衍生基应在细胞内进行水解,再产生通式I化合物,并使之陷入细胞内。为此目的,优选该染料结构中的酚羟基或游离胺以C1-C4酰基(如甲酰基,乙酰基,正丁酰基)酰基化,或转换成各种其它酯和碳酸酯[例如Bundgaard,H.,在Desigh of Prodrugs,ElsevierScience Publishers(1985),Chapter I,page 3 et seq.中所述]。也可以用1-(酰氧)烷基,酰硫甲基,酰氧-α-苄基,δ-丁内酯基,或甲氧羰氧甲基使酚类烷基化。对于荧光素类对甲氨基酚类及若丹明类来说,该处理是特别有用的,因为该处理结果使这些染料中的酸部份转换成螺甾内酯。为促进膜渗透性,头孢菌素4位上的羧基应以1-(酰氧)烷基、酰硫甲基、乙酰氧基-α-苄基、δ-丁内酯基、甲氧羰氧甲基、苯基、甲亚磺酰甲基、β-吗啉代乙基、2-(二甲氨基)乙基、2(二乙氨基)乙基、或二烷氨基羰氧甲基酯化,正如Ferres,H.(1980)Chem.Ind.1980435-440所介绍的。羧基的最优选酯化基团是乙酰氧甲基。
合成式I化合物的一般方法在下面叙述。正如本领域普通专业人员所意识到的,下面的方法可用于各种各样衍生物,同时其它合成方法也是可能的。
这些化合物中,RG是亲核反应基(例如碘乙酰胺、异氰酸酯、异硫代氰酸酯等等);Nu是亲核基(例如-SH,-NH2,-OH等);Ro是氢或酯基(如二苯甲酯,叔丁酯等);Nuo是二齿亲核试剂(如HS-,HSCH2CH2NH2、黄原酸酯等);Hal是卤素(例如氯、溴、或碘)。
头孢菌素初始原料,是市售头孢菌素衍生物7-氨基头孢烷酸,或7-氨基-3_氯头孢烷酸,以其二苯甲酯或叔丁酯(Ro)的形式购得。在偶合携带亲核反应基(RG)的染料A和B之前,有时将其酚和游离胺残基酯化或烷基化是有益的。连接染料A和染料B的次序取决于所选择的反应试剂。借助烷基酰胺接头,染料A连接于头孢菌素上。可将带有亲核反应基(RG)的染料A与双官能团脂肪酸(例如氨基-、巯基-或羟烷基酸)反应,并使该酸与头孢菌素7-胺偶合来完成该连接反应(路线1)。此外,将携带亲核基(如胺或硫醇)的染料A,与卤代烷基酸反应,且将该酸与头孢菌素7-胺偶合(路线2)。该两路线中,两次反应的次序可以颠倒。含脂肪酸的染料A可直接与头孢菌素偶合(路线3)。通过直接置换离去基团(LG),携带亲核取代基的染料B可以偶合于头孢菌素的3′位(路线4)。携带亲核反应基的染料B可以与二齿亲核试剂反应,然后通过置换离去基团(LG)而与头孢菌素偶连(路线5),该反应次序可以颠倒。
某些情况下,可能必需将二齿亲核基团之一个掩蔽后,与之进行第一步反应。然后除去保护基后进行第二步偶连反应。两种染料连接之后,将头孢菌素酯裂解(Ro不是H的情况)。为制得透膜底物,然后将该酸再酯化成可在哺乳动物细胞的胞质环境下脱保护基的酯。对于不涉及细胞胞质的应用来说应将任何用于掩蔽染料上酚类和游离胺类的保留酰基和烷基除去。
适宜于本发明使用的供体类及受体类优选组合示于表1。使用这些组合的式I化合物实施方案中,出现荧光共振能量转移(FRET)。当然,正如本领域专业人员很容易理解的,许多其它的供体和受体/猝灭体(包括再发射的及无再发射的)组合也适宜于本发明使用。一般来说,适宜的供体和受体对,是供体的发射光谱明显与受体的消光光谱叠合者。
表1供体II-VIII,XIX VII-XIV,XV-XVI,LV受体 -XXI,XXIII-XVII,XXIIXXXIVII-VIII,XIX FRET-XXI,XXIII-XXXIVVII-XIV, FRET FRETXVII,XXIIXV-XVII FRET FRET FRETXL-XLV, FRET FRETXLVII-LIIXXXV-XXXIX, FRET FRET FRETXLVI-XLVII,LIII-LIV,LVI特别有意义的发荧光的供体部份包括香豆素类和荧光素类。特别有意义的猝灭体包括荧光素类、对甲氨基酚类和若丹明类。有意义的组合包括使用香豆素供体与荧光素,对甲氨基酚或若丹明猝灭剂,以及荧光素供体与对甲氨基酚或若丹明猝灭体。有意义的特别组合包括下面情况香豆素(例如7-羟基香豆素)或其氯代衍生物与荧光素或其二氯代衍生物;荧光素与四溴荧光素或四氯荧光素;荧光素与对甲氨基酚衍生物;以及若丹明与荧光素。
铕螯合供体适宜与式XV-XVII、XXXVI、XLVI-XLVII、LIV和LVI的受体配对。铽螯合供体适宜与式VIII-XVIII、XXXVI-XLI、XLV-LIV和LVI受体配对。因其很窄的发射峰,和其微秒至毫秒级激发态寿命,铕和铽螯合供体可能特别有用,这种情况下,可以很容易与本底荧光区别开,并且以毫微秒或更短的激发态寿命发散。
许多应用中,期望式I化合物衍生化,而使其更具疏水性和穿过细胞膜的渗透性。衍生基团应在细胞内进行水解,再生成式I化合物,并陷入细胞之内。为此目的,优选染料结构中的任何酚羟基或游离胺以C1-C4酰基如(甲酰基,乙酰基,正丁酰基)酰基化,或转换成各种其它酯和碳酸酯[例如,Bundgaard,H.,Design of Prodrugs,ElsevierScience Publishers(1985),Chapter 1,page 3 et seq.所述]。酚也可以用1-(酰氧)烷基、酰硫甲基、乙酰氧-α-苄基、δ-丁内酯基、或甲氧羰氧甲基进行烷基化处理。在荧光素类、对甲氨基酚类和若丹明类的情况下,游离酚基酰基化或烷基化是特别有用的,因为该处理结果使这些染料的酸部份转化成螺甾内酯。为促进膜渗透性,头孢菌素4位上的羧基应以1-(酰氧)烷基、酰硫甲基、酰氧-α-苄基、δ-丁内酯基、甲氧羰氧甲基、苯基、甲亚磺酰甲基、β-吗啉代乙基、2-(二甲氨基)乙基、2-(二乙氨基)乙基、或二烷氨基羰氧甲基酯化。这正如Ferres,H.(1980)Chem.Ind.1980435-440所介绍的。羧基的最优选酯化基团是乙酰氧甲基。
头孢菌素骨架作为两种染料之间的可裂解接头。裂解之后它提供保持两染料之一在细胞内所需的电荷。染料的选择方式是一种染料以某波长吸收光(猝灭体或受体荧光团),则另一染料以该波长发射光(供体荧光团)。在完整的头孢菌素中,两染料相互靠近。当激发供体荧光团时,可以观察到荧光共振能量转移(FRET)从供体到受体,而不是供体荧光[Forster,T.,Ann.Physik 255-75(1948)]。如果受体是非发荧光染料,则能量被给与溶剂,供体荧光猝灭。若受体本身是发荧光染料,则以受体的发射波长再发射荧光。在水之类的极性溶剂中,疏水供体和受体荧光团,当由短的弹性接头分开时,可以叠合在一起。由于基态时的此种共生,形成“黑色复合物”[Yaron,A.等人,AnalBiochem.95228-235(1979)]。该复合物情况下,两种荧光团均不发射光,使两种染料的荧光均猝灭[Bojarski,C.和Sienicki,K.Energy transfer and migration in fluorescent solutions.见Photochemistry and Photophysics,edited by Rabek,J.F.BocaRatonCRC Press,Inc.,1990,pp.1-57]。无论那种情况下,荧光的很大变化随β-内酰胺裂解而出现,这一现象可用来测定β-内酰胺酶活性。当两种染料扩散开时,叠合和能量转移则停止。携带发荧光的供体和受体的头孢菌素本文中称为FRET-头孢菌素。
荧光共振能量转移被用作测量蛋白和肽的光谱尺度,因其在10-100范围内有效。该能量转移与供体和受体之间距离的6次方倒数成正比。其效率越高,供体发射和受体吸收叠合越好,并且供体的荧光寿命越长(不存在受体时)。在10-20距离范围,FRET可能非常有效。
头孢菌素中,供体和受体的连接距离大于10,且最小为10个键长(假如该距离包括7位和3位间的最小间隔)。如果正确选择供体受体对,超过该距离是很有效的。有利的是FRET-头孢菌素中,连接染料的7-氨基保持与头孢菌素裂解的极性水解产物相连,使其陷于细胞胞质中。虽然在某些例子中受体可以出现在该位置,但该位最好由供体荧光团占据。一旦裂解,由于失去猝灭体染料而荧光增强。
受体荧光团一般由赋予底物对亲核攻击保持最大稳定性的接头连接。优选接头是硫醚键(-S-),它很稳定,且由于诱导效应,降低了β-内酰胺环对亲核试剂的反应活性[Page,M.I.,Adv.Phys.OrgChem.23165-270(1987)]。此外,水解所释放的游离硫醇或硫醇盐通常能猝灭所连接的荧光团,增加了随水解出现的所希望的荧光较大变化。
本发明的产生荧光的底物最初是无色的,且在细胞外不发荧光。设计容易穿过细胞膜进入胞质中的底物,在胞质中,它们由内源非特异性酯酶转换成发荧光化合物,并因其电荷而保持陷入细胞中。在完整的分子中,当底物被激发时,出现荧光能量转移而导致特定波长的荧光。β-内酰胺环经内酰胺酶裂解后,接着随荧光能量转移的消失荧光素部份排出。激发经过修饰的底物,便产生不同波长之荧光。
本发明的检测体系还提供分离和克隆选择稳定转染细胞系的便利而快速之方法,所述稳定转染细胞系含报告基因,并且具有可赋予转染作用的所需特性,例如,转染受体激活之后,带有来自高比较分离细胞的高信号-噪声比的荧光信号应答。目前,为克隆选择来自原始群体经满意转染的基因工程细胞的方法,主要做法如下菌落平皿接种复制,对一组菌落进行试验,以视觉选择较好克隆,用移液管手工分离优选的克隆复制品,并继续细胞培养。该方法耗时又耗力,为得到一种适宜于药物筛选检测有用克隆,往往需要几月时间。并且,手工选择及保留超过几百个克隆是很困难的。使用本发明检测,来自细胞β-内酰胺酶报告基因系统的所需信号可以保留在活的及可存活细胞中。因为单个细胞可以被检测和保持存活以进一步复制,所以并不需要平皿接种复制。因此,从原始转染细胞群体,使用荧光激活细胞分类器(例如Becton DickinsonFACS Vantage TM)之类的自动化仪器,我们可以很快挑选出带有最好荧光信号的几个个体活细胞。然后将挑选出的细胞汇集起来培养和繁殖,产生对检测和药物筛选具所需性质的克隆细胞系。
正如对本领域专业人员来说显而易见的,根据本发明的新型底物组合及适宜的β-内酰胺酶,可以应用于很广泛的不同检测系统(例如US专利4740459所述)。尤其是本发明的产生荧光底物能在广泛地不同生物学重要环境下,例如人血清,细胞胞质和胞内空间中,鉴定β-内酰胺酶活性,这有利于胞质或分泌β-内酰胺酶的测定。
此外,任何目标蛋白的表达,可以通过将编码该目标蛋白的基因与β-内酰胺酶基因融合来进行鉴定,可通过免疫染色,荧光或电子显微镜来对其定位。例如,通过使用本发明底物,可以在细胞器腔内检测β-内酰胺酶融合蛋白;仅仅是含融合蛋白的亚细胞腔以裂解底物的特征波长发荧光,而所有其它的均以完整分子之特征波长发荧光。
无需采用特殊手段,例如冷却,完整底物及裂解底物均很好地保留在细胞中。通过荧光显微镜,使用正常色彩观察或照相胶片,可见其色彩变化(即使在个别小哺乳动物细胞内)采用常规数字成像处理技术,该荧光信号可以被定量和进一步扩大。而且,因为基因激活不是通过信号强度变化,而是通过色彩改变,或不同波长的两强度之比的变化来检测,因此本发明的测试相对地与许多人为因素无关,例如细胞泄漏的可变性,底物之量,发光强度,检测的绝对灵敏度,以及染料的漂白作用等。
已制备出各种不同底物(例如通式17、22和25化合物),并获得其β-内酰胺酶裂解前后的发射光谱。因其与血清和细胞蛋白很强地相结合,这些底物最初用于体外β-内酰胺酶检测。由于其疏水性,荧光团叠合,导致完整底物中的荧光消失。β-内酰胺酶裂解底物,并缓解叠合作用,则发出荧光。头孢菌素上供体和受体荧光团位置颠倒的化合物(如化合物11、实施例1)表现出相似的荧光特性。
本发明的一个优选实施方案中,通式I化合物与通式2化合物偶合形成通式3化合物。使用二环己基碳化二亚胺将市售化合物4与化合物3偶合,该产物再与式5化合物反应,得到式6化合物。将式6化合物脱保护基,便得到式7化合物。将例举的实施方案中,酰基是乙酰基、RX是Me和RYH(a),或酰基是丁酰基,RX是H和RYCl(b),RZ是三甲基甲硅烷基或苄基。
通式6化合物被加以修饰后获得透膜衍生物,该透膜衍生物在完整细胞中,由于内源非特异性酯酶作用,被转换为相应发荧光的通式7化合物。当该化合物于约400nm波长处被激发时这些分子中,出现从7-羟基香豆素部份到荧光素部份的荧光共振能量转移,产生绿色荧光。β-内酰胺环裂解之后,7-羟基香豆素部份的激发产生兰色荧光。在例举的实施方案中,观察到约450nm波长处荧光增强25倍,而515nm波长处却减弱3-4倍。监测基因表达本发明的底物可使用β-内酰胺酶作为报告基因,来监测一组表达控制序列的表达。一方面,本发明通过使用β-内酰胺酶作为报告基因,提供监测从一组表达控制序列进行的基因表达的方法。提供以重组核酸分子转染过的细胞,所述核酸分子含有按人工操作方式连接于编码β-内酰胺酶表达的核酸序列上的表达控制序列。重组核酸本文中所使用的“核酸分子”一词既包括DNA也包括RNA分子。应明确,当说一个核酸分子有一种DNA序列时,这也包括有相应RNA序列(其中“U”取代“T”)的RNA分子。所谓“重组核酸分子”意指非天然产生的核酸分子,且包括非天然连接在一起的两个核苷酸序列。重组核酸分子由人工组合产生,例如采用基因工程技术或化学合成技术。
编码β-内酰胺酶的核酸,可通过本领域已知方法获得,例如使用基于图1 DNA序列的引物,进行cDNA聚合酶链反应。该PCR法例如在US专利4683195;Mullis等人(1987)Cold Spring HarborSymp.Quant.Biol.51263;和Erlish ed.PCR Technology(Stockton Press,NY 1989)等文献中均有介绍。
构建表达载体,和在转染细胞中的基因表达涉及也属本领域已知的分子克隆技术之应用。见Sambrook等人,Molecular Cloning--ALaboratory Manual,Cold Spring Harbor Iaboratory,ColdSpring Harbor,NY,(1989)and Current Protocols in MolecularBiology,F.M.Ausubel等人,eds.,(Current Protocols,a jointventure between Greene Publishing Associates,Inc.and JohnWiley & Sons,Inc.,(most recent Supplement))。
用于转染细胞,带有编码所研究的多肽表达之序列的核酸,一般是表达载体的形成,该表达载体包括按人工操作方式连接于编码多肽表达的核苷酸序列上的表达控制序列。本文中所谓“编码多肽表达”的核苷酸序列意指一种序列,当mRNA转录和转译时便产生多肽。如本领域专业人员所知,该序列也包括编码相同氨基酸序列的所有简并核酸序列。这可以包括含内含子之类的序列。本文中所谓“表达控制序列”指按人工操作方式连接于调节核酸表达序列上的核酸序列。表达控制序列被“按人工操作方式连接”于核酸序列上,此时该表达控制序列控制并调节核酸序列的转录,以及适宜情况下的核酸转译。因此,该表达控制序列可以包括适当的启动子、增强子、转录终止子、起始密码子(即ATG于编码蛋白的基因之前)、内含子的拼接信号、维持基因正确阅读框架允许mRNA适当转译的元件,以及终止密码子等。
该重组核酸可以合并入含按人工操作方式连接于该重组核酸上的表达控制序列的表达载体内。该表达载体适宜于在掺入适当启动子,复制序列,标志等的原核细胞或真核细胞中发挥作用。
该重组核酸用于转染含按人工操作方式连接于编码β-内酰胺酶的核苷酸序列上的表达控制序列之细胞。编码的β-内酰胺酶可以是本领域已知的或本文所介绍的任何β-内酰胺酶。例如包括图7所示酶。
本发明提供包含表达控制序列的新型重组核酸分子,所述表达控制序列适宜于在非哺乳动物真核细胞中发挥作用,按人工操作方式连接于编码胞质β-内酰胺酶表达的核苷酸序列上。本文中所谓“胞质β-内酰胺酶”指缺失从细胞膜产生分泌作用的氨基酸序列的β-内酰胺酶,例如缺失信号序列。比如在图7序列1的多肽中,该信号序列由氨基酸Met-Ser置换。因此,一旦表达,该β-内酰胺酶保留在细胞中。
本发明提供包括表达控制序列的重组体核酸分子,所述表达控制序列适宜于在哺乳动物真核细胞中发挥作用,按人工操作方式连接于编码β-内酰胺酶表达的核苷酸序列上。
进一步优选核糖体结合位点和编码β-内酰胺酶表达的核苷酸序列含有由哺乳动物细胞优选的序列,此种序列可改善哺乳动物细胞中β-内酰胺酶的表达。在哺乳动物细胞中表达的优选序列,例如由Kozak,M.,J.Cell Biol.108229-241(1989)所述序列,本文称其为“Kozak序列”。图7序列3中,胞质β-内酰胺酶的核苷酸序列含有核苷酸-9至4(GGTACCACCATGA)Kozak序列。
当应用于哺乳动物细胞中时,该表达控制序列适宜于在哺乳动物细胞中发挥作用。本发明的方法,对于试验从任何所需的表达控制序列组所进行的表达很有用。特别是,本发明对于试验从可诱导表达控制序列所进行的表达有用。本文中所谓“可诱导表达控制序列”,意指通过提高或降低其按可操作方式连接之序列的表达来应答生物化学信号的表达控制序列。例如,对于由类固醇激素诱导的基因来说,该表达控制序列包括激素应答元件。类固醇激素受体结合该应答元件上,诱导按人工操作方式连接于这些表达控制序列上的基因之转录。具体地说,许多基因和可诱导基因的表达控制序列已被分离出,在本领域属已知的。带有组成型活性表达控制序列,于本发明也是很有用的。
将转染细胞置于能使β-内酰胺酶从表达控制序列表达的试验条件下培养。将细胞或细胞提取物,在选择试验条件下与本发明β-内酰胺酶底物接触,并维持一段时间,使得通过任何β-内酰胺酶表达而产生底物催化作用。然后该样品的供体部份以适当的紫外光或可见光波长激发。测定样品中荧光共振能量转移的程度。
如果该细胞不表达β-内酰胺酶,则被裂解的底物很少,FRET在该细胞中的效能很高,细胞或来自细胞的样品之荧光特性将反映该效能。假如该细胞中表达了大量β-内酰胺酶,那么大部份底物被裂解,该情况下,TRET的效能很低,反映了与串连的发荧光蛋白构件合成速度有关的酶裂解量大或效率高。一方面,该方法可用来比较突变细胞,鉴定哪种处理具较大、或较小的酶促活性。此种细胞可以由荧光细胞分类器根据荧光来分拣。
同时,在使用基于报告基因的检测,筛选样品,或汇集样品[例如化合物(组合的或合成的),天然产物提取物,或海生动物提取物],以鉴定作为细胞给与信号或激活的激动剂、逆激动剂或拮抗剂等有效候选药物之领域中,于不同调节元件/启动子控制下的基因工程表达β-内酰胺酶的细胞(优选哺乳动物)组合,以及本发明的新型β-内酰胺酶底物化合物之应用,将提供超过已知报告基因(包括,但不限于氯霉素乙酰转移酶、荧火虫荧光素酶、细胞荧光素酶、Vargula荧光素酶、多管水母素、β-半乳糖苷酶、碱性磷酸酶)及其所需底物的明显优点,这对于该领域专业人员来说是显而易见的。
通过选择适当调节元件和启动子,控制β-内酰胺酶的表达,可以构建检测或测定试验化合物引起或抑制胞内激素受体功能性应答之能力的测试手段。这些包括应答由盐皮质激素、包括地塞米松[J.SteroidBiochem.Molec.Biol.Vol.49,No.1 1994 pp 31-3]、糖皮质激素、和甲状腺激素受体[如US专利5071773]等引起诱导的表达控制序列。其它此种胞内受体包括视网膜状物、维生素D3和维生素A[Leukemiavol 8,Supp.3,1994 ppS1-S10;Nature Vol.374,1995,p.118-119;Seminars in Cell Biol.,Vol.5,1994,p.95-103]。借助使用适当的启动子/增强子元件能赋予特异性。此外,通过选择其它调节元件或特异性启动子,可以鉴定影响特异基因表达的药物。此类药物可以作用于激酶、转录因子等分子,或信号转导物及转录激活物之类的分子[Science Vol.264,1994,p1415-1421;Mol.Cell Biol.,Vol.16,1996,p369-375]。属于有效药物靶的特异性微生物或病毒启动子,也可在此种试验体系中被检测。
也可通过选择c-fos或c-jun之类的启动子[US专利5436128;Proc.Natl.Acad.Sci.Vol.88,1991,pp 5665-5669],或含应答第二信使基因的调节元件[Oncogene,6745-751(1991)](包括环AMP应答元件,应答蛋白激酶C激活作用的佛波醇酯应答元件、应答蛋白激酶C-依赖性及非依赖性途径的血清应答元件,和应答钙的激活T-细胞应答元件的核心因子),控制β-内酰胺酶表达的启动子构件,来构建为检测或测定调整细胞表面受体的物质或物质混合物的测试体系,所述受体包括(但不限于)下述类别促红细胞生长素、生长激素、干扰素、和白细胞介素(除IL-8)及菌落刺激因子之类的细胞因子总科受体;降钙素、肾上腺素或促胃液激素之类的对激素的G-蛋白偶合受体[US专利5436128];Stomatostatm或前列腺素之类的Pancrine或autocrine介体;降肾上腺素、多巴胺、5-羟色胺、或乙酰胆碱之类的神经递质;胰岛素生长因子,神经生长因子[US专利5436128]之类的酪氨酸激酶受体。并且,可以构建鉴定调整电压开启或配位体开启离子通道的物质之测试法,该调整改变第二信使,尤其是钙的细胞浓度(US5436128)。使用固有表达所研究的启动子、受体或离子通道的细胞,或者引入经基因工程处理的适当蛋白之细胞也可构建该检测法。
表达控制序列也可以是应答调整细胞表面受体的物质或调整胞内受体之物质的表达控制序列。
为测定是否某物质或物质混合物能激活胞外或胞内受体,或其它细胞应答,将含有由所需启动子/增强子元件控制的β-内酰胺酶之细胞与一种或多种试验物质一起培养,然后加入底物,一定时间之后,测定对本发明所选择化合物专用的一个或二个激发-发射对波长处的荧光信号(例如化合物CCF2相应波长对为接近405nm和接近450nm,以及接近405nm和近510nm)。该荧光测定结果与非药物处理的对照样品进行比较,若可能的话,再与带有已知抑制剂及已知活化剂的对照样品进行比较。使用该试验孔所测得荧光信号与非药品处理孔测得之信号的比值,来确定任意活性药物的影响。该测试在含96或更多孔的微滴平板上,或在不带分隔空间,例如胶状基质或湿性膜环境的测试体系中进行。该检测可以例如通过微滴平板荧光计(如Millipore Cytofluor)或在能分析一定表面积上的一个或多个孔,或者一个或多个测试点的成像装置(如由Astromed提供的)上进行。维持底物在活细胞胞质中的能力是有益的,因为它可使得来自测试介质中生色或猝灭物质的信号干扰降低。而且,从本发明化合物例如CCF2产生的荧光信号,可以很容易地在单个细胞中检测出,这样使得测试小型化,且每个表面增加了试验次数。小型化测试也提高了成像检测体系的生产量,因为在成像面可以有更多的样品。
本发明的测试系统还提供分离和克隆选择稳定转染细胞系的有利且快速的方法,所述转染细胞系含有报告基因,且具有转染作用欲赋予的所需特性,例如转染受体激活之后,来自高比例分离细胞的高信噪比(至少10∶1)荧光信号应答。目前从最初以所研究载体转染的群体中,克隆选择满意的转染基因工程细胞的方法,主要由手工方式进行,包括几个回合的显微分析、视觉挑选较好克隆、手工以移液管分离出克隆、并延长细胞培养。该方法费力又费时,为得到适宜于药品筛选测试的有用克隆,可能需要几个月时间。而且,要手工选择和保留几百个以上的克隆是很困难的。使用本发明测试法,来自细胞β-内酰胺酶报告基因系统的所需信号可以保留在活的及能存活的细胞中。这样,我们可以使用荧光激活细胞分类器(如Becton Dickinson FACS Vantage)之类的自动仪器,从最初转染细胞群体中,很快挑选出这几个具有最佳荧光信号的活细胞。然后,将挑选出的细胞汇集起来加以培养和繁殖,产生带有测试和药品筛选所需特性的克隆细胞系。
另外,使用本发明底物,可以很容易地检测出对β-内酰胺抗生素的细菌抗性的存在(例如在人血清、脓、或尿中)。只有当存在活性β-内酰胺酶时,才有从完整分子的荧光光谱到裂解产物的荧光光谱的特征改变。就其对人血清的稳定性而言,本发明的底物超过现有技术的生色底物Nitrocephin和PADAC。新的底物比生色底物CENTA也更为灵敏,因为其经受来自人血清的小得多的本底光谱信号,以及较低的荧光对吸收的检测限制。
本发明参考所附实施例可以较好地理解,所述实施例仅仅为举例说明之目的,正如所附权利要求所定义的,实施例不能构成对本发明范围的任何意义上的限制。测定通过激发的构建体的任何光谱或荧光寿命特征,可以测定FRET的质量,例如,测定来自供体的荧光信号强度、来自受体的荧光信号强度、靠近受体的发射极大值的荧光振幅与靠近供体的发射极大值的荧光振幅之比值、或供体的激发态寿命。比如,接头的裂解提高了来自供体的荧光强度,而降低了来自受体的荧光强度,降低了来自受体对来自供体的荧光振幅之比,还降低了供体的激发态寿命。
优选情况下,FRET程度的改变作为来自供体和受体部分荧光量比值之变化的函数来测定,即称之为“求出比值法”。底物绝对量的变化,激发强度,及样品中激发波长处的浊度或其它本底吸收,几乎平行地影响来自供体和受体的荧光强度。因此,测两种发射强度之比更为实用,是优选的裂解测量法,而不是单独测定任意一种。
同样,供体部份的激发态寿命与底物的绝对量、激发强度、或浊度或者其它本底吸收无关。此种测定要求具毫微秒时间分辨力的装置,而镧系元素配合物的特殊情况下有所不同,该情况下以微秒至毫秒分辨力足够了。
其它适宜的螯合部分如下述文献所介绍的,Wallarino,L.M.,&Leif,R.C.,US Pat.5,373,093;Sabbatini,N.等人,Pure andApplied Chem.67135-140(1995);Mathis,G.,ClinicalChem.411391-1397(1995);Horiguchi,D.,Chem.Pharm.Bull.42972-975(1994);Takalo,H.等人,BioconjugateChem.5278-282(1994);Saha,A.K.等人,J.Amer.Chem.Soc.11511032(1993);Li,M.&Selvin,P.R.,J.Amer.Chem.Soc.1178132-8138(1995)。
使用荧光计测定样品的荧光。一般情况下,激发射线来自带有原始波长的激发光源,通过激发镜片。该激发镜片使激发射线激发样品。作为回应,样品中的发荧光蛋白发射不同于激发波长的射线。然后收集镜片聚集来自样品的发射。该装置可以包括温度控制器,当扫描时使样品维持于特定温度之中。根据一个实施方案,一种多轴移动平台使盛有多份样品的微滴平板移动,以便使不同的孔固定于曝光位置。该移动平台、温度控制器、自动聚焦装置、以及配合成像和数据收集的电子元件可由专用的程序数字计算机操纵。该计算机也可将测试中收集的数据转化为另一种形式显示出来。
以荧光物质进行的测试法是本领域已知的,在下述文献中有所介绍例如,Lakowicz,J.R.,Principles of Fluorescence Spectroscopy,New YorkPlenum Press(1983);Herman,B.,Resonanceenergy transfer microscopy,见Fluorescence Mioroscopy ofLiving Cells in Culture,Part B,Methods in Cell Biology,vol.30,ed.Taylor,D.L.& Wang,Y.-L.,San DiegoAcademic Press(1989),pp.219-243;Turro,N.J,ModernMolecular Photochemistry,Menlo ParkBenjamin/CummingsPublishing Col,Inc(1978),pp 296-361。
实施例所有的硅胶色谱均采用购自Aldrin的硅胶(Merck,grade 60,230-400目,60)操作。购自J.T.Baker和Bakerbond Octadecyl用于C18反相色谱。溶剂为高压液体色谱级,用于色谱分析是公认的,或用于合成时以活性分子筛(3)加以干燥。
荧光激发和发射光谱在Spex Fluorolog 111或K2荧光计上(ISSChampaigne,IL),用若丹明B量子计数器,以测量其比例的方式来加以测定。荧光能量转移的效率,由以β-内酰胺酶处理时,在供体发射波长处,荧光发射积分之变化来确定。对于荧光显微镜成像法来说,可使用两种不同的成像装置。一种带有匹配于硅增强靶(SIT)相机(Dage-MTI,Michigan City,IN)的倒向荧光显微镜,Zeiss IM-35(Thornwood,NY),Tsien,R.Y.(1986)在有关胞质游离钙浓度荧光测定和光化学处理的新型四羧化螯合物[Optical Methods inCell Physiology,ed.de Weer,P.&Salzberg,B.,New YorkWiley,pp.327-345;Tsien and Harootunian(1990)CellCalcium 1193-109]的文献中有详细介绍。另一种则由连接于倒向荧光显微镜(Zeiss Axiovert)的冷色电荷匹配装置(CCD)相机(Photometrics,Tucson,AZ)组成。
使用市售滤光片(Omega Optical),通过监测供体和受体发射波长处荧光强度之比,来测定荧光共振能量转移。
激发360 DF 40二色性镜390 DCLP或405 DF 15二色性镜420 DRLPO2发射450 DF 65(供体发射)515 EFLP(受体发射)435 EFLP(同时观察供体和受体荧光)实施例1(化合物11)合成带有连接于下述模型的两个染料分子的头孢菌素,以试验其光学特性。
合成第一步是将7-氨基头孢烷酸转换成在3′位带有硫羟基,而7位为氨基的双官能团头孢菌素[Van Heyningen,E.和Brown,C.N.,J.Med.Chem.8174-181(1965);日本专利,Kokai 75/18494,CA85,97320d]。然后使该头孢菌素选择性地与硫醇反应活性染料反应,接着再与胺反应活性染料反应。硫醇反应活性染料5,(6)-碘乙酰氨基荧光素和胺反应活性染料5,(6)-羧基-N,N,N′,N′-四甲基若丹明-琥珀酰亚胺于pH8的二甲基甲酰胺水溶液中与头孢菌素偶联。该产物称为RCF。
在pH 7的磷酸盐缓冲液中,RCF实际上是不发荧光的;而经激发处于它们各自的极大激发状态时,出现生色团叠合作用(即“黑色复合现象”),荧光素和若丹明均不显示明显荧光,用β-内酰胺酶长时间处理之后,β-内酰胺环裂解,便引起两染料荧光再现(图1(a)和1(b))。该实验确证,使用适当的供体-受体对,通过荧光猝灭的消失,人们可以测定能催化水解头孢菌素中β-内酰胺的β-内酰胺酶。
实施例2借助重氮化反应将5-荧光素胺转化成5-巯基荧光素而引入硫代甲基接头,转化成乙基黄原酸酯,再用酸水溶液使该黄原酸酯分解成游离巯基化合物。荧光素的巯基亲核取代溴而与7-溴代乙酰氨基头孢烷酸偶联,而7-溴代乙酰氨基-头孢烷酸由7-氨基头孢烷酸和溴代乙酰溴反应制备,见[Bunnell,C.A.et al.Industrial manufacture ofcephalosporins.InBeta-Lactam Antibiotics for Clinical Use.SeriesClinical Pharmacology Vol.4,edited by Queener,S.F.,Webber,J.A.和Queener,S.W.New YorkM.Dekker,1986,p.255-283]。
为制备7β-[(5-二乙酰基荧光素)硫基]乙酰氨-3-(乙酰氧甲基)-3-头孢烯-4-羧酸(14),通氮气下,将130mg(0.29mmol)二乙酸5-荧光素硫醇酯溶于10ml二甲基甲酰胺中,将其加入到120mg(0.31mmol)7β-溴代乙酰氨基-3-(乙酰氧甲基)-3-头孢烯-4-羧酸在10ml 1M磷酸钾缓冲液中调节pH为8.0的溶液中。于室温下将该溶液搅拌8小时,然后真空除去溶剂。将残留物溶于10ml水中,并用稀磷酸将该溶液pH值小心地调到5。在该点非极性的副产物沉淀出,以离心除去。再酸化至pH 2.7,使标题化合物沉淀出,再离心收集之。用2ml乙醚-四氯甲烷(1∶2)洗涤三次,并真空干燥。1H NMR(CDCl3)δ2.08ppm(s,3H,乙酸酯),δ3.36ppm,3.53ppm(2d,2H,J=17.3Hz,C-2),δ3.87ppm(s,2H,侧链亚甲基),δ4.88ppm,5.16ppm(2d,2H,J=13.6Hz,C-3′),δ4.96ppm(d,1H,J=4.9Hz,C-6),δ5.81ppm(dd,1H,J1=8.2Hz,J2=4.9Hz,C-7),δ6.85ppm(m,4H,呫吨),δ7.10(s,2H,呫吨),δ7.15ppm(d,1H,J=8.2Hz,酰胺),δ7.69ppm(d,1H,J=8.2Hz,苯二甲酸),δ7.91ppm(d,1H,J=8.2Hz,苯二甲酸),δ7.91ppm(d,1H,J=8.2Hz,苯二甲酸),δ8.11ppm(s,1H,苯二甲酸)。
将5-荧光素胺溴化得到5-四溴荧光素胺,再用转化成5-巯基荧光素相似之方法,将其转化成5-巯基四溴荧光素。用二乙酸5-巯基四溴荧光素酯对乙酸头孢菌素酯进行亲核置换反应,产生FRET-头孢菌素,系加以保护的四乙酰基衍生物。
为制备5-四溴荧光素胺,将1.74g(5mmol)5-荧光素胺在30ml冰醋酸中配成悬浮液,加入2.06ml(40mmol,过剩100%)溴。随着溴的加入,该荧光素胺变成溶液,将该溶液于90℃加热6小时,此时开始形成白色沉淀。将一个冰冷却的阱接于烧瓶,以避免溴逸出大气中。过剩的溴蒸馏进液氮冷却的收集烧瓶中回收。将相当于该乙酸溶液体积的水加入该溶液中,沉淀出保留于该溶液中的所有产物。过滤收集沉淀,并溶于1N氢氧化钠水溶液中。加入冰醋酸,5-四溴荧光素胺作为游离胺化合物沉淀出来。将四溴荧光素胺溶于少量氯仿中,并加入甲醇。在旋转蒸发器中浓缩该溶液,得到2.56g(3.85mmol,77%)四溴荧光素胺,为白色细粉(四溴荧光素胺-螺内酯)。
为制备二乙酸5-四溴荧光素-乙基黄原酸酯,将670mg(1mmol)5-四溴荧光素胺在2ml浓硫酸和2ml冰醋酸中搅拌,该悬浮液于冰盐浴中冷却至零下几度(C),使其转变成难于搅拌的稠浆状。在1小时期间,将1ml水中的200mg(2.9mmol)亚硝酸钠滴加进去。再过2小时之后(0℃)慢慢加入20g冰。将烧瓶放于冰冷却的高真空泵上,除去过剩之亚硝气(需小心)。加入饱和的冰冷却碳酸氢钠水溶液,直至固体物溶解变成暗红色溶液为止。加入200mg(1.2mmol)乙基黄原酸钾,形成粉色沉淀(黄原酸5-四溴荧光素重氮盐)。少量氯化镍晶体可催化该重氮盐的转化,随着放出氮。一旦氮的释放停止,则用1N盐酸沉淀出产物。过滤收集该沉淀并真空干燥。于40℃将其用乙酸酐-吡啶(1∶1)处理1小时。真空除去反应剂后,将残留物用硅胶色谱处理,以乙酸乙酯-己烷(1∶4)作洗脱液。所希望之产物首先洗脱出来。得到标题化合物110mg(0.13mmol,13%),为白色粉末。
为制备二乙酸5-四溴荧光素硫醇酯的二硫化物二聚体(即化合物15的二聚体),将110mg(0.13mmol)二乙酸5-四溴荧光素-乙基黄原酸酯在10ml浓(30%)氨水中搅拌,并将该溶液加热至70℃。将空气慢慢鼓泡通入该溶液中,使硫醇于原位氧化成二硫化物。二小时后,在旋转蒸发器中于40℃除去溶剂,用乙酸酐-吡啶(1∶1)处理残留物。真空除去反应剂后,将残留物用硅胶色谱提纯,以乙酸乙酯-己烷(1∶4)作洗脱液。得到90mg(60μmol,91%)标题化合物,为白色粉末。将该化合物溶于甲醇中同时加入乙酸钠、并加入20当量巯基乙醇,该化合物便还原成单体(即化合物15)。2小时之后,将该甲醇溶液倾入3倍体积的5%乙酸水溶液中,离心处理从中收集沉淀出的5-荧光素硫醇单体。将该固体物用水洗涤直至不再有巯基乙醇之气味为止。
二乙酰基5-四溴荧光素硫醇(15)与7β-[(5-二乙酰基荧光素)硫基]乙酰氨基-3-(乙酰氧甲基)-3-头孢烯-4-羧酸(14)偶合,并以乙酰酯酶除酰基,其操作如下将10mg(13μmol)7β-[(5-二乙酰基荧光素)硫基]乙酰氨基-3-(乙酰氧甲基)-3-头孢烯-4-羧酸,和10mg(13μmol)二乙酰基-5 四溴荧光素硫醇溶于200μl无水乙腈中,将该溶液充氩气下密封于玻璃管中。将该管置于84℃(±2℃)油浴中维持16小时。然后切开管子,将溶液移入烧瓶中,真空除去溶剂。该残留物经硅胶闪蒸色谱处理,以乙酸乙酯-甲醇-乙酸(100∶1∶1)作洗脱液。将该产物在50mM磷酸盐缓冲液中(pH7)与橙皮乙酰酯酶,于37℃保温24小时,可去除乙酸酯保护基。用C18反相色谱提纯该脱酰基产物,所用洗脱液是25mM磷酸盐水缓冲液(pH7)和甲醇的阶式梯度液。荧光素副产物用含33%和50%甲醇的洗脱液洗脱,此后所需产物用66%甲醇洗脱。
因为两疏水染料的叠合,该去保护基化合物在磷酸盐缓冲液中显示很小荧光。所保留的荧光是由于荧光共振能量转移(FRET)。该化合物是RTEM β-内酰胺酶的良好底物,称之为FCE。
化合物的裂解增加515nm波长处的荧光约70倍(图2)。该化合物的荧光特性可能归因于一旦甲醇加入溶液时FRET急剧增加使二聚体染料形成的缘故,甲醇破坏了引起荧光团叠合的疏水性相互作用。
实施例3(化合物22)
7-氨基头孢烷酸的3′-乙酸酯被乙基黄原酸酯置换[VanHeyningen and Brown(1965),前述文献],当其用乙酰基肼水溶液反应则水解成游离巯基化合物[日本专利Kokai 75/18494,CA 85,97320d]。在二甲基甲酰胺水溶液中,该巯基与5-溴代乙酰氨基-对甲氨基酚-X反应。该头孢菌素7-胺在二噁烷水溶液中与溴代乙酰溴反应,接着由5-荧光素硫醇取代溴,得到在50mM磷酸盐缓冲液(pH7)实际上不产生荧光的FRET-头孢菌素。该化合物称之为FCRX。
制备5-对甲氨基酚-X-溴代乙酰胺的第一步是合成9-(2′-羧基-4′(5′)硝基-苯甲酰基)-8-羟基久洛尼定和分离其异构体。将10.1g(48mmol,92%纯)4-硝基邻苯二甲酸酐溶于20ml甲苯中(70℃)。加入9.76g(50mmol,97%纯)8-羟基久洛尼定的20ml乙酸乙酯液,将该溶液置于70℃30分钟。将该反应混合物通过硅胶短柱,再用乙酸乙酯洗脱。真空蒸出溶剂,该固体物再溶解于回流最小量的乙酸乙酯中。该苯甲酸间位带有硝基的异构体过夜后从该溶液中结晶出,为橙色晶体(3.47g于第一级份中)。再一次分级结晶后得到纯的该异构体。结晶异构体的1H NMR(CDCl3)δ1.91ppm(m,4H,脂族亚甲基),δ2.73ppm,2.46ppm(2m,4H,苯胺亚甲基),δ3.26ppm(m,4H,苄亚甲基),δ6.32ppm(s,1H,久洛尼定),δ7.53ppm(d,1H,J=8.4Hz,苯二甲酸),δ8.43ppm(dd,J1=8.4Hz,J2=2.2Hz,苯二甲酸),δ8.90ppm(d,1H,J=2.2Hz,苯二甲酸)。
为制备5-对甲氨基酚-X-胺盐酸盐(由相似的若丹明-X命名),将1.91g(5.0mmol)9-(2′-羧基-4′-硝基-苯甲酰基)-8-羟基久洛尼定在5ml浓(96%)硫酸中搅拌。冷却下在15分钟时间内,将700mg(6.4mmol,1.25当量)间苯二酚加入。室温下将该悬浮液搅拌1.5小时,然后激烈搅拌下将其倾入200ml水中。过滤收集紫色沉淀,并借助5.3g(22mmol)非水合硫化钠,将其再溶解于75ml水中。加入2.5g(44.6mmol)无水二硫化钠,并将该溶液回流24小时。冷至室温之后,加入冰醋酸沉淀出产物。过滤收集该固体物,并与100ml半饱和盐酸水溶液一起煮沸。将该溶液通过烧结玻璃过滤,除去硫。于旋转蒸发器中,将该溶液体积浓缩至10ml,加入1体积饱和盐水,再过滤收集沉淀。从回流盐酸中结晶,得到1.78g(3.85mmol,77%)暗红色5-对甲氨基酚-X-胺盐酸盐晶体。5-硝基-对甲氨基酚-X的1H NMR(dDMSO)δ1.90ppm,2.05ppm(2m,4H,脂族亚甲基),δ2.72ppm,3.03ppm(2m,4H,苯胺亚甲基),δ3.66ppm(m,4H,苄亚甲基),δ6.90ppm(s,1H,呫吨),δ6.96ppm(dd,1H,J1=9.0Hz,J2=2.1Hz,呫吨),δ7.11ppm(d,1H,J=9.0Hz,呫吨),δ7.22ppm(d,1H,J=2.1Hz,呫吨),δ7.78ppm(d,1H,J=8.4Hz,苯二甲酸),δ8.70ppm(dd,1H,J1=8.4Hz,J2=2.4Hz,苯二甲酸),δ8.91ppm(d,1H,J=2.4Hz,苯二甲酸)。5-对甲氨基酚-X-胺盐酸盐的1H NMR(CD3OD)δ2.00ppm,2.14ppm(2m,4H,脂族亚甲基),δ2.75ppm,3.11ppm(2m,4H,苯胺亚甲基),δ3.67ppm(m,4H,苄亚甲基),δ6.85ppm(s,1H,呫吨),δ6.94ppm(dd,1H,J1=9.0Hz,J2=2.1Hz,呫吨),δ7.13ppm(d,1H,J=9.0Hz,呫吨),δ7.16ppm(d,1H,J=2.1Hz,呫吨),δ7.55ppm(d,1H,J=8.1Hz,苯二甲酸),δ7.82ppm(dd,1H,J1=8.1Hz,J2=1.9Hz,苯二甲酸),δ8.28ppm(d,1H,J=1.9Hz,苯二甲酸)。
5-对甲氨基酚-X-溴代乙酰胺(18)的制备如下将115mg(0.25mmol)5-对甲氨基酚-X-胺盐酸盐与180mg(2.1mmol)碳酸氢钠一起溶于2ml水-二噁烷(1∶1)中。将该溶液用冰冷却并搅拌下于20分钟时间内加入175μl(2mmol)溴代乙酰溴。该溶液于室温放置1.5小时,然后加入5倍体积水。在旋转蒸发器中除去二噁烷。加入乙酸,产物从保留的水溶液中沉淀出来。滤出沉淀并溶于少量氯仿-甲醇(1∶1)中。溶液中加入硅胶并真空除去溶剂。将该固体物加于硅胶柱上,以甲醇-乙酸乙酯(1∶4)洗脱产物。该洗脱液溶有一些保留于洗脱产物中的硅胶。1H NMR(CD3OD,10%dDMSO)δ1.98ppm,2.12ppm(2m,4H,脂族亚甲基),δ2.72ppm,3.06ppm(2m,4H,苯胺亚甲基),δ3.56ppm(m,4H,苄亚甲基),δ4.08ppm(s,2H,呫吨),δ6.79ppm(dd,1H,J1=9.2Hz,J2=2.1Hz,呫吨),δ6.83ppm(s,1H,呫吨),δ6.90ppm(d,1H,J=2.1Hz,呫吨),δ7.19ppm(d,1H,J=9.2Hz,呫吨),δ7.24ppm(d,1H,J=8.4Hz,苯二甲酸),δ8.02ppm(dd,1H,J1=8.4Hz,J2=1Hz,苯二甲酸),δ8.30ppm(d,1H,J=1Hz,苯二甲酸)。
为制备7β-(溴代乙酰氨基)-3-[[[(5-对甲氨基酚-X-酰氨基)甲基]硫基]甲基]-3-头孢烯-4-羧酸(20),将4.5mg(10μmol)5-对甲氨基酚-X-溴代乙酰胺(18)溶于调至pH7.7的0.5ml250mM磷酸盐缓冲液中。将该溶液经脱氧化处理,加入100μl磷酸盐缓冲液中的根据文献制备的10mg(40μmol)7β-氨基-3-(硫代甲基)-3-头孢烯-4-羧酸(8)。将该溶液于30℃放置2小时,然后真空蒸出溶剂,并将残留物溶于1ml水中,加入乙酸,产物从该水溶液中沉淀出。收集沉淀,用C18反相色谱提纯产物,用加有0.1%三氟乙酸的35%甲醇/水作洗脱液。
将上述产物(19)溶于含20mg碳酸氢钠的1ml二噁烷-水(1∶1)中。将10μl溴代乙酸溴加入到置于冰上的该溶液中。室温下该溶液再放置1.5小时。冰冷却下加入20mg碳酸氢钠和10μl溴代乙酰溴到该溶液中。室温下再放置1.5小时之后,用旋转蒸发器除去二噁烷,用1M磷酸从水溶液中沉淀出产物,并离心收集。将该固体物于稀碳酸氢盐水溶液中配成悬浮液,离心除去不溶颗粒并弃之。用1M磷酸沉淀出产物,并以硅胶闪蒸色谱提纯,用氯仿-甲醇-乙酸-水(55∶15∶4∶2)作洗脱液,该处理中溶有少量硅胶。
二乙酰基5-荧光素硫醇(21)与7β-(溴代乙酰氨基)-3-[[[(5-对甲氨基酚-X-酰氨基)甲基]硫基]甲基]-3-头孢烯-4-羧酸(20)的偶合反应如下进行将7β-(溴代乙酰氨基)-3-[[[(5-对甲氨基酚-X-酰氨基)甲基]硫基]甲基]-3-头孢烯-4-羧酸在通氩气下与50%过剩的5-荧光素硫醇反应,用二甲基甲酰胺-250mM磷酸盐缓冲水溶液pH 7.7(1∶1)作溶剂。通过反复将产物溶于甲醇,再用乙酸乙酯沉淀的方法,使之从过剩荧光素硫醇中提纯。
图3表示用β-内酰胺酶处理前和处理后,该FRET-头孢菌素在50mM磷酸盐缓冲液(pH7)中的荧光发射光谱。原始荧光很弱,是由于荧光团叠合,形成不发荧光的基础态复合物的缘故。当加入甲醇到溶液中时,该叠合作用被破坏,则出现有效的荧光共振能量转移。
实施例4(化合物25)N-[试卤灵-4-羰基]-N′-碘乙酰基-哌嗪(BoehringerMannheim)连接于头孢菌素作为荧光素的FRET-受体。优选作为FCRE的受体。
携带荧光素作为供体,而试卤灵作为猝灭体的FRET-头孢菌素FCRE(25),其制备方法同携带对甲氨基酚-X-受体的该化合物一样。将N-[试卤灵-4-羰基]-N′-碘乙酰基-哌嗪(BoehringerMannheim)与头孢菌素的游离3′-硫羟基偶合,接着进行溴代乙酰化反应并加入5-荧光素硫醇。与该方法不同的是,加入三当量5-荧光素硫醇,而第一当量瞬间将试卤灵还原,并形成非活性二荧光素-二硫化物,将其曝露于空气,试卤灵再氧化为原来的染料。
β-内酰胺酶催化水解该化合物产生两个发荧光的片断。试卤灵激发和发射光谱的波长比对甲氨基酚光谱长且窄。可使未裂解染料与酶裂解产物之间有较好光谱分离。但在对甲氨基酚作为受体的情况下,在磷酸盐水缓冲液中该两染料叠合,形成黑色复合物。β-内酰胺酶处理破坏了叠合作用,并增加了供体荧光(图4)。实施例5(化合物7b)
为合成2,4-二羟基-5-氯代苯甲醛,将21.7g(0.15Mol)4-氯代间苯二酚溶于150ml无水乙醚中,并将27g氰化锌(II)细粉末和0.5g氯化钾搅拌下加入。用冰冷却该悬浮液。激烈搅拌下将氯化氢强气流吹入该溶液中。约30分钟之后,反应剂溶解。继续通入HCl气体,直至其在醚液中停止被吸收为止(约1小时),该期间沉淀形成。将该悬浮液在冰上再搅拌1小时,然后使固体沉下。从固体中倾出醚溶液。将固体用100g冰处理,并在水浴中加热至100℃。当冷却时,该产物以光亮片状物从溶液中结晶出来。过滤移出,并以无水氢氧化钾干燥。产量为15.9g(0.092mol,61%)。1H NMR(CDCl3)δ6.23ppm(s,1H,苯酚),δ6.62ppm(s,1H,苯基),δ7.52ppm(s,1H,苯基),δ9.69ppm(s,1H,甲酰基),δ11.25ppm(s,1H,苯酚)。
为制备3-羧基-6-氯代-7-羟基香豆素,将5.76g(0.033mol)2,4-二羟基-5-氯代苯甲醛和7.2g(0.069mol)丙二酸溶解于温热的吡啶中。75μl苯胺搅拌下加入该溶液中,于室温下将该反应物静置3天。形成的黄色固体碎成小片,并加入50ml乙醇。用烧结玻璃过滤该乳液状悬浮液,用1N盐酸,洗固体三次,然后用水洗涤。随后将该固体与100ml乙酸乙酯、150ml乙醇、和10ml半浓缩盐酸一起搅拌。真空浓缩减少溶剂体积,并过滤回收沉淀,用乙醚洗涤并用五氧化二磷干燥。获得白色粉末产物4.97g(0.021mol,63%)。1H NMR(dDMSO)δ6.95ppm(s,1H),δ8.02ppm(s,1H),δ8.67ppm(s,1H)。
为制备7-丁酰氧-3-羧基-6-氯代香豆素,将3.1g(12.9mmol)3-羧基-6-氯-7-羟基香豆素溶于100ml二噁烷中,并于室温下用5ml丁酸酐、8ml吡啶和20mg二甲氨基吡啶处理2小时。将该反应溶液搅拌下加入到300ml庚烷中,它使白色沉淀形成。过滤回收,并溶于150ml乙酸乙酯中。过滤除去不溶物,并用50ml 1N盐酸/盐水(1∶1)提取滤液两次,随后用盐水提取。用无水硫酸钠干燥溶液,真空蒸发,得到2.63g(8.47mmol,66%)产物。1H NMR(CDCl3)δ1.08ppm(t,3H,J=7.4Hz,丁酸的甲基),δ1.85ppm(m,2H,J1≈J2=7.4Hz,丁酸的亚甲基),δ2.68ppm(t,2H,J=7.4Hz,丁酸的亚甲基),δ7.37ppm(s,1H,香豆素),δ7.84ppm(s,1H,香豆素),δ8.86ppm(s,1H,香豆素)。
7-丁酰氧-3-苄氧羰基甲氨羰基-6-氯代香豆素制备如下将2.5g(8.06mmol)7-丁酰氧-3-羧基-6-氯代香豆素,2.36g羟基苯并三唑水合物(16mmol)和1.67g(8.1mmol)二环己基碳化二亚胺溶解于30ml二噁烷中。将O-苄基甘氨酸[用乙酸乙酯-甲苯-饱和碳酸氢盐水溶液-水(1∶1∶1∶1,250ml)提取3.4g(10mmol)苄基甘氨酸甲苯磺酸盐,用无水硫酸钠干燥有机相,并将溶剂体积浓缩至5ml制备的]的甲苯溶液滴加入该香豆素溶液中。该反应于室温下维持20小时,然后过滤除去沉淀,并用乙酸乙酯和丙酮彻底洗涤。用旋转蒸馏器将该混合溶剂馏份浓缩至50ml,此时加入1体积甲苯,再将体积减至30ml。过滤移出沉淀产物,并溶于200ml氯仿-绝对乙醇(1∶1)中。在旋转蒸馏器中将该溶液浓缩至50ml,滤出产物,真空干燥,得到1.29g标题产物。进一步再将滤出的溶剂浓缩,得到第二批产物(0.64g),总产量1.93g(4.22mmol,52%)。1H NMR(CDCl3)δ1.08ppm(t,3H,J=7.4Hz,丁酸的甲基),δ1.84ppm(m,2H,J1≈J2=7.4Hz,丁酸的亚甲基),δ2.66ppm(t,2H,J=7.4Hz,丁酸的亚甲基),δ4.29ppm(d,2H,J=5.5Hz,甘氨酸的亚甲基),δ5.24ppm(s,2H,苄基),δ7.36ppm(s,1H,香豆素),δ7.38ppm(s,5H,苯基),δ7.77ppm(s,1H,香豆素),δ8.83ppm(s,1H,香豆素),δ9.15ppm(t,1H,J=5.5Hz,酰胺)。
7-丁酰氧-3-羧甲氨羰基-6-氯代香豆素制法如下将920mg(2mmol)7-丁酰氧-3-苄氧羰基甲氨羰基-6-氯代香豆素溶于50ml二噁烷中,该溶液中加入100mg碳载钯(10%)和100μl乙酸,于常压氢气氛中剧烈搅拌该悬浮液。氢气被利用吸收后,过滤该悬浮液。用煮沸的二噁烷将该含碳产物提取5次。合并二噁烷溶液,使其冷却,冷却后即沉淀出产物,为白色粉末。再将溶剂浓缩至20ml,沉淀得到更多产物。再将保留的二噁烷溶液加热至沸,并加入庚烷直至该溶液变得混浊。三次所得干燥粉末量分别为245mg,389mg和58mg,白色产物总重692mg(1.88mmol,94%)。1H NMR(dDMSO)δ1.02ppm(t,3H,J=7.4Hz,丁酸的甲基),δ1.73ppm(m,2H,J1≈J2=7.3Hz,丁酸的亚甲基),δ2.70ppm(t,2H,J=7.2Hz,丁酸的亚甲基),δ4.07ppm(d,2H,J=5.6Hz,甘氨酸的亚甲基),δ7.67ppm(s,1H,香豆素),δ8.35ppm(s,1H,香豆素),δ8.90ppm(s,1H,香豆素),δ9.00ppm(t,1H,J=5.6Hz,酰胺)。
7-丁酰氧-3-羧甲基氨羰基-6-氯代香豆素与7-氨基-3′-氯代头孢烷酸二苯甲基酯的偶合进行如下将7-丁酰氧-3-羧甲基氨羰基-6-氯代香豆素368mg(1mmol),270mg羟基苯并三唑水合物,和415mg(1mmol)7-氨基-3′-氯代头孢烷酸二苯甲基酯在40ml二噁烷-乙腈(1∶1)中配成悬浮液。加入260mg(1.25mmol)二环己基碳化二亚胺的5ml乙腈液,并将该悬浮液激烈、搅拌36小时。过滤移出沉淀,用旋转蒸发器将溶液体积浓缩至20ml。加入50ml甲苯并浓缩至30ml。搅拌下加入50ml庚烷并用冰冷却该悬浮液,过滤回收沉淀。将其再溶解于10ml氯仿中,并将不溶固体物滤出。加入2体积庚烷沉淀标题产物,收集并真空干燥,得到468mg(0.64mmol,64%)灰白色粉末。1H NMR(CDCl3)δ1.08ppm(t,3H,J=7.4Hz,丁酸的甲基),δ1.84ppm(m,2H,J1≈J2=7.4Hz,丁酸的亚甲基),δ2.66ppm(t,2H,J=7.4Hz,丁酸的亚甲基),δ3.54ppm(2d,2H,J=18.3Hz,头孢菌素C-2),δ4.24ppm(2d,2H,J=5.8Hz,头孢菌素3亚甲基),δ4.37ppm(d,2H,J=3.8Hz,甘氨酸的亚甲基),δ5.02ppm(d,1H,J=4.9Hz,头孢菌素C-6),δ5.89ppm(dd,1H,J1=9.0Hz,J2=5.0Hz,头孢菌素C-7),δ6.96ppm(s,1H,二苯甲基),δ7.30-7.45ppm(m,12H,苯基,香豆素,酰胺),δ7.79ppm(s,1H,香豆素),δ8.84ppm(s,1H,香豆素),δ9.28ppm(t,1H,J=3.7Hz,酰胺)。
上述产物与5-荧光素硫醇的偶合进行如下将90mg(0.2mmol)5-巯基荧光素二乙酸酯二硫水物二聚体溶于10ml氯仿中,并在氩气氛下与25μl三丁基膦及25μl水反应。该溶液在室温下放置2小时,然后加入到20mg碳酸氢钠、25mg碘化钠和上述产物110mg(0.15mmol)在10ml二甲基甲酰胺的溶液中。4小时之后真空除去溶剂,并用乙醚研制该残留物。再将该固体溶于乙酸乙酯 乙腈(1∶1)中。除去溶剂后,该残留物再用乙醚研制一次,得到157mg(0.13mmol,88%)奶油色粉末产物。
将上述化合物样品在室温下,大量过剩三氟乙酸-苯甲醚(1∶1)反应20分钟。真空除去反应试剂,用乙醚研制残留物。将该固体在45%乙腈水溶液(含0.5%乙酸)中进行高压液体色谱处理,得到丁酸酯和二苯甲基酯被裂解的产物,在反相C18柱上,用含5%乙酸的45%乙腈水溶液作洗脱液进行高压液体色谱提纯。
用碳酸氢钠的甲醇液将化合物27的荧光素二乙酸酯保护基除去(室温,处理30分钟),得到发荧光的酶底物CCF2。在反相C18柱上,用含0.5%乙酸的35%乙腈水溶液作洗脱液,进行高压液体色谱提纯。
将化合物27与过剩乙酰氧甲基溴在无水二甲基吡啶中搅拌,得到底物的透膜衍生物(CCF2/ac2AM2)。在反相C18柱上,使用含0.5%乙酸的65%乙腈水溶液作洗脱液,高压液体色谱提纯。在细胞胞质中CCF2/ac2AM2很容易转化为CCF2。
不像实施例1-4的情况,底物CCF2的供体和受体染料不叠合。该底物在磷酸盐缓冲液中是完全发荧光的,不形成“黑色复合物”(即加入甲醇除了有稀释效果外,并不改变CCF2的荧光光谱)。这是由于与例1-4的呫吨染料(四溴荧光素、若丹明,对甲氨基酚及试卤灵)相比,7-羟基香豆素要小得多且极性更大的缘故。
图5表示在β-内酰胺酶裂解β-内酰胺环之前和之后,化合物CCF2在50mmolar磷酸盐缓冲液(pH7.0)中的发射光谱。在完整底物的情况下,出现从7-羟基香豆素部份到荧光素部份的有效能量转移。底物在405nm波长处激发,结果从受体染料荧光素产生515nm波长(绿色)的荧光发射。当β-内酰胺酶裂解β-内酰胺环时,配量转移受到破坏,由此切断了两个染料之间的连接。产物在405nm波长处激发,完全产生448nm波长(兰色)的供体荧光发射。当β-内酰胺酶裂解时,供体部份的荧光发射提高25倍。515nm处的荧光减低3.5倍,源自7-羟基香豆素作为其发射光谱的全部保留荧光拉长至绿色。该底物中供体25倍猝灭相当于荧光能量转移效率为96%。此种β-内酰胺裂解引起的巨大荧光变化,可以很容易地应用来检测哺乳动物活细胞胞质中的β-内酰胺酶,正如实施例6和7所介绍的。
头孢菌素的7-羟基香豆素部份被测定在不存在受体时其荧光量子效率为98-100%。该值由该染料的经校正过的荧光发射光谱积分与9-氨基吖啶盐酸盐水溶液的所述积分(与激发波长处的吸收率相匹配)相比较确定。表明7-羟基香豆素是理想的供体染料,因实际上由染料吸收的每个光子均进行向受体的荧光能量转移。
实施例6将T细胞淋巴瘤细胞系Jurkat悬浮于每ml含约1012个β-内酰胺酶分子(约1.7nM;青霉素酶205 TEM R+,购自Sigma)的等渗盐溶液(Hank氏平衡盐溶液)中,并以1mg/ml与葡聚糖(40 kd)共轭的若丹明作为负荷标志。将该悬浮液四次通过注射针头(30号针),这引起细胞浆膜暂时的可存活性破裂,并使得标记葡聚糖和β-内酰胺酶可进入其中。该被成功地穿透的细胞含β-内酰胺酶,在荧光显微镜上以若丹明激发波长照射时发红色荧光。于室温下,该细胞与5μM产生荧光的β-内酰胺酶底物CCF2/ac2AM2一起保温30分钟。以紫光(405nm)照射显示兰色荧光和绿色荧光细胞。所有吸收标志若丹明-葡聚糖的细胞呈现荧光兰,而没有酶的细胞呈荧光绿色。
实施例7将来自各种哺乳动物的细胞系细胞,在哺乳动物启动子控制下,用含RTEM β-内酰胺酶基因的质粒瞬间转染。该基因编码胞液β-内酰胺酶,缺失所有信号序列,作为SEQ.ID.1列入表中。转染后10-48小时,将该细胞曝露于5μmol CCF2/ac2AM21-6小时。在以荧光显微镜观察时,所有情况下均检测出发兰色荧光之细胞,而在未转染对照细胞中,则没有一个发兰色荧光的细胞被检出。为进行定量荧光测定,将该细胞首先通过香豆素(450 DF 65)发射滤光镜观测,然后通过荧光素(515 EFLP)发射滤光镜观测,并用电荷匹配装置相机记录下图像。在COS-7(表2)和CHO(表3)细胞中,于香豆素和荧光素波长处,载负转染细胞(兰色)和对照细胞(绿色)的CCF2之平均象素强度归纳于表中;每个群体给出4个有代表性的细胞测定值。由此,底物CCF2揭示了单个哺乳动物活细胞中的基因表达。
表2COS-7(来源SV40转化非洲绿猴肾细胞)象素强度表香豆素发射滤光镜荧光素发射滤光镜兰细胞1#27 202#34 233#31 314#32 33绿细胞1#4 432#4 423#5 204#3 24表3CHO(来源中国仓鼠卵巢细胞)象素强度表香豆素发射滤光镜荧光素发射滤光镜兰细胞1#98 1122#70 1133#76 924#56 67绿细胞1#9 1802#9 1023#7 1014#9 83实施例8
为制备7-乙酰氧-3-(N-羧甲基-N-甲氨羰基)香豆素,将400mg(1.6mmol)3-羧基-7-乙酰香豆素与亚硫酰氯一起回流20分钟。蒸馏除去过剩的亚硫酰氯,残留的7-乙酰氧-3-氯羰基香豆素在填有氢氧化钾颗粒的真空容器中贮存过夜。在另外一个反应瓶中,将142.5mg(1.6mmol)肌氨酸溶于1.05ml(5.4mmol)N-甲基三甲基甲硅烷基三氟乙酰胺(MSTFA)中,室温下放置16小时。加入2ml无水乙腈和187μl(1.7mmol)N-甲基吗啉,将该溶液倾入冰冷却下的固体7-乙酰氧-3-氯代羰基香豆素中。在冰中搅拌20分钟后,将该溶液升至室温。4小时之后真空除去溶剂。将残留物溶于甲醇中,使酸去除保护基,然后真空除去溶剂。将固体溶于30ml乙酸乙酯-乙腈(2∶1)中,用等体积1N盐酸提取该溶液两次,再用盐水提取。用无水硫酸钠干燥有机相,真空除去溶剂,随着己烷的加入从煮沸的乙酸乙酯中固体结晶出来。白色结晶固体物的产量是316mg(1.0mmol,63%)。
7-乙酰氧-3-(N-羧甲基-N-甲氨羰基)香豆素与7-氨基-3′-氯代头孢烷酸二苯甲酯的偶合进行如下将62mg(0.2mmol)7-乙酰氧-3-(N-羧甲基-N-甲氨羰基)香豆素与1ml无水二氯甲烷一起搅拌,然后加入27mg(0.2mmol)羟基苯并三唑和41mg二环己基碳化二亚胺。在5分钟时间内将82.6mg(0.2mmol)7-氨基-3′-氯代头孢烷酸二苯甲酯的1ml二氯甲烷溶液滴加进去。室温下将该反应混合物搅拌20小时,然后过滤移出沉淀。真空蒸发滤液,用二氯甲烷提取产物。多次除去溶剂,并将残留物溶于1ml乙酸乙酯中。加入三体积己烷沉淀出产物,离心回收之。白色粉末产物产量为49.9mg(70μmol,35%)。
按下面所述,将上面产物的头孢菌素3′-氯取代基转换成3′-碘取代基。于室温下,将上述产物49.9mg(70μmol)与52.5mg碘化钠(5当量)在1.2ml无水甲乙酮中搅拌2小时。真空除去溶剂,并将残留物溶于2ml乙酸乙酯-二氯甲烷(1∶1)中,用冷的2%硫代硫酸钠水溶液提取,接着再用盐水提取二次。用无水硫酸钠干燥有机层。无需提纯该成橙色粉末(32mg,40μmol,57%)可用于下步反应。
上述产物与5-巯基荧光素二乙酸酯(产物CCF1ac3二苯甲基酯)偶合进行如下将32mg(40μmol)碘衍生物溶于0.4ml二甲基甲酰胺中,加入3.4mg碳酸氢钠。将22mg(50μmol)5-巯基荧光素二乙酸酯溶于0.3ml脱氧处理的二甲基甲酰胺中,并于氩气下加入到碘化合物中。2小时后真空除去溶剂,残留物于二氯甲烷-乙酸乙酯(1∶1)中配成悬浮液。用水洗涤该有机溶液,并用无水硫酸钠干燥,除去溶剂用乙醚-己烷(1∶1)研制该残留物。以60目硅胶,乙酸乙酯-甲苯(2∶1)进行闪蒸色谱处理,得到4.2mg(4μmol,10%)无色产物。
按如下程序使二苯甲酯裂解,得到CCF1ac3于冰上,将4mg(4μmol)CCF1ac3二苯甲酯用200μl三氟乙酸-苯甲醚-二氯甲烷(10∶1∶10)处理15分钟。真空除去反应剂并将残留物溶于0.5ml乙酸乙酯中,真空蒸出溶剂。用乙醚研制该固体,然后溶于0.5ml甲醇中。该甲醇溶液加入到2ml水中沉淀出产物。离心回收该产物并真空干燥。得到2mg(2μmol,50%)白色固体物。使用含0.5%乙酸的55%乙腈水溶液作洗脱液,将该化合物在反相C18柱上进一步高压液体色谱提纯。
通过用50mM磷酸盐pH7水缓冲液中的橙皮乙酰酯酶处理,使CCF1ac3样品转化为CCF1,获得β-内酰胺酶裂解前和裂解后的CCF1荧光发射光谱(图6)。
底物CCF1与例5的底物CCF2有相似荧光特性。在完整底物中,出现由7-羟基香豆素部份到荧光素部份的有效能量转移。底物于390nm波长处激发,结果产生受体染料荧光素515nm(绿色)波长的荧光发射。当β-内酰胺酶裂解β-内酰胺环时,该能量转移被破坏,由此切断了两染料间的连接。而在390nm波长处该产物被激发时,则完全产生460nm(兰色)波长的供体荧光发射。当β-内酰胺裂解时,来自供体部份的荧光发射提高25倍。515nm荧光降低3倍,源自7-羟基香豆素的作为其发射光谱的所有保留荧光伸长至绿色。底物中供体的25倍猝灭相当于荧光能量转移效率为96%,β-内酰胺裂解所引起的巨大荧光变化,可很容易地应用来检测活哺乳动物细胞胞质内的β-内酰胺酶,如实施例9所述。
实施例9将T-细胞淋巴瘤细胞系Jurkat悬浮于每毫升含约1012β-内酰胺酶分子(约1.7nM;青霉素酶205TEM R+,购自Sigma),和1mg/ml与葡聚糖(40kd)共轭的若丹明作为负荷标志的等渗盐溶液(Hank氏平衡盐溶液)中。将该悬浮液通过注射针头(30号针)四次,这使得细胞胞质膜产生暂时的,可存活性破裂,并使标记葡聚糖和β-内酰胺酶进入其中。被成功地渗透的细胞含β-内酰胺酶,当在荧光显微镜上以若丹明激发波长照射时产生红色荧光。于室温下,该细胞与30μM产生荧光的β-内酰胺酶底物CCF1ac3一起保温30分钟。用紫外光(360nm)照射,发现有发兰色荧光和绿色荧光细胞。所有吸收标志若丹明-葡聚糖的细胞发兰色荧光,而无酶的细胞发绿色荧光。
实施例10优选的透膜CCF2酯制备如下
5-荧光素硫醇二乙酸酯(5)与7-氨基-3′-氯代头孢烷酸二苯甲酯的偶合进行如下将450mg(1mmol)5-巯基荧光素二乙酸酯二硫化物二聚体溶于30ml氯仿中,并用50μl水和125μl三丁基膦在通氮下加以处理,产生游离5-荧光素硫醇。将450mg(1mmol)7-氨基-3′-氯代头孢烷酸二苯甲酯盐酸盐,借助220μl(2mmol)N-甲基吗啉溶解于10ml乙腈中。30分钟后将两溶液合并。1小时后将溶剂体积浓缩至5ml,并加入50ml四氯化碳。再将溶剂体积浓缩至15ml,并搅拌下加入己烷。过滤除去主要由N-甲基吗啉组成的最初橙色沉淀。进一步加入二体积己烷,沉淀出630mg(0.76mmol,76%)白色产物,收集之。
将上述产物与7-丁酰氧-3-羧甲基氨羰基-6-氯代香豆素偶合,将325mg(0.88mmol)7-丁酰氧-3-羧甲基氨羰基-6-氯代香豆素溶解于15ml热的无水二噁烷中。快速冷却下,将1ml二噁烷中的110μl(1mmol)N-甲基吗啉,和8ml二氯甲烷中的115μl(0.9mmol)氯甲酸异丁酯加进去。将该反应物于0℃放置30分钟,此后将上述荧光素-头孢菌素加成产物661mg(0.8mmol)的7ml无水二氯甲烷液加入。将该溶液升至室温,3小时后真空除去溶剂。再将残留物溶于30ml二氯甲烷中,并用1体积10%乙酸水溶液提取二次,再用水提取一次。用无水硫酸钠干燥有机相。加入150ml无水乙醇,将溶剂体积浓缩至50ml并冷却至-20℃使产物沉淀出(粗产物,850mg)。用硅胶柱、以25%乙酸乙酯甲苯溶液为洗脱液进行色谱提纯。收集到250mg(0.21mmol,26%)白色粉末产物。
用三氟乙酸处理使头孢菌素二苯甲酯裂解。用三氟乙酸/二氯甲烷/苯甲醚(10∶10∶1)于0℃处理145mg(0.12mmol)上述产物20分钟。真空除去反应剂,残留物用异丙醚研制。将固体物溶于1ml二甲基亚砜,加入到25ml水中则产物沉淀出。进一步用反相C18树脂,40-60%含0.5%乙酸的乙腈水溶液阶式梯度液洗脱,色谱提纯,得到74mg(73μmol,60%)白色粉末。
对头孢菌素酸进行保护,使成为透膜乙酰氧甲酯,其方法如下将15mg(15μmol)上述产物溶于250μl二氯甲烷中,该溶液中加入25μl乙酸溴代甲酯和50μl二甲基吡啶。该反应于室温维持7小时,然后真空除去反应剂。残留物用硅胶,乙酸乙酯作洗脱液闪蒸色谱提纯,获得15mg(14μmol,92%)白色产物。该化合物称之为CCF2/btAMac2,用作β-内酰胺酶活性的胞内检测。
实施例11胞内受体激活的测定胞内糖肾上腺皮质激素受体的激活,由其在鼠乳腺肿瘤病毒启动子中能上调糖肾上腺皮质激素应答元件的转录活性之能力来测定。当提高胞内β-内酰胺酶对底物CCF2的活性,引起荧光信号发生适当的变化,此种对类固醇的应答被检测。
编码埃希式大肠杆菌RTEM β-内酰胺酶不带信号序列的质粒基因(图7序列1)被置于鼠乳腺肿瘤病毒启动子的转录控制之下,并被导入哺乳动物表达载体内。该载体也携带有对质粒在细菌中扩增的氯霉素抗性标志,和为哺乳动物选择的新霉素抗性标志。使用磷酸钙沉淀技术,将它导入培养基中的幼仓鼠肾(BHK)细胞中。使用抗生素G418,使细胞经受选择,以使质粒稳定地整合入细胞的基因组。曝露于类固醇类似物地塞米松之后,20个克隆之一因其标志着能提高β-内酰胺酶表达而被挑选出。
下面描述加入激动剂地塞米松之后,该克隆中提高β-内酰胺酶基因表达的测定。将在糖肾上腺皮质激素可诱导性启动子控制下表达β-内酰胺酶的稳定BHK细胞克隆G941细胞,分别在存在或不存在激动剂的情况下放置于37℃保温箱中。在加入激动剂后不同的时间间隔,将装有细胞的烧瓶从保温箱中移出,并将细胞转移进含10μmolar CCF2/btAMac2的Hank氏平衡盐溶液中。由于内源胞质酯酶的作用,该化合物转化为β-内酰胺酶可接近的发荧光底物CCF2。10分钟后,移出含CCF2/btAMac2的细胞上清液。30分钟后用安装于荧光显微镜上的冷色CCD相机将细胞照相。进行带有紫色激发光(滤光片400DF15)和兰色(滤光片450DF65),及绿色(滤光片535DF45)发射滤光片的荧光测定。测定兰色发射强度与绿色发射强度之比。该比值是有多少底物已被转化为产物的度量。使用40X物镜,在每个时间点,使每一个带有约60个细胞的4个视场成像。该结果表明反映β-内酰胺酶表达和生产提高的荧光强度之比明显增加。
实施例12通过第二信使应答元件的细胞表面受体激活作用和胞内信号的测定细胞表面受体的激活,导致胞内信使浓度的变化,进而调整胞内转录因子活性。在淋巴细胞中,信使离子钙胞内浓度增加导致激活T-淋巴细胞的核因子(NFAT)激活。该情况增加含NFAT识别位点的启动子中的转录。只是钙水平的提高,足以明显提高调节β-内酰胺酶之类的报告基因(当其置于含NFAT位点三聚体的启动子转录控制之下)之转录。
将鼠T-淋巴细胞系B3Z用两质粒瞬间共转染。一种质粒含β-肾上腺素功能的受体,它位于细胞表面,在强的、具组成型活性的巨细胞病毒(CMV)启动子的转录控制之下。另一种质粒含有来自埃希氏大肠杆菌、经促进哺乳动物表达修饰(序列ID#3,带有最佳哺乳动物Kozak序列,β-球蛋白前导序列,除去在前序列),在含NFAT位点三聚体的启动子转录控制之下的细菌RTEM β-内酰胺酶基因。该两种质粒使用电穿孔法导入细胞中。使用Biorad基因脉冲发生器(250V,960μF,16μsec),在两种质粒各存在10μg的条件下,将0.5ml电穿孔缓冲液中的5×106细胞电穿孔。转染后24小时,将细胞分别在存在或不存在β-肾上腺功能激动剂异丙基肾上腺素(10μmolar)的情况下保温5小时。除去上清液,代之以含μmolar CCF2/btAMac2的Hank氏平衡盐溶液。室温下放置20分钟之后,用新鲜的缓冲液洗涤细胞,并用荧光显微镜观测。有4%异丙基肾上腺素处理的细胞发兰色荧光(激发滤光片400DF15,发射滤光片435nm长滤过),而在对照群体(不存在激动剂)中检出非发兰色荧光细胞。用2μM离子霉素(ionomycin)和50ng/ml佛波醇酯最大刺激5小时,结果该群体有20%发兰色荧光细胞。
实施例13将来自不同微生物的β-内酰胺酶加以修饰,使之作为真核细胞(优选哺乳动物)中的报告基因酶使用。这些酶的细菌基因包括使酶瞄准胞外空间的N-末端在前序列(图7序列的开始23个氨基酸)。经易位后,在前序列肽酶裂解该23氨基酸在前序列,释放出成熟的β-内酰胺酶。包括其细菌在前序列的来自埃希氏大肠杆菌的RTEM β-内酰胺酶(图7序列2)被放入鼠乳房瘤病毒启动子控制下的哺乳动物表达载体中。使用标准磷酸钙沉淀技术,将该构件导入幼仓鼠肾细胞中。在细胞培养基中发现β-内酰胺酶活性,而细胞球中未检出活性。培养基中,β-内酰胺酶活性物量取决于类固醇。测定以前,在1μM地塞米松存在下培养36小时的细胞,比对照物产生多3倍的酶。这使得可将带有其细菌在前序列的β-内酰胺酶(图7序列2)用于胞外检测哺乳动物报告基因活性。
β-内酰胺酶报告基因优选用于酶产生和维持在细胞胞质中的情况下。因此在三种经修饰的RTEM β-内酰胺酶基因(图7的序列1、3、4)中,细菌信号序列被除去,由ATG(蛋氨酸)代替作为新的转译起始位点。为提高该β-内酰胺酶在哺乳动物细胞中的表达,以优化哺乳动物表达的改变过的核糖体连接位点来构建图7序列3和4的RTEM β-内酰胺酶[Kozak,M.,J.Cell Biol.108229-241(1989)]。为提高与哺乳动物转译手段的相容性。将序列ID#3的β-内酰胺酶插在未转译哺乳动物β-球蛋白前导序列的末端。所有这些编码新的β-内酰胺酶的新DNA序列,被插入带有控制共转录的巨细胞病毒启动子的哺乳动物表述载体中。组织培养物中的哺乳动物细胞(Hela,COS7、CHO、BHK),使用标准lipofectin技术以质粒进行瞬间转染。转染之后2-5天,将该细胞与发荧光底物CCF2的透膜衍生物CCF2/btAMac2一起保温,以测试该酶的功能性表达。5-20%用含cDNA序列2、3和4(图7)的质粒转染之细胞显示绿到兰色荧光变化,表明由表达的β-内酰胺酶裂解了胞内陷入的底物。相反地,在未转染和假转染对照物中,所有细胞显示未裂解的CCF2的绿色荧光,未发现兰色荧光细胞,确信无任何内源β-内酰胺酶活性存在。
地衣形杆菌β-内酰胺酶基因,使用聚合酶链反应技术,从完整地衣形杆菌DNA中分离出。将寡核苷酸引物除去β-内酰胺酶分泌序列,产生DNA序列ID#5。该基因被插入在组成型活性巨细胞病毒启动子转录控制下的pCDNA3哺乳动物表达载体中。使用lipofectin,用每个25cm2培养皿10μg质粒转染Hela细胞。转染后5天,通过将其在100μmolarCCF2/btAMac2存在下保温,并用表荧光显微镜观察,试验该细胞的β-内酰胺酶功能性表达。30-40%的细胞显示兰色荧光,而在未转染对照物中,只有绿色荧光细胞,无兰色荧光细胞检出。在瞬间转染中,一般有<50%的细胞被转染。
实施例14用序列ID3(图7)的β-内酰胺酶在酵母拉长因子EF-1α增强子和启动子控制下构建质粒。该质粒与底物CCF2(化合物7b)的钾盐一起共注入单细胞阶段的斑马鱼胚胎中。以只注射底物CCF2钾盐的胚胎作为对照物。3个小时后,这些胚胎被用表荧光显微镜观测,采用紫色激发光(滤光片400DF15)和435nm长滤过发射滤光片。携有质粒DNA的胚胎发兰色荧光,而对照物发绿色荧光。
实施例15在玻璃启动子控制下,将序列ID3的β-内酰胺酶基因克隆进果蝇转化载体中,并注射入野生型果蝇胚胎中。作为对照,将β-内酰胺酶基因插入错误的方向。使用P元件介导转化法,将果蝇胚胎进行胚系转化。该转化及所有其后的蝇处理均按标准技术进行[Karess,R.E.和Rubin,G.M.,Cell 38,135(1984)]。将转化蛹的后阶段的Omatidia转染,并分裂成单个细胞。将该细胞在加有40μmolar CCF2/btAMac2(化合物34)的缓冲液中保温20分钟,洗涤并用表荧光显微镜(激发滤光片400DF15,发射滤光片435nm长滤过)观测。用处于正确方向的β-内酰胺酶基因转化的蝇Omatidia细胞发兰色荧光,而含处于错误方向的基因之Omatidia细胞发绿色荧光。
实施例16某些实施方案中,本发明化合物可以是下述任何化合物
其中RY选自H、Cl、和Br;RX选自H,和甲基;
RZ和RZ1各自独立地选自-C(O)alk、-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)Oalk、低级酰氧-α-苄基、和δ-丁内酯基(其中alk是1-4碳低级烷基和其透膜性产生荧光的衍生物);R″是1-(酰氧)烷基。
另一化合物例子是
其中RZ和RZ1各自独立地选自-C(O)alk、-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)alk、低级酰氧-α-苄基、和δ-丁内酯基(其中alk是1-4碳低级烷基)。
另一化合物例子是
最后的化合物例子是
摘引在本申请中的所有出版物和专利文献全部引入本文作为参考,所有情况下,就好像各出版物或专利文献被单独介绍一样有同等之意义。
本发明提供β-内酰胺酶的新型底物及其使用的β-内酰胺酶和使用方法。虽提供了具体的实施例,但以上的具体描述只为举例说明之用,而非加以限制。在阅读本说明书的基础上,本发明的许多变化对于本领域专业人员来说将是显而易见的。因此本发明的范围并不能由上面的描述来决定,而应参考所附权利要求书及其相应之完整范围来决定。
摘引在本申请中的所有出版物和专利文献全部引入本文作为参考,所有情况下,就好像各出版物或专利文献被单独介绍一样有同等之意义。
权利要求
1.式I化合物
其中X和Y之一是发荧光的供体部份,或其透膜衍生物,而另一个是猝灭体部份、受体荧光团部份或其透膜衍生物;R′选自H、低级烷基、(CH2)nOH、(CH2)nCOOR″和=NOJ,其中n是0或1-5的整数,而J是H、Me、CH2OOH、CHMeCOOH及CMe2COOH;R″选自H、生理学上可接受的金属和铵阳离子、-CHR2OCO(CH2)nCH3、-CHR2OCOC(CH3)3、酰硫甲基、酰氧基-α-苄基、δ-丁内酯基、甲氧羰氧甲基、苯基、甲基亚磺酰甲基、β-吗啉代乙基、二烷基氨基乙基、二烷基氨基羰氧甲基,其中R2选自H和低级烷基;A选自S、O、SO、SO2和CH2;Z′是X的接头;Z″是Y的接头。
2.权利要求1的化合物,其中Z′选自直连键、-(CH2)nCONR2(CH2)m-,-(CH2)nNR2CO(CH2)m-,-(CH2)nNR3CONR2(CH2)m-,-(CH2)nNR3CSNR2(CH2)m,-(CH2)nCONR3(CH2)pCONR2(CH2)m-,-(CH2)n-,-(CH2)nNR3CO(CH2)pS(CH2)m-,-(CH2)nS(CH2)m-,-(CH2)nO(CH2)m-,-(CH2)nNR2(CH2)m-,-(CH2)nSO2NR2(CH2)m-,-(CH2)nCO2(CH2)m-,
其中R2和n与前面定义同;R3选自氢和低级烷基;m和p各自独立地选自0-4的整数。
3.权利要求1的化合物,其中Z″选自一条直接连于生色团中选自O、N和S的杂原子上的键、-O(CH2)n-,-S(CH2)n-,-NR2(CH2)n-,-N+R22(CH2)n-,-OCONR2(CH2)n-,-O2C(CH2)n-,-SCSNR2(CH2)n-,SCSO(CH2)n-,-S(CH2)nCONR2(CH2)m,-S(CH2)nNR2CO(CH2)m,和
其中R2和n定义同前,而m是0-4的整数。
4.权利要求1的化合物,其中R′选自H和甲基。
5.权利要求4的化合物,其中R′是H。
6.权利要求1的化合物,其中R″选自H和乙酰氧甲基。
7.权利要求1的化合物,其中R2是H。
8.权利要求1的化合物,其中A是-S-。
9.权利要求1的化合物,其中X和Y之一是发荧光的供体部份的透膜衍生物,或猝灭体部份或受体荧光团部份的透膜衍生物,其中X和Y中至少一个含至少一个酰化的芳羟基、酰化胺、或烷基化芳羟基,其中酰基含1-5个碳原子,而烷基选自-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)Oalk、低级酰氧基-α-苄基和δ-丁内酯基,其中alk是1-4碳低级烷基。
10.权利要求9的化合物,其中X和Y中至少一个含至少一个酰化的芳羟基,其中酰基是乙酰基、正丙酰基、或正丁酰基。
11.权利要求1的化合物,其中所述供体是式II-VII的香豆素,而所述猝灭体或受体选自式VIII-XII、XLVII和XLVII的荧光素类对甲氨基酚类及若丹明类。
12.权利要求11的化合物,其中所述供体选自式II-VII的香豆素类和式VIII的荧光素类。
13.权利要求1的化合物,其中所述猝灭体或受体选自式VIII-XII的荧光素类对甲氨基酚类和若丹明类。
14.权利要求13的化合物,其中所述供体是式VIII的荧光素类,而所述猝灭体或受体选自式VIII-XII的对甲氨基酚类和若丹明类。
15.权利要求12的化合物,其中所述香豆素选自7-羟基香豆素和7-羟基-6-氯代香豆素,而所述荧光素选自荧光素和二氯代荧光素。
16.权利要求13的化合物,其中所述供体是荧光素,而猝灭体或受体选自式VIII四溴荧光素或四氯荧光素,其中Ra、Rb、Rc和Rd是Br或Cl。
17.权利要求13的化合物,其中所述猝灭体或受体是式VIII、IX或XI的对甲氨基酚。
18.权利要求13的化合物,其中所述猝灭体或受体是式VIII、X或XII的若丹明。
19.权利要求9的化合物,其是透膜衍生物,其中X和Y中至少一个含芳香羟基上的乙酰氧甲基。
20.权利要求2的化合物,其中Z′是-(CH2)nCONR2(CH2)m-。
21.权利要求20的化合物,其中n和m是0。
22.权利要求20的化合物,其中R2是H。
23.权利要求3的化合物,其中Z″是-S(CH2)n-。
24.权利要求23的化合物,其中n是0。
25.权利要求12的化合物,所述化合物结构式如下
其中RY选自H、Cl、和Br;RX选自H和甲基;RZ和RZ1各自独立选自-C(O)alk、-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)Oalk、低级酰氧-α-苄基和δ-丁内酯基,其中alk是1-4碳低级烷基;及其产生荧光的透膜衍生物,R″是1-(酰氧)烷基。
26.权利要求25的化合物,其中RZ和RZ1选自乙酰基,丁酰基、和乙酰氧甲基。
27.权利要求12的化合物,所述化合物结构式如下
其中RY选自H、Cl、和Br;而RX选自H和甲基。
28.权利要求14的化合物,所述化合物具有如下式(11)结构
及其产生荧光的透膜衍生物。
29.权利要求16的化合物,所述化合物具有如下式(16)结构
其中RZ和RZ1各自独立地选自-C(O)alk、-CH2OC(O)alk、-CH2SC(O)alk、-CH2OC(O)alk、低级酰氧-α-苄基、和δ-丁内酯基,其中alk是1-4碳低级烷基。
30.权利要求14的化合物,所述化合物具有如下式(22)结构
及其产生荧光的透膜衍生物。
31.权利要求1的化合物,所述化合物具有如下式(25)结构
及其产生荧光的透膜衍生物。
32.权利要求27的化合物,其中RY是Cl,而RX是H(CCF2或76)。
33.权利要求15的化合物,其是
34.权利要求26的化合物,其中RZ和R″是乙酰氧甲基;RX是氢;而各RZ1是乙酰基。
35.权利要求27的化合物,其中RY是H;而RX是甲基(CCF17a)。
36.权利要求1的化合物,其中所述供体选自发荧光的铕和铽配合物。
37.权利要求36的化合物,其中所述供体选自铕和铽的三(联吡啶)穴状配体及相关染料。
38.权利要求1的化合物,其中所述猝灭体或受体选自酞菁类及相关染料。
39.权利要求37的化合物,其中所述猝灭体或受体选自酞菁类及相关染料。
40.权利要求39的化合物,其是
41.权利要求10的化合物,其中所述香豆素是式(III)化合物及其产生荧光的透膜衍生物
其中E选自H、OH、ORk和NRgRh;T选自O和NRk;Ra和Rb各自独立地选自一个连接点、H、卤素、和低级烷基Rg、Rh和Rk各自独立地选自一个连接点、H、低级烷基、和-CH2(CH2)na;Ri选自一个连接点、H、卤素、低级烷基、CN、CF3、苯基、CO2H、和CONRgRh;a选自H和一个连接点。
42.权利要求11的化合物,其中所述受体或猝灭体是式(VIII)化合物及其产生荧光的透膜衍生物
其中E选自H、OH、ORk和RgRh;G选自O和N+RgRh;Q′选自O、CH2、C(CH3)2和NRg;Ra、Rb、Rc和Rd各自独立地选自一个连接点、H、卤素、和低级烷基;Re选自一个连接点、H、低级烷基、(CH2)nCO2H、(CH2)nCHaCO2H、CHa(CH2)nCO2H、(CH2)nCOa、CH=CHCOa,
Rg、Rh、Rk各自独立地选自一个连接点,H、低级烷基、和-CH2(CH2)na;n是0-5的整数;a和a′各自独立地选自H或一个连接点。
43.权利要求42的化合物,其中所述供体选自式II-VII香豆素类,及其产生荧光的透膜衍生物。
44.权利要求43的化合物,其中Q′是C(CMe2)2,而G是O;及其产生荧光的透膜衍生物。
45.权利要求43的化合物,选自下述分子式
46.测定一个样品是否含β-内酰胺酶活性的方法,包括将样品与权利要求1的化合物接触,当该化合物被激发时,它能表现出荧光共振能量转移;激发所述化合物;及测定样品中荧光共振能量转移的程度,如果其荧光共振能量转移的程度低于预期值,则表明存在β-内酰胺酶活性。
47.权利要求1的方法,用于测定样品中的含酶量,其中测定样品中荧光共振能量转移的程度包括,在样品与底物接触之后,进行第一次和第二次程度测定,并确定其荧光共振能量转移程度之差,该差值反映了样品中的含酶量。
48.一种重组核酸分子,它包括适宜于在脊椎动物细胞中发挥功能,并按人工操作方式连接于编码β-内酰胺酶表达的核苷酸序列上的表达控制序列。
49.权利要求48的重组核酸分子,其中核苷酸序列编码A类β内酰胺酶。
50.权利要求49的重组核酸分子,还包括核糖体连接位点的哺乳动物Kozak序列。
51.权利要求50的重组核酸分子,其中所述核苷酸序列是图7中的序列3或序列4。
52.权利要求49的重组核酸分子,其中所述核苷酸序列是图7中序列1或序列5。
53.权利要求48的重组核酸分子,其中所述表达控制序列是可诱导表达控制序列。
54.权利要求48的重组核酸分子,其中所述表达控制序列是组成型活性表达控制序列。
55.权利要求48的重组核酸分子,其中所述表达控制序列包括c-fos启动子或c-jun启动子。
56.权利要求48的重组核酸分子,其中所述表达控制序列包括环AMP-应答元件,佛波醇酯应答元件,血清应答元件,或激活的T-细胞核因素应答元件。
57.权利要求48的重组核酸分子,其中所述表达控制序列对调整细胞表面受体之物质有应答。
58.权利要求48的重组核酸分子,其中所述表达控制序列对调整胞内受体之物质有应答。
59.权利要求48的重组核酸分子,其中所述β-内酰胺酶包括胞外分泌的信号序列。
60.权利要求59的重组核酸分子,其中所述核苷酸序列是图7中序列2。
61.权利要求48的重组核酸分子,其中β-内酰胺酶是胞液β-内酰胺酶。
62.权利要求61的重组核酸分子,其中所述核苷酸序列是图7中序列1、序列3、序列4、或序列5。
63.一种重组核酸分子,包括适宜于在真核细胞中发挥功能,并按人工操作方式连接于编码胞液β-内酰胺酶表达的核苷酸序列上的表达控制序列。
64.权利要求63的重组核酸分子,其中所述核苷酸序列编码A类β-内酰胺酶。
65.权利要求64的重组核酸分子,其中所述核苷酸序列是图7的序列1、序列3、序列4、或序列5。
66.权利要求63的重组核酸分子,其中所述表达控制序列是可诱导表达控制序列。
66.权利要求63的重组核酸分子,其中所述表达控制序列是组成型活性表达控制序列。
67.权利要求63的重组核酸分子,其中所述表达控制序列包括c-fos启动子或c-jun启动子。
68.权利要求63的重组核酸分子,其中所述表达控制序列包括环AMP-应答元件,佛波醇酯应答元件,血清应答元件,或激活T-细胞核因子应答元件。
69.权利要求63的重组核酸分子,其中所述表达控制序列对调整细胞表面受体之物质有应答。
70.权利要求63的重组核酸分子,其中所述表达控制序列对调整胞外受体之物质有应答。
71.用重组核酸分子转染的哺乳动物宿主细胞,所述重组核酸分子还包括适宜于在哺乳动物细胞中发挥功能,并按人工操作方式连接于编码β-内酰胺酶表达的核苷酸序列上的表达控制序列。
72.测定细胞中β-内酰胺酶活性量的方法,包括下述步骤提供用含有表达控制序列的重组核酸分子转染的宿主细胞,所述表达控制序列以人工操作方式连接在编码β-内酰胺酶表达之核酸序列上;将含有该细胞,或该细胞提取物,或条件培养基的样品与β-内酰胺酶之底物接触;测定所裂解的底物之量,而该裂解的底物量与β-内酰胺酶活性量相关。
73.监测按人工操作方式连接于一组表达控制序列上的基因的方法,包括提供用一种重组核酸分子转染的真核宿主细胞,所述重组核酸分子包含按人工操作方式连接于编码β-内酰胺酶的核酸序列上的表达控制序列,除了真核细胞是真菌的情况外,其中β-内酰胺酶是胞液β-内酰胺酶;将含该细胞,或该细胞提取物,或条件培养基的样品与β-内酰胺酶之底物接触;测定底物裂解之量,而裂解的底物量与β-内酰胺酶活性量相关。
74.权利要求73的方法,其中所述真核细胞是哺乳动物细胞。
75.权利要求73的方法,其中所述样品包括来自所述细胞的提取物,带有或不带有条件培养基。
76.权利要求73的方法,其中所述样品含有所述细胞。
77.权利要求73的方法,其中所述底物是权利要求1的化合物,底物裂解量的测定步骤包括激发化合物;测定样品中荧光共振能量转移的程度,若该荧光共振能量转移程度低于预期之值,则表明存在β-内酰胺酶活性。
78.权利要求73的方法,其中核苷酸序列编码A类β-内酰胺酶。
79.权利要求78的方法,其中核苷酸序列是图7中序列1、序列2、序列3、序列4、或序列5。
80.权利要求73的方法,其中表达控制序列是可诱导的表达控制序列。
81.权利要求73的方法,其中所述细胞是动物细胞,而β-内酰胺酶是胞液β-内酰胺酶。
82.测定一种试验化合物是否能改变按人工操作方式连接于一组表达控制序列上的基因之表达的方法,包括提供由一种重组核酸构建体转染的细胞,所述构建体含按人工操作方式连接于编码β-内酰胺酶表达的核酸序列上的表达控制序列,除真核细胞是真菌的情况外,其中β-内酰胺酶是胞液β-内酰胺酶;将该细胞与试验化合物接触;将含该细胞或该细胞提取物的样品,与β-内酰胺酶底物接触;和测定底物裂解之量,而底物裂解量与β-内酰胺酶活性量相关。
83.权利要求82的方法,其中所述真核宿主细胞是哺乳动物细胞。
84.权利要求82的方法,其中所述样品含细胞提取物。
85.权利要求82的方法,包括所述细胞。
86.权利要求82的方法,其中所述底物是权利要求1的化合物,而测定底物裂解量的步骤包括激发该化合物;测定样品中荧光共振能量转移的程度,若所述程度低于预期值,则表达存在β-内酰胺酶活性。
87.权利要求82的方法,其中核苷酸序列编码A类β-内酰胺酶。
88.权利要求87的方法,其中核苷酸序列是图7的序列1、序列2、序列3、序列4或序列5。
89.权利要求85的方法,其中表达控制序列是可诱导的表达控制序列。
90.权利要求85的方法,其中所述细胞是动物细胞,而β-内酰胺酶是胞液β-内酰胺酶。
91.权利要求82的方法,其中β-内酰胺酶的表达通过对胞内受体、细胞表面受体、或胞内细胞信号通道成份的激活作用、或激活抑制作用来按人工操作方式调节。
92.克隆筛择的方法,包括提供用一种重组核酸分子转染的细胞,所述核酸分子包含按人工操作方式连接于编码胞液β-内酰胺酶表达的核酸序列上的表达控制序列;将所述细胞与能激活或抑制该表达控制序列的活化作用之物质接触;将所述细胞与转化成底物的权利要求9的化合物接触;测定各个细胞中底物是否裂解,而此种裂解作用反映β-内酰胺酶活性;筛选并繁殖所选择的具有β-内酰胺酶活性水平的细胞。
93.权利要求92的方法,还包括下述步骤不存在活化剂的条件下培养所选择的细胞,其培养时间足以使裂解的底物从细胞中基本上消失,且β-内酰胺酶水平回复到未激活水平;将所选择的细胞与转化为底物的权利要求9的化合物一起保温;筛选基本上未裂解该底物的细胞。
全文摘要
通式Ⅰ的β-内酰胺酶底物,其中X和Y之一个是发荧光的供体,而另一个是猝灭体(可以、或不可以再发射),R′选自H、低烷基(即1—5个碳原子)和(CH
文档编号C12N5/02GK1184479SQ96193854
公开日1998年6月10日 申请日期1996年3月20日 优先权日1995年3月20日
发明者R·Y·齐恩, G·茨卢卡尔尼克 申请人:加州大学评议会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1