作为单层或层合表面的聚合物胶束的制作方法

文档序号:1115011阅读:533来源:国知局
专利名称:作为单层或层合表面的聚合物胶束的制作方法
技术领域
本发明涉及一种单层或多层聚合物胶束和它们作为表面包覆层的用途,尤其是生物医学设备。
一种胶束可以有几种形式,依赖于体系的条件和组成。例如,在大约临界胶束浓度(CMC)下的稀溶液中的小胶束一般被认为是球形的。然而,在其它条件下,它们可以是扭曲的球形、碟形、棒状、片状等等。
胶束是在临界胶束浓度(CMC)下形成,该浓度依赖于几个因素,包括两性分子的类型、溶剂系统、溶质等。临界胶束浓度是指在含有溶剂、两性分子、溶质等的系统中开始形成胶束时的浓度。CMC可以采用本领域内的标准技术进行实验测定。例如,表面活性剂的CMC可以通过将性能作为表面活性剂浓度的函数来作图进行确定;注意性能一般随浓度增加呈线性变化,最高到CMC,在该点曲线变为非线性。已被用作测定CMC的性能包括这些性能如折光指数、光散射、渗析、表面张力和染料溶液。
胶束性能受环境影响,并尤其受环境中特定变化的影响,如温度、溶剂、可溶组分、系统中的电解质等。先有技术中已经描述了性能已被研究的胶束。
例如,Kataoka等人的美国专利5,929,177描述了一种聚合物分子,其中它可用作药物释放载体。胶束由在两端都含有官能团的嵌段共聚物形成,并且它含有亲水/憎水链段。嵌段共聚物链端的聚合物官能团包括α端的氨基、羧基和巯基和ω端的羟基、羧基、醛基和乙烯基。亲水链段包括聚氧乙烯,而憎水链段由丙交酯、内酯或(甲基)丙烯酸酯衍生而来。
Kataoka等人的美国专利5,925,720提供了一种下述分子式的异遥爪齐聚物或聚合物 其中,R1和R2彼此相互结合,代表C1-10烷氧基、芳氧基或芳基-C1-3烷氧基或氧基(=O),或R1和R2独立地代表乙二氧基,-O-CH(R1)-CH2-O-;R1指氢或C1-6烷基;L是 或(CH2)r;R3和R4独立地代表氢、烷基、芳基或芳烷基;r为2-5;m为2-10,000;n为2-10,000;p为1-5;q为0-20;当q为0时,z指H、碱金属、乙酰基、丙烯酰基、甲基丙烯酰基、肉桂酰基、对甲苯磺酰基、2-巯基丙酰基或2-氨基丙酰基或烯丙基或乙烯基苯基,当q为1-20时,z为C1-6烷氧羰基、羧基、巯基或氨基。
这种齐聚物或聚合物形成一种高分子胶束,它在水性溶剂中稳定且对药物释放作为载体是有用的。
在这些参考文献中没有一篇是用作包覆层的胶束。
然而,其它类型的非胶束聚合物已被用来包覆表面。例如,Merrill的美国专利5,275,838公开了一种以水凝胶层形式将聚氧乙烯(PEO)星形分子固定的方法以及它们的产品,它能用来包覆表面。它描述了一种将聚氧乙烯星形分子固定到支撑物表面,以在它上面形成包覆层的方法,包括如下步骤(a)将一种含有聚氧乙烯星形分子的有机溶液暴露于一种试剂以将试剂基团固定到羟端基,每一种聚氧乙烯星形分子基本上由大量接在二乙烯基苯核上的羟端基聚氧乙烯链组成,该试剂基团允许随后通过取代将氨基或硫醇基团接到PEO链端,因此形成含有活性反应端基的活化聚氧乙烯星形分子;(b)将含有活性反应端基的活化聚氧乙烯星形分子从有机溶剂中分离;(c)将活化聚氧乙烯星形分子溶解于水性溶液;和(d)将步骤(c)的溶液和含有氨基和/或硫醇基的支撑物表面接触,以共价键合有反应端基的星形分子,因此将该反应端基的星形分子固定到支撑物表面的厚层中。
该星形分子有一个聚合物核,如二乙烯基苯,一系列聚氧乙烯链或支链从其生长而来。这些星形分子不是胶束。它们不含嵌段共聚物,其HLB值(亲水亲油平衡)为1-40。如这里所述,星形分子由二乙烯基苯、氧乙烯和任选的苯乙烯通过阴离子聚合而成。
本发明利用不同于Merrill描述的那些化合物类型和包覆层技术。不象Merrill,本发明的包覆层组合物由胶束组成。如随后所说明的,本发明所用的胶束由HLB值为1-40的嵌段共聚物组成。本发明人已发现,用本发明中特定的聚合物胶束包覆表面给包覆层表面带来几个优点。更为详细的说,本发明人已发现,含有下述类型的聚合物胶束的包覆层表面,尤其是多层包覆层表面,增强了包覆层表面保水能力、阻止蛋白质和油脂的渗透,并增强包覆层表面的药物释放能力。
发明简述因此,本发明涉及一种包覆的支撑物表面,如生物医学设备,其中包覆层至少含有一种固定在该生物医学设备表面上的聚合物胶束,该胶束具有亲水外壳和憎水内核或憎水外壳和亲水内核,该胶束由HLB值为约1-约40的嵌段共聚物组成。用来包覆支撑物表面的聚合物胶束可以以单层形式存在。或者,它们可以是多层,其中不同层相互交联。在另外一个实施例中,多层胶束至少含有两种聚合物胶束,它们夹着含有许多官能团的高分子量聚合物化合物或至少含有两个官能团的多官能度低分子量聚合物化合物。
图2为层合聚合物胶束表面一个剖面部分的AFM扫描图。
图3图示了聚合物胶束层合表面中作为pH函数的电位变化。
图4图示了依赖于聚合物胶束层合物的BSA吸收性能和ζ电位的变化。在此图中,NH2/PP表示经等离子体处理过的聚丙烯;MCL-1表示已用单层胶束包覆过的NH2/PP;PAIAm-1表示已用聚烯丙基胺包覆的MCL-1;MCL-2表示已用胶束包覆过的PAIAm-1;PAIAm-2表示已用聚烯丙基胺包覆过的MCL-2;MCL-3表示已用胶束包覆过的PAIAm-2。
图5图示了用芘结合的胶束包覆的氨等离子体处理过的硅(APTS玻璃)的荧光强度变化。在该图中,使用下列图例-O-ML2-■-3LE-●-ML16 -▲-6LR-□-3LO图6图示了APTS玻璃的荧光强度(I)变化,该玻璃在暴露于芘/胶束溶液和水之后用6层聚合的胶束包覆。
图7示意了透过用胶束包覆的薄膜测试右旋糖苷迁移的腔,如实施例3中所述。
图8表示透过胶束包覆薄膜的右旋糖苷渗透图,如实施例6中所述。在图中,使用了下列图例□PHEMA/聚丙烯薄膜■用PEG-乙醛(MW5000)包覆过的PHEMA/聚丙烯薄膜
○单层胶束●3层胶束发明详述如这里所述,本发明涉及用本发明的聚合物胶束包覆过的支撑物表面。
如这里所用的,术语“支撑物表面”是当使用时可能导致和生物流体接触的一种产品。生物流体是指动物如人类的体液,如眼泪、血液、尿、汗和唾液。代表性的例子包括生物医学设备,如人造器官(如人工心脏、人工血管、人造骨、起搏器等)、隐形眼镜、夹板、诊断仪器(如导管)、体液的存储容器、和实验室中使用的实验器皿(如试管、烧杯等)。更进一步,支撑物表面可以是薄膜状结构,它是由置于聚合物胶束中间的高分子量化合物组成。术语“薄膜状”是指基材不必是整个结构都是连续的薄膜。另外,支撑物表面可以是药物可接受的载体。
优选支撑物表面为生物医学设备;最优选生物医学设备是隐形眼镜和眼内透镜。
这里所用的术语“支撑物表面”指胶束固定在上面的未处理表面,也指已处理、包覆或修饰过的表面,以增强或提高它上面胶束的固定性。优选胶束是通过共价键固定在生物医学设备上的。例如,如下所述,一些表面上可以有羟基,有羧酸或羧酸酯在其上面的胶束可以在酯形成的条件下反应,以形成一种酯,其中在表面上的氧原子和胶束的酰基形成共价键。另一方面,表面可以进行修饰或处理以和胶束形成共价键,如此处理过的表面被归类为术语“支撑物表面”范围内。例如,如果表面有羟基,则支撑物可以放入惰性溶剂中,如四氢呋喃、和氯仿。然后将表面的羟基tresylated,一旦tresylated,可以在乙二胺的水溶液中将支撑物表面胺化,这导致将基团-NH-CH-CH2-NH2键合到其上面的碳原子,该碳原子被键合到其上面的被取代的羟基上。除掉未反应的二胺,然后将如此处理的表面和其上面的羧酸基在形成酰胺的条件下反应,以形成酰胺化合物,这样在含有氨基基团的被修饰表面和胶束的芳基之间形成共价键。另外,可以用非胶束包覆层包覆表面,该包覆层上面含有氨基,包覆层上的氨基可以和胶束的羧酸基反应。因此,当定义在支撑物表面和胶束之间共价键的固定和/或形成时,术语“表面”包括通过在表面上放置包覆层的表面修饰。
优选支撑物表面和胶束之间的固定是这里所描述的共价键连接。
包覆层可以是单层或可以超过一层或多层。这里所用的术语“多层”指两层或更多层。如果是超过一层,优选其至少含两层,更优选2-10层,更优选2-6层。优选包覆层包括多层胶束。
形成包覆层的聚合物胶束具有预定的厚度,不论是否使用单层或多层。单层优选厚度为,按照大小顺序超过0.05微米,更优选单层厚度为大约0.1微米-大约0.5微米,最优选大约0.1微米到大约0.3微米。
当是多层时,每个胶束层可以与复合物的其它层有着相同或不同的厚度。然而,在每一层中,优选厚度一致。术语“水凝胶”为本领域内术语,指可以在水中充分溶胀,但不溶解在水中的宽范围的聚合物材料。然而,每一层的厚度通常通过在胶束中存在的不同基团来确定,如其上面的官能团、高分子聚合物化合物或可能存在的低分子化合物、亲水基团等。
如果胶束是单层的,它可以由一种聚合物胶束或更多种聚合物胶束组成,尽管优选它由一种聚合物胶束组成。如果是多层,不同层可以由一种聚合物胶束或更多种聚合物胶束组成。另外,甚至在每一层中,可以有一种聚合物胶束或更多种聚合物胶束的混合物。然而,优选每一层由一种类型的聚合物胶束组成。
在优选实施方案中,本发明能提供一个表面,它通过选择聚合物胶束层的层合数目来支撑所期望厚度的水凝胶层。优选地,如果被层合,则在支撑物表面上不超过10层,更优选最多为6层,包括6层。尽管如此,优选每层厚度大于0.05微米,更优选在多层方案中每层厚度为大约0.05微米-大约0.5微米,更优选大约0.05微米到大约0.1微米。
聚合物胶束单层或多层厚度可以通过本领域内已知的各种技术来调整,如用手术刀片平铺在支撑网上或在管中离心浇注。
如这里所述的本发明的一个具体实施方案中,胶束有一个亲水外壳和一个憎水内核。在这些条件下,支撑物表面和胶束之间的连接优选为亲水外壳和支撑物表面之间的共价键。
或者,胶束可以有一个憎水外壳和一个亲水内核,即反胶束。在这些条件下,优选支撑物表面和胶束之间的连接是憎水外壳和支撑物表面之间的共价键。如果胶束为反胶束,优选多层胶束是这样形成的反胶束层和憎水外壳夹着一个普通胶束,即一个外层是亲水层、内层是憎水层的胶束。这在不同层之间形成一个稳定的相互作用,因为反胶束的亲水内核面对着普通胶束的亲水外壳,而不面对或与普通胶束的憎水内核相互作用。
这里所用的,除非所指相反,术语“胶束”可以包括“普通胶束”和“反胶束”。如这里所注明的,术语“普通胶束”是有一个亲水外壳和一个憎水内核的胶束,而反胶束则相反,即一个憎水外壳和一个亲水内核。
如上述所示,本发明涉及一个被包覆的支撑物,优选一个被包覆的生物医学设备,其中包覆层至少包括一种共价键合到生物医学设备表面的聚合物胶束,该胶束被固定在支撑物表面。优选胶束被键合到支撑物表面。同样优选胶束有一个亲水外壳,它被共价键合到生物医学设备的表面,和一个憎水内核,尽管憎水外壳被共价键合到支撑物表面的反胶束也被考虑在本发明的范围内。不论使用普通或反胶束,该胶束由嵌段共聚物组成,其HLB值为大约1-大约40。
HLB(亲水亲油平衡)是本领域术语,它对于本领域内技术人员而言相当熟悉。它是指在非离子分子中亲水和亲油部分的含量。它的定义和应用描述在ICI Americas公司出版的“HLB系统”中。
具有表面活性的嵌段共聚物根据分子中的亲水和亲油部分的比例来分类。大量商业乳化剂,如表面活性剂,已经指定了亲水/亲油平衡(HLB)数。在一些情况下,从分子结构来计算该数,在另外一些情况下,基于实验乳化数据来计算。另外,HLB值已通过其它方法确定,如雾点法、气相色谱、临界胶束浓度和NMR光谱。优选用结构法计算HLB值。一个用来确定非离子物质,包括胶束的HLB值的常用公式为20×(MH)/(MH+ML)方程I其中,MH为亲水部分的分子量,ML是憎水部分的分子量。例如,在本发明中使用的一个嵌段共聚物有如下分子式T-[氧乙烯]35-[甲基丙烯酸甲酯]28-U其中T和U是连接到支撑物的锚着基团,有
HLB=(20)[1540/(1540+2800)]=7.1。
除非所指相反,上述所指的HLB值是指通过结构法获得的HLB值,更精确的说是根据如上所述的方程I计算得来。
在优选的具体实施方案中,在本发明中所用的嵌段共聚物的HLB值为大约4-大约20。
嵌段共聚物和由它所得的胶束包括亲水(水溶性的)部分和憎水部分。优选胶束有一个亲水外壳和一个憎水内核。
嵌段共聚物和胶束的优选水溶性(亲水)区域包括聚乙二醇、聚氧乙烯、聚乙烯醇、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯基吡咯烷酮等。最优选亲水部分是聚乙二醇、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯基吡咯烷酮或聚乙烯醇。最优选亲水核为聚乙二醇。
通过不可水解的化学键以酰胺键、醚键、酯键、硫键、胺键等连接方式将憎水聚合物链段接到亲水聚合物上,该化学键如碳-碳键。
这里所用的憎水聚合物链段可以从任何聚合物衍生而来,条件是当相应的嵌段共聚物溶解或分散于能溶解该憎水聚合物链段的溶剂时形成稳定的聚合物胶束。优选的憎水聚合物链段包括由乙交酯或丙交酯衍生而来的聚(α-羟基羧酸);由γ-内酯或δ-内酯或ε-内酯衍生而来的聚(ω-羟基羧酸);或那些由聚(α-羟基羧酸)类和聚(ω-羟基羧酸)类的共聚物衍生而来的。憎水聚合物链段在一端可以有一个烯键式不饱和可聚合基团,它和憎水聚合物链段被键合到亲水聚合物链段的那一端相反。可以从(甲基)丙烯酸或乙烯基苄氯引入这种可聚合基团。另外,在聚合物胶束形成之后可以将这种可聚合基团进行聚合反应,并且因此导致和支撑物表面的聚合(交联)状态。在这种状态下,聚合物胶束本身更加稳定。
另一方面,亲水聚合物链段在一端具有官能团,和键合到憎水聚合物链段的那一端相对。因此,在一个优选实施方案中,当嵌段共聚物形成聚合物胶束时,该官能团存在于该聚合物胶束的表面或接近表面,因而形成普通胶束。此官能团优选用来将聚合物胶束共价键合到支撑物表面,并且当存在时,高分子量聚合物化合物或多官能度低分子量化合物位于聚合物胶束之间。胶束上的亲水和憎水聚合物链段可以有一种以上官能团,这些官能团可以相同或不同。存在于嵌段共聚物中的官能团的例子包括醛基、羧基、羟基、巯基、氨基等。如果高分子量聚合物化合物或多功能度低分子量化合物存在,它们具有官能团,它们当中的一些可以键合到聚合物胶束上。其上面的这些各种官能团可以相同或不同,并且它们可以和胶束的亲水或憎水部分上的官能团相同或不同。
最优选聚合物胶束由一种嵌段共聚物形成,该共聚物由亲水聚合物链段和憎水聚合物链段组成,亲水聚合物链段基本包括聚乙二醇(以后有时缩写为PEG)。短语“基本包括”是指PEG占亲水聚合物链段的主要部分,并且在PEG链或在亲水和憎水聚合物链段之间可以有一定数量的一些连接基团等,一般该连接基团对该链段的亲水性没有影响。然而,优选PEG链仅由PEG组成。
在Kataoka等人的美国专利5,925,720、Sakarai等人的5,412,072、Kataoka等人的5,410,016、Kataoka等人的5,929,177、Sakurai等人的5,693,751、Yokoyama等人的5,449,513、WO96/32434、WO96/33233和WO97/0623中找到了可以用来制备本发明胶束的嵌段共聚物的例子,该胶束可以用来包覆支撑物表面,将所有这些专利的内容合并到参考文献中。通过在其上面引入合适的官能团(包括烯键式不饱和可聚合基团)对它们的改性也可以作为嵌段共聚物的例子,本发明的胶束优选由该嵌段共聚物制备。优选的嵌段共聚物在那些上面提到过的专利或国际专利出版物中已经公开。如果嵌段共聚物在亲水聚合物链段一端有糖残基,和WO96/32434中的嵌段共聚物一样,应优选将糖残基进行Malaprade氧化反应,以形成相应的醛基。
嵌段共聚物的例子由下列分子式(I)、(II)、(III)表示分子式(I) 其中,L代表下列分子式的化合物 或 其中,R1和R2独立地指氢原子、C1-10烷基、芳基或芳基-C1-3烷基;r指2-5的整数,和其中,m指2-10,000的整数;n指2-10,000的整数;p指1-5的整数;和z指乙酰基、丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基;或下述分子式(II) 其中,X指具有1-10个碳原子的烷基,它有一个氨基、一个羧基或一个巯基;Y指下述分子式的基团或 其中,R11和R12独立地指氢原子或C1-5烷基;R3指氢原子或甲基;R4指被羟基取代的C1-5烷基,该羟基可以被保护;和q指2-5的整数,以及其中,z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基;m指2-10,000的整数;以及,n指2-10,000的整数;或下述分子式(III) 其中,A指从有如下分子式的糖残基通过Malaprade氧化反应衍生而来的基团 其中,虚线(---)之一指单键,而另一个指氢原子;和a和b独立地指0或1的整数,以及其中L1指下述分子式的连接基团 或 其中,R5和R6独立地指氢原子、C1-6烷基、芳基或C1-3烷芳基;以及其中,m指2-10,000的整数;n指2-10,000的整数;和z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基、或乙烯基苄基。
如这里所用的,除非所指相反,当单独使用或和其它基团结合时,烷基指含1-6个碳原子的低级烷基。碳原子可以是直链或支化的。例子包括甲基、乙基、丙基、异丙基、丁基、仲丁基、异丁基、叔丁基、戊基、新戊基、己基等。
当单独使用或和其它基团结合时,术语链烯基指含2-6个碳原子的低级链烯基。链烯基可以含有1个或多个碳-碳双键,最多3个;然而,优选含有2个并且更优选1个碳-碳双键。链烯基可以是直链的或支化的。例子包括乙烯基、1-丙烯基、2-丙烯基等。
当在这里单独使用或和其它基团结合时,芳基指仅含有环碳原子并且含有2k+2个环碳原子的芳香部分,其中k是1、2、3或4。芳基可以是单环、双环、三环或四环;如果它含有一个以上的环,这些环互相融合在一起。芳基可以被较低碳原子数的烷基所取代。因此,芳基可以含有6-18个环碳原子且总数为6-25个碳原子。例子包括苯基、甲苯基、二甲苯基、萘基、α-萘基等。
优选聚合物胶束是由上述提到的嵌段共聚物形成的,其中亲水聚合物链段的末端官能团被保护(例如,在醛基的情况下,则它被缩醛化或缩酮化,在氨基的情况下,它被氨基保护基团所保护),以及,然后进行解封闭反应。当在憎水聚合物链段的末端有烯键式不饱和可聚合基团时,在聚合物胶束形成之后,每个嵌段共聚物可以通过该可聚合基团进行聚合交联反应。
如果聚合物胶束的包覆层为单层,则优选其包括上面所述的分子式I-III的成分。如果包覆层被层合,则优选包覆层至少包括由两种聚合物胶束层组成的一系列层,由至少一种上述分子式I-III的聚合物胶束形成。
胶束的层合层可以通过碳-碳键交联。例如,胶束可以含有内部碳-碳双键或它们的侧链可以含有碳-碳双键。可以通过把胶束暴露于电子束辐射来将它们交联在一起,辐射可以产生自由基。然后随机偶合形成层。一般地,将溶液暴露于足够的电子辐射,以实现自由基的形成。例如,电子辐射范围可以为大约1-大约10兆拉德。或者,可以通过向惰性溶液中的胶束加入光引发剂,并将溶液暴露于足够波长的可见光或紫外光以形成自由基,将胶束交联在一起。然后随机偶合形成层。一般地,将光引发剂暴露于足够波长的光以形成自由基,它接着在胶束内发生反应,尤其是碳-碳双键以实现胶束内自由基的形成。
或者,各层可以和高分子量聚合物化合物共价键合,该化合物有一种或多种官能团(“另一种类的”官能团),该官能团可以和聚合物胶束中嵌段共聚物上的官能团共价键合,或和多官能度低分子量化合物键合,该化合物有至少2种,优选2或3种该“另一种类的”官能团,该高分子量聚合物化合物和多官能度低分子量化合物都位于所述2层聚合物胶束层中间。接着,不同层通过上述高分子量聚合物化合物或多官能度低分子量化合物的“另一种类”官能团中的一种和聚合物胶束内嵌段共聚物上的官能团之间的共价键相互键合。或者,最外层可以是上述高分子量化合物的一层,在这种情况下,它的一端和表面支撑物键合,并通过共价键在另一端和胶束层键合。支撑物表面上的官能团和高分子量聚合物的官能团之间具有反应活性,并且在支撑物表面和高分子量聚合物之间形成共价键。另外,胶束上的官能团和高分子量聚合物另一端的官能团反应,它们之间具有反应活性并在它们之间形成共价键。
在高分子量化合物上被取代的官能团的例子包括和醛可共价键合的氨基(由醛基形成的Schiff碱,并且氨基可进一步被还原);和羧基可共价键合的羟基和氨基;和羟基可共价键合的羧基和磺基;或和氨基可共价键合的巯基。可以在如下已知的反应条件下形成这种共价键,如氧化还原条件、脱水缩合条件、加成条件、和取代(或替换)条件。
高分子量聚合物化合物是分子量超过大约8000道尔顿,更优选超过大约10,000道尔顿的聚合物,并具有氨基、羧基、硫代基或磺基官能团。优选高分子量聚合物分子量少于大约500,000道尔顿,更优选少于大约300,000道尔顿。
上述高分子量聚合物化合物为天然产品或合成产品。这些含有氨基的例子包括聚链烯基胺,如聚烯丙基胺、聚乙烯基胺等;碱性氨基酸聚合物,如多熔素、甲壳素和聚乙烯亚胺。这些含有羧基的高分子量聚合物的例子包括聚(甲基)丙烯酸、聚丙烯酸、羧甲基纤维素和藻酸等,这些含有磺酸基(或硫酸基)的高分子量聚合物的例子包括肝素和聚苯乙烯磺酸等。
低分子量化合物优选分子量不超过200道尔顿,更优选这些化合物的分子量范围是大约17-大约120道尔顿,两者都包括在内。多官能度低分子量化合物的例子包括低级亚烷基二胺(如乙二胺)、戊二醛、乙二硫醇等。
在低分子量化合物上被取代的官能团的例子包括和醛可共价键合的氨基(由醛基形成的Schiff碱,并且氨基可进一步被还原);和羧基可共价键合的羟基和氨基;和羟基可共价键合的羧基和磺酸基;或和氨基可共价键合的巯基。可以在如下已知的反应条件下形成这种共价键,如氧化还原条件、脱水缩合条件、加成条件、和取代(或替换)条件。
用本领域内已知的技术将高或低分子量化合物与嵌段共聚物进行反应。嵌段共聚物在其末端具有官能团,如羟基、氨基、羧基、硫代基,或在其末端可以具有本领域内已知的离去基团,如卤素、磺酸酯,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯等。高分子量或低分子量化合物在其末端也具有官能团,如羟基、氨基、羧基、硫代基,或在其末端可以具有本领域内已知的离去基团,如卤素、磺酸酯,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯等。嵌段共聚物和高分子量或低分子量化合物在有效条件下反应以形成产物。在此反应中,产物可以通过置换(取代)形成,或可以在形成酰胺的条件、形成酯的条件下形成产物,取决于嵌段共聚物上的官能团和高分子量或低分子量化合物上的官能团。
例如,在一个实施方案中,化学反应可以用下述方程代表X1-(A1-B1)-X2+Y1-Rx-Y2→Y1-Rx-Y2-X1-(A1-B1)-X2-Y1-Rx-Y2其中,(A1-B1-A1-B1)为嵌段共聚物;A1是亲水链段;B1是憎水链段;X1和X2相同或不同,并代表能和Y2和Y1分别形成共价键的基团;Y1和Y2相同或不同,并代表能和X2和X1分别形成共价键的基团;以及Rx为低分子量或高分子量化合物。
例如,用这种技术,高分子量或低分子量化合物可以通过酰胺( 或 ),或酯键连接( 或 )键合到嵌段共聚物上。
然而,在一个不同的例子中,X(即X1和X2)中只有一个是离去基团,而Y(即Y1和Y2)为官能团,如羟基、硫代基、氨基等。在这些环境下,反应如下X1-(A1-B1)-X2+Y1-Rx-Y2→Y1-Rx-Y2-(A1-B1)-Y-Rx-Y2其中,A1、B1、Rx、Y1和Y2和上述定义一样,X1和X2为离去基团。
例如,用这种方法,低分子量或高分子量化合物可以通过醚键、硫代键或氨键和嵌段共聚物键合。
相似的,如果X1和X2为官能团,Y1和Y2为离去基团,则得到如下产物X1-(A1-B1)-X2+Y1-Rx-Y2→Y1-Rx-X1-(A1-B1)-X2-Rx-Y2其中,A1、B1和Rx如上述所定义。
在另一个不同实施例中,X1、X2、Y1和Y2为离去基团;在这种方式下,在嵌段共聚物和低分子量或高分子量化合物之间形成碳-碳共价键X1-(A1-B1)-X2+Y1-Rx-Y2→Y1-Rx-(A1-B1)-Rx-Y2如上述所示,所有这些反应在足以形成所需产物的条件下进行。
和表面进行同类的反应,如下所述。
支撑物表面由玻璃、硅晶片、聚丙烯等制成,并且它也可以含有上述官能团。支撑物表面可以未加处理或按这里所述方法进行处理或修饰。支撑物表面用本发明的胶束进行包覆。一层胶束可以包覆支撑物表面或可以用超过一层的胶束包覆。如果为多层的,胶束可以含有夹在层之间的高分子量化合物。或者,胶束可以含有夹在层之间的低分子量化合物。在另一个方案中,胶束的层可以被交联。另外,如果由超过两层的胶束包覆支撑物表面,多层胶束可以含有这些方案中的任何组合。更进一步,支撑物可以通过已知方法用高分子量聚合物化合物进行物理或化学处理。这种方法的例子在

图1中示意说明。
当本发明的聚合物胶束被放在水中时,形成水凝胶。术语“水凝胶”是指宽范围的聚合物材料,它在水中充分溶胀,但不溶解在水中。
可以通过本领域内已知技术或通过使用上述技术或以前提到的专利和PCT申请中的任何技术来生产本发明的聚合物胶束,所有这些的内容引为参考文献。
然后将包覆层应用到支撑物表面。为了保证包覆层固定,优选聚合物胶束和支撑物表面形成共价键。这可以通过本领域内已知的技术实现,例如通过如下步骤(A)将表面含有官能团的聚合物胶束分散体和表面含有其它官能团的支撑物表面接触,支撑物表面上的官能团可以和聚合物胶束中的官能团反应,然后让支撑物表面和聚合物胶束上的相应官能团在能有效形成共价键的条件反应,并且,如果必要的话,从由此形成的共价键合物质中除去未反应的聚合物胶束。
如果将多层包覆层应用到支撑物表面,则仍然使用上述的步骤A。然而在多层包覆层的情况下,在包覆支撑物表面的工艺中还使用2个附加步骤。
(B)将由此形成的已和底基共价键合的聚合物胶束层和一种溶液接触,该溶液含有含大量上述官能团的高分子量聚合物化合物或至少有2种,优选2种或3种上述官能团的多官能度低分子量化合物,并且该高分子量化合物或该多官能度低分子量化合物聚集在所述聚合物胶束层上,并且,然后,将高分子量聚合物化合物或低分子量化合物的官能团和步骤A产物的聚合物胶束上的官能团在能有效形成共价键的条件下进行反应,并且,如果必要的话,除掉未反应的高分子量或低分子量化合物;和(C)将由此得到的步骤(B)的层合物和前面所述的聚合物胶束分散体进一步接触,该层合物中高分子量聚合物化合物或低分子量化合物已共价键合,将聚合物胶束聚集在该层合物的高分子量聚合物化合物或多官能度低分子量化合物层上,并且,然后,将该高分子量或低分子量化合物和聚合物胶束共价键合,并且,如果必要的话,除掉未反应的聚合物胶束,以及如果必要的话,进一步重复该步骤(B)和(C)。
上述B和C中的这些反应如上所述进行。
采用自由基形成技术可以将聚合物胶束固定在任何几何形状的支撑物表面上,如和光引发剂结合的电子束辐射或UV或可见光。根据本方法,聚合物胶束在足以提供足量的聚合物胶束来覆盖支撑物表面以达到所需厚度的浓度下溶解或悬浮于水性溶液中,优选水。优选浓度范围是大约0.5mg/mL-大约15mg/mL,两头均包括在内,并更优选大约1mg/mL-大约5mg/mL,两头均包括在内。然后将所得溶液沉积在支撑物表面上,采用本领域内已知的技术,如喷涂、刮涂、将支撑物浸入胶束溶液中等。如果聚合物胶束含有可聚合基团,如在甲基丙烯酸、乙烯基苄基或乙烯中的碳-碳双键,则可以通过本领域内普通技术人员所熟知的方法将聚合物胶束共价键合到支撑物表面。
另外,在形成表面和胶束之间的共价连接之前可以对支撑物表面进行处理。
以下阐明工艺。例如,如这里所定义的,可以将由氢气和氮气制备的等离子体,如2份氢气和1份氮气施加到本发明所定义的支撑物上。此等离子体在支撑物表面上产生氨基。具有醛基官能度的聚合物胶束可以在还原性氨基化的条件下和表面反应,以和支撑物表面形成共价键。烯丙基胺等离子体是处理底基(或医学设备)表面的另一种方法,以在表面产生胺基位点并且它可以和胶束反应。除了使用氢气和氮气的混合物之外,在等离子体反应器内引入烯丙基胺蒸气,并且在支撑物表面产生氨基,它可以和醛基或酮基在还原性氨基化条件下发生反应。
或者,如果胶束上有羧基,聚合物胶束可以在形成酰胺的条件下和含有氨基的表面反应。
通过用含有所述官能团的等离子体包覆底基,可以将其它官能团接到底基表面上。例如,可以用含有羧基的等离子体包覆底基。因此,如果胶束含有羟基,等离子体包覆的表面和胶束在形成酯的条件下反应,以在胶束和等离子体包覆的表面之间形成酯键连接。或者,如果胶束含有氨基,胶束和等离子体包覆的表面在形成酰胺的条件下反应,以在胶束和等离子体包覆的表面之间形成酰胺键连接。
需要指出的是,可以用本领域内技术人员熟知的氧化剂来氧化表面上的羟基以将羧基接到表面上来形成羧酸,然后它可以和胶束上的羟基或胺基反应,以分别形成如上所述的酯或酰胺。因此,通过将表面暴露于一种试剂,该试剂上固定有可以和胶束上(或高分子量或低分子量聚合物或低分子量化合物)的基团反应的基团,活化表面以和胶束(或高分子量聚合物或低分子量化合物)形成共价键。或者,胶束可以暴露于一种试剂,该试剂上固定有可以和表面上的官能团反应的基团。溶液中的聚合物胶束可以交联在一起,且可以通过将其置于形成自由基的条件下交联到表面上,形成自由基的条件如电子束辐射或加入光引发剂并随后暴露于光线或UV光,它可以在胶束上产生自由基。自由基之间的交联形成共价键。一般地,如果使用电子束辐射,含有表面和聚合物胶束的溶液暴露于强度范围是大约1-大约10兆拉德的电子射线,最优选4兆拉德。γ射线可以用作辐射源,但可能导致聚合物胶束的降解,除非小心地除去氧气。或者,可以向溶液中加入光引发剂,然后将含有光引发剂和聚合物胶束的溶液暴露于足够波长的光线或紫外光,以形成自由基。通过自由基偶合的交联在胶束层和表面之间随机发生。例如,在优选实施方案中,胶束由PEO支链组成。如果PEO支链含有烯键式不饱和基团,则采用上述技术交联实现。由于PEO含有几个羟基,所以保留端羟基以用于后续活化反应,如将亲和配位体偶联到PEO支链上。交联增加胶束的稳定性。
在另一个实施方案中,聚合物胶束可以通过端羟基的tresylation共价固定到支撑物表面上。下述实施方案对PEO亲水基团具有说明性,但要理解的是这只是例证性的,下述技术对其它亲水基团也适用。
在固定前支撑物表面和聚合物胶束均被预处理。这样,支撑物表面应该含有将tresylated聚合物胶束固定到其上面的活性官能团,如氨基和/或硫代基。相似的,在和支撑物表面接触前将聚合物胶束在合适的溶剂中tresylated。对PEO亲水基团来讲,tresylation尤其方便,这是由于PEO通过合适的介质被溶解到tresyl氯中(例如二氯甲烷、氯仿)。此方法导致在支撑物表面上形成单层水凝胶包覆层。
根据此方法,含有聚合物胶束的有机溶剂,如二氯甲烷在能有效将tresyl基团固定到聚合物胶束的PEO端羟基上的条件下被暴露于tresyl氯。然后将所得的tresylated PEO聚合物胶束沉淀并回收,最终作为干燥的活性产物。刚刚在使用前,将tresylated PEO聚合物胶束溶解于pH值为10或更高的水性溶液中,以促进与已存在于支撑物表面的氨基和/或硫代基的反应。在聚合物胶束共价键合到支撑物表面上厚层的条件下,将pH调节后的溶液和含有氨基和/或硫代基的支撑物表面接触。
除了tresyl氯,也可以使用其它试剂和PEO链的端羟基反应。这些试剂包括甲苯磺酰氯(对甲苯磺酰氯)、甲磺酰氯(甲烷磺酰氯)、表氯醇、氰尿酰氯、(C3N3Cl3)、羰基二咪唑(CDI)和琥珀酸酐与丁二酰亚胺的混合物。Harris一般性地描述了这些反应,“聚乙二醇衍生物的实验室合成”,J.Macromolecular Sci.Reviews in Macro.Chem.Phys.,C25(3),325-373(1985),其内容被并入参考文献。例如,端羟基聚氧乙烯和甲苯磺酰氯或甲磺酰氯反应分别生成甲苯磺酰化的或甲磺酰化的聚合物胶束。在这两种情况下,活化的PEO支链可以和任何含有氨基或硫代基的分子反应。含有氨基或硫代基的化合物与活化PEO支链反应释放的副产物包括tresyl、甲磺酸或甲苯磺酸、HCl(氰尿酰氯的反应)、咪唑(CDI)的反应、或N-羟基丁二酰亚胺(琥珀酸酐与丁二酰亚胺的反应)。在表氯醇的反应中没有释放副产物。因此,含有氨基或硫代基的任何分子,例如可以通过形成稳定的NC或SC键而共价连接到tresylated、甲苯磺酰化或甲磺酰化的聚氧乙烯链上,清除相应的磺酸、tresyl、甲苯磺酰基或甲磺酰基。
在另一个实施方案中,亲水基团在其上面可以有羧基,并且可以对表面进行预处理以在其上面形成氨基或羟基。然后在形成酰胺或酯的条件下将表面和聚合物胶束进行反应,以形成相应的酰胺或酯。相似地,可以对表面进行改性,以使其上面有游离的羧基,在聚合物末端的官能团可以是氨基或羟基。另外,胶束和表面在形成酰胺或酯的条件下发生反应,以分别形成相应的酰胺或酯。另外,可以对表面进行预处理,以使其具有游离羟基、氨基或硫代基。聚合物胶束在其末端有一个离去基团,如卤化物或磺酸酯,如,对溴苯磺酸酯、甲苯磺酸酯或甲磺酸酯等。聚合物胶束和表面在置换或取代条件下发生反应,以形成相应的醚键、胺键或硫代键。在另一个实施方案中,如果表面含有碳-碳双键且聚合物胶束末端有碳-碳双键,则可以采用这里描述的技术通过自由基反应发生交联。在这种方式下,采用本领域内常用技术,通过选自下列的共价键将亲水或憎水核键合到生物医学设备的表面 -O-,-S-, 和CH2CH2.
通过用胶束包覆支撑物,如生物医学设备(该胶束由HLB值范围是大约1-大约40的嵌段共聚物组成),根据本发明,生物医学设备基本上没有污染物,尤其是蛋白质。尽管不结合理论,但认为胶束会排斥蛋白质,因此保持生物医学设备的表面没有污染物。当将生物医学设备插入动物体内时,优选哺乳动物,如狗、猫、牛、马、尤其是人,这尤其有用。作为后果,当插入的生物医学设备用这里所述的胶束包覆时,就有更少的污染和更少被感染的危险。
本发明提供了一种稳定的表面,其中控制含有聚合物胶束的水凝胶层的厚度范围在几十纳米到超过100纳米。
聚合物胶束可用作客体系统,如分子的载体。例如,当将生物医学设备插入或放入病人体内时,具有亲水外壳和憎水内核的聚合物胶束可以是一个载体,在其内部含有可以释放的憎水药物。当该表面和该憎水药物在升温条件下在水性溶剂中接触时,在聚合物胶束内部可以充入药物。药物以药物学有效的数量存在。在室温条件下,这种药物可以慢慢释放到水性介质中。本发明人发现,可以通过采用多层胶束来控制药物释放速率。更详细地说,他们发现胶束层越多,药物释放越慢。因此,本胶束系统能有效控制药物释放。需要指出的是,也可以通过将之前已经填充了药物的聚合物胶束层合来进行药物填充。优选药物被吸附到支撑物表面。不管怎样,支撑物表面的药物连接是可生物降解的,即,当被插入动物体内时易于除掉。如果将药物共价键合到表面,则共价键是这样的它被动物体内的酶水解。
这里所用的术语药物包括药剂、治疗剂、维生素、营养补充剂等。
发明人发现通过用这里所述的胶束包覆表面,本方法提供了一个显示出优秀生物亲和性的表面。
可以使用任何制剂药物如,例如,抗癌药、中枢神经药物、外周神经药物、过敏药物、循环器官药物、呼吸器官药物、消化器官药物、荷尔蒙药物、抗生素、化疗药物、维生素、食品补充剂等。
这里所述的聚合物胶束的另一个用途是在隐形眼镜的生产中,尤其是在Larsen等人的美国专利4,680,336、Kindt-Larsen等人的4,889,664和Kindt-Larsen等人的5,039,459中所述的隐形眼镜,所有这些内容在这里都被并入参考文献。例如,根据任何前述专利的工艺制备的隐形眼镜都可以用这里所述的聚合物胶束包覆。可以包覆一层或超过一层。采用这里所述的技术可以将聚合物胶束共价键合到合适的本领域熟知的隐形眼镜材料上,如美国专利4,680,336、5,039,459、4,889,664中所述的聚HEMA水凝胶隐形眼镜。例如,可以将隐形眼镜材料浸入含有聚合物胶束的溶液,并暴露于上述形成自由基的离子化辐射条件下,以将聚合物胶束共价键合到隐形眼镜表面。或者,可以通过在其表面生成氨基或硫代基对隐形眼镜材料表面进行改性。然后将被改性的透镜材料暴露于活化聚合物胶束,如上述的tresylated衍生物。
与未用这里的胶束包覆的隐形眼镜相比,用本发明聚合物胶束包覆的隐形眼镜材料具有几个优点。更详细地说,由于聚合物胶束的性能,使用被包覆的透镜材料,基本上减少或消除了眼睛的天然酶分泌物中蛋白质沉积物的吸附。因此,由于降低了蛋白质吸附,被包覆的透镜将不会变得黯淡或模糊。
另外,本发明的胶束有减少微生物污染,包括细菌污染的能力。
而且,被包覆的隐形眼镜具有更好的保水能力,并因此而不太可能干透。
此外,根据本发明,这样包覆的隐形眼镜可以用作客体分子,如药物的载体,其中根据这里所述的工艺将药物共价键合到被包覆的隐形眼镜,然后药物从隐形眼镜通过眼睛释放到体内。或者,将客体分子,如药物包埋在生物医学设备中。例如,将药物掺入制备生物医学设备的材料中。因此,例如,如果生物医学设备是隐形眼镜或眼内透镜,将客体分子,如药物加入单体混合物,然后根据在美国专利4,680,336、5,039,459和4,889,664中所述的工艺将其固化在透镜中。然后,在插入动物体内,如眼睛后将药物从其中释放。或者,可以将客体分子结合到或包埋到胶束内或可以将其共价键合到胶束上。如果包埋到胶束内,在插入动物体内后,释放被包埋的客体分子。如果是共价键合,和药物被共价键合到生物医学设备上的情况一样,通过酶解切断(水解)将其释放。此外,可以控制药物分子的释放,尤其是如果使用多层。不管怎样,客体分子的用量为有效发挥其功能的程度。例如,如果客体分子是药物,则其用量为和其功能相关的对治疗有效的量。
因此,例如,上述的胶束可以用作药物载体以治疗眼疾。如上所述,通过本领域内已知的技术将药物加入隐形眼镜,并且用上述聚合物胶束包覆隐形眼镜。将具有包覆层和药物的隐形眼镜插入眼睛。如果希望可控释放,可以用层合胶束包覆隐形眼镜。当插入眼睛时,眼睛中存在的酶可以切断含有药物的胶束,从而将药物传送到所需位置。
另外,当药物是粘蛋白或粘蛋白状结构时,如聚丙交酯或聚乙醇酸,胶束包覆层作为治疗干眼综合症的载体是有用的。
在通常条件下,眼睛流体形成大约7-10微米厚的薄层,它覆盖住了角膜和结膜上皮。此超薄层通过清除掉其上皮的微小表面不规则物为角膜提供一个光滑的视觉表面,润湿角膜和结膜上皮的表面,因此防止对上皮细胞的损伤,并且通过机械冲刷来阻止角膜中结膜上微生物的生长。
泪液膜通常包括三层结构。最外层是由硷板腺的分泌物衍生的脂质层,并被认为是阻止水层的蒸发。中间水层是由主要和次要泪腺提供的,并含有水溶性物质。最里的粘液层由糖蛋白和粘蛋白组成,并位于角膜和结膜上皮细胞上面。上皮细胞膜由脂蛋白组成,因此一般是憎水的。粘蛋白对润湿表面起着重要作用,让水性眼泪铺展在上面,并且通过降低眼泪的表面张力来润湿表面。在普通条件下,粘蛋白由结膜的杯状细胞提供,也可以从泪腺提供粘蛋白。
当任何泪液膜组分不足时,泪液膜将破裂,将在角膜和结膜上皮上形成干斑。三种组分(水、粘蛋白或脂质)中任何一种的不足会导致眼睛干涩。有多种形式的眼疾如角膜结膜炎。那些与风湿关节炎或其它结缔组织疾病结合的疾病被称作斯耶格仑氏综合症。
药物和隐形眼镜之间的连接是可降解的。粘蛋白类产物,如聚乙醇酸或聚丙交酯是憎水的,因此可溶于胶束中的憎水部分。因此当将含有药物和胶束的隐形眼镜放入眼睛时,通过生物方法可以很容易地将药物从隐形眼镜中除掉,并且胶束保持着粘蛋白类物质,它用来润湿眼睛。
除了聚丙交酯和聚乙醇酸,其它粘蛋白类物质,如胶原或明胶可以被吸附到隐形眼镜上,然后用这里所述的胶束包覆。胶原和明胶也可以溶于胶束。当放入眼睛时,胶原或明胶从隐形眼镜中释放出来,并润湿眼睛表面。
粘蛋白类物质,如聚乙醇酸、聚丙交酯、胶原和明胶在包覆层中以有效量存在。
如上所述,本发明的胶束减少微生物感染。例如,如果生物医学设备是隐形眼镜或眼内透镜,并用本发明的胶束包覆,隐形眼镜将减少微生物污染。胶束以基本上足以延迟或防止微生物污染的量作用生物医学设备的包覆层存在。
然而,为了进一步减少微生物(如细菌)污染,生物医学设备或胶束可以和抗菌剂结合使用。例如,通过混入用来制备生物医学设备的材料中,可以将抗菌剂包埋到胶束或生物医学设备中。例如,如果生物医学设备为隐形眼镜,根据美国专利4,680,336、5,039,459和4,889,664中所述的工艺将抗菌剂混入单体中,如聚HEMA。或者,利用这里所述的技术将其共价键合到生物医学设备或胶束上。在这种情况下,相对于没有抗菌剂的隐形眼镜,如果胶束或生物医学设备含有抗菌剂,可以减少微生物,如细菌对生物医学设备,如隐形眼镜或眼内透镜的污染。抗菌剂以足以延缓和/或基本上防止微生物污染的量存在于包覆设备或胶束中。
本发明提供了几个优点,尤其当亲水部分是PEG时。最重要的优点之一是可以通过简单的胶束包覆而容易地得到高密度的亲水部分,如PEG包覆层。而通过将PEG接枝到表面不容易达到此目的。尽管不结合理论,但认为这归因于胶束中PEG链的数目。
另外,本体系防止了接枝PEG的触发流动。这对甚至在环境发生重大改变,例如表面干涸时,还保持表面稳定是一个很大的优点。在干燥时接枝链向样品内部的迁移通常是个问题,尤其是对高迁移性表面的处理,包括硅氧烷。然而,本发明的包覆层避免了这个问题。
在下述实施例中对本发明有更详尽的说明。然而,这些实施例并不限制本发明。
实施例1乙缩醛封端的聚乙二醇-聚丙交酯嵌段共聚物(Acet-PEG-PLA)的生产在氩气氛围中,在一个反应器中加入30ml THF、0.147g 3,3-二乙氧基丙醇和3.0ml 0.34mol/l的萘化钾的THF溶液,在室温下搅拌10分钟。因此形成3,3-二乙氧基丙醇的钾化合物。向所得溶液中加入7.04g环氧乙烷,在室温和1个大气压下搅拌所得混合物。将所得溶液反应2天,然后,加入26.0ml 1.92mol/l的DL-丙交酯的THF溶液,将所得混合物继续搅拌2小时。然后,加入3.1g甲基丙烯酸酐,将所得混合物在室温下搅拌2天。将所得溶液倒入冷的2-丙醇,并且沉淀由此形成的聚合物。通过冷冻干燥从苯中纯化离心分离得到的沉淀物,产率为11.48g(79.4%)。根据GPC和1H-NMR,聚乙二醇(PEG)链段、聚丙交酯(PLA)和嵌段共聚物的分子量分别为5800、4000和9800。
实施例2Acet-PEG-PLA胶束的制备及其向醛基PEG-PLA胶束的转变将280mg实施例1中制得的嵌段共聚物溶解在40ml二甲基乙酰胺(DMA)中。用分级分子量为12-14000的渗析膜将所得溶液进行逆水渗析(2升2小时、5小时和8小时)。向所得渗析液中加入1N-HCl,以调节渗析液的pH值为2,并将所得混合物搅拌2小时。通过加入0.1N-NaOH水溶液来调节所得溶液的pH值为7。然后,用分级分子量为12-14000的渗析膜将所得溶液进行逆水渗析24小时。将由此获得的渗析液移入氩气氛围的烧瓶中,然后加入每胶束1.8(W/W)%的过硫酸钾,在脱气之后,将所得混合物在50℃下反应24小时。产品的动态光散射(DLS)测试表明颗粒尺寸和聚合物胶束的多分散度的示度μ/Γ2在聚合反应前后分别是(35.5nm,0.094)和(41.0nm,0.125)。在聚合反应前后几乎没有发现颗粒尺寸变化。
向2ml的聚合反应前后的产品溶液中各加入1ml十二烷基硫酸钠的水溶液(20g/l),并将所得溶液搅拌24小时,然后进行DLS测试。结果发现,尽管在反应前聚合物胶束几乎完全消失,但在反应后聚合物胶束保持着颗粒尺寸与多分散度的示度μ/Γ2为47.2nm和0.106。这表明聚合物胶束在反应后是如此稳定,以至于甚至用表面活性剂处理后都不分解。胶束在聚合反应前后是冷冻干燥的,在重氯仿中进行1H-NMR测试。发现由反应前观测到的端烯烃衍生的峰(5.6和6.2ppm)完全消失,这表明聚合效率很高。在这种情况下,在聚丙交酯末端的甲基丙烯酰基的聚合生成非常稳定的胶束。
实施例3底基(或底盘)的制备对于底盘,使用主要由载波片、硅片或聚丙烯制成的薄片。将载波片或硅片切割成合适的尺寸,并进行超声波清洗,接着在约100℃下用由30%H2SO4和H2O(体积比为1∶1)的混合液体进一步清洗,然后用纯水完全清洗。将由此处理的载波片或硅片碎片在常温下真空干燥16小时,然后将其在3-氨基丙基三乙氧基硅烷的甲苯溶液中浸泡3-4小时,接着在160℃下真空干燥。以这种方式,氨基因此被引入该碎片的表面。另一方面,当聚丙烯用作底盘的材料时,通过用N2∶H2(体积比为1∶2)制得的等离子体处理(Samco International;BP-1型;75W;30分钟)的方式将氨基引入底盘的表面。
对由此处理的表面进行ζ电位测量表明,在低pH值范围内表面为正极性。因此,证实了表面氨基的存在。
实施例4聚合物胶束层合包覆在常温下,将由实施例3中制备的表面有氨基的硅片(MitsubishiMaterial公司制造)在聚合物胶束溶液中浸泡2小时,该胶束根据实施例2的工艺制备,溶于0.04M HEPES[该溶液含有0.0032(w/v)%的NaCNBH3],浓度大约为1mg/ml。在通过用纯水洗涤除掉未结合的聚合物胶束后,进一步重复浸泡到聚合物胶束溶液和洗涤步骤,因此构成了层合型胶束-凝胶膜(见图1)。顺便提一下,在最终的胶束包覆层中,NaCNBH3的用量浓度为0.25%。
实施例5层合膜(聚合物胶束层;以后称作胶束包覆层)的特殊性能测试(a)原子力显微镜(AFM)测试用AFM测试实施例4中制备的胶束包覆层的厚度。对于表面形态,在单层的情况下,获得了一幅图象,其中胶束本身是固定在表面上的。然而,当包覆层数目增加时,发生了变化,不规则性也变得明显了。在接触模式下用悬臂的强力从用多层胶束包覆的表面切掉一块面积为1×1μm2的区域,然后,在轻拍模式下检查横截面。图2表明了厚度的变化,它是根据包覆层的数目来观测的。在单层中厚度大约为20nm,而在双层包覆层它变化到40-45nm,在三层包覆层中为80-90nm。
关于三层胶束包覆层,观察到在接触模式下切割下的面积随时间的进行减小了。尽管不结合理论,但认为在表面的层合膜中,胶束和聚烯丙基胺已经通过化学键交联;因此,用悬臂切割与压缩的层合膜逐渐恢复,导致切割面积的下降。
另一方面,当内核未聚合的胶束(或未进行聚合反应的聚合物胶束)是用作AFM测试的三层包覆时,在包覆薄膜内观测到破裂。尽管不结合理论,但认为在多层包覆层的薄膜中产生的张力导致其内核未聚合的薄膜的破坏,从而导致了破裂的形成。顺便说一下,在已聚合的胶束中未发现这样的破裂。
(b)ζ电位的测试在7.5mM的氯化钠溶液中测量上述胶束包覆层的胶束表面的ζ电位,pH值范围是2-11。图3为示意图。当胶束表面是最外层时,由pH值的变化导致的ζ电位的变化低达±5mV。另一方面,当聚烯丙基胺在最外层时,随着pH值增加至pH为8时,ζ电位较高,但是,当增加pH值超过pH=8时,ζ电位最终下降至0。在胶束表面和聚烯丙基胺表面,当包覆层最多为3层时,不管层合数如何,ζ电位保持不变。如图2所示,随层合数的重复厚度增加。如图3所示,尽管胶束层和聚烯丙基胺层之间的ζ电位差异很大,但仅有微小的差别是由层合数引起的。这表明,尽管由于层合而厚度增加,但胶束层和聚烯丙基胺层没有相互混合,而是以层合状层的形态存在。
(c)蛋白质吸附当用水凝胶如上述胶束包覆层来包覆表面时,尤其是当胶束为最外表面层时,希望阻止蛋白质的吸附。为了证实,用实施例1中制备的胶束层合凝胶包覆以上述方法已将氨基引入的丙烯底盘表面,并比较胶束表面和聚烯丙基胺表面的蛋白质(牛血清白蛋白BSA)吸附。将胶束包覆的样品浸入45μg/ml的BSA溶液,保持1小时。在轻轻漂洗样品后,用表面活性剂(十二烷基硫酸钠)脱除紧密吸附的蛋白质,并通过测量每单位体积内BSA吸附的BCA方法来测量由此脱除的BSA(分析生物化学,1985,150,76)。结果如图4所示。这证明了,当胶束在最外层时,抑制了蛋白质的吸附。当聚烯丙基胺在最外层时,观察到了高的蛋白质吸附。尽管不结合理论,但认为此现象归因于样品表面正电荷的存在,它导致了蛋白质BSA的静电相互作用,该BSA和聚烯丙基胺的正电荷表面发生了相互作用。然而,当用胶束包覆表面时,BSA吸附的减少表明该表面完全被胶束覆盖,胶束有效地屏蔽了聚烯丙基胺的变化。
总而言之,数据清晰地表明,胶束的多层包覆层有效地排斥蛋白质吸附在正电荷表面,聚烯丙基胺表面为轻微憎水。
(d)聚合物胶束中芘的加入和释放由上述方法制备的胶束形成水凝胶薄膜。因此,水凝胶薄膜含有憎水内膜。如下所示,向由胶束形成的凝胶表面的内核引入憎水药物是可能的。如下述数据所示,聚合物胶束中的药物释放将是可控释放。
芘用作模型药物。将芘的丙酮溶液加入烧瓶,以使芘可以聚集在烧瓶的内壁。在完全干燥后,将实施例2中的聚合物胶束溶液加入烧瓶,并在60℃下搅拌4小时。在溶液温度回到常温后,用0.4μm的过滤器除去不溶物。然后,根据实施例3的工艺,用不同数量的实施例1的产品包覆层来包覆由此得到的装有芘的聚合物胶束,层数范围是1-6层。具体的包覆层如下表中所述
表1.胶束对氨基化玻璃表面的包覆
*第三次包覆的包覆时间为一整夜。
将每一种层合物浸入水中,并随时间测量由底盘上的芘产生的荧光强度。结果如图5所示。
如数据所示,起始荧光强度依赖于包覆层数。3次包覆(3LO、3LE)的荧光强度为一次包覆(ML2、ML16)强度的2倍,6次包覆(6LE)的强度大约为10倍多。此结果表明,通过在表1所述条件下的包覆,胶束的多层可以连接到表面,并且此多层增加了表面上芘的数量。
另一方面,荧光强度下降的速率依赖于包覆条件以及包覆数目。起始荧光强度看上去和包覆数目密切相关。然而,包覆次数(ML2和ML16)的不同和Sciff碱(3LO和3LE)还原方法中的不同导致荧光下降速率的变化,如图5所示。应该注意的是,6层包覆显示了高的起始强度,并且强度与保温时间的对数曲线表明芘从表面的释放更加可控。尽管不结合理论,但认为在扩散过程中,可能已经发生了药物通过多层合胶束层重新分配到胶束中,使得以可控方式实现扩张药物释放。
(e)芘从表面包覆胶束的填充和释放为了确定能否将药物重复填充到胶束包覆样品中,同样研究了在胶束包覆后憎水试剂的填充。为了这个目的,将在实施例1中制备的胶束包覆样品暴露于含有芘的胶束溶液或水中。在和6LE相同的条件下,将没有芘的胶束溶液包覆在APTS的玻璃上。在和6LE相同的条件下将胶束溶液包覆到APTS玻璃上。然后将胶束包覆样品暴露于填充有芘的胶束溶液中,保持12小时。然后用水洗涤该样品,并在室温(~22℃)和4℃下在过量的水中保存12小时。在保存期间,定期测量样品的荧光。在水中的保存结束后,将样品暴露于填充有芘的胶束溶液中,保持12小时,然后在水中。图6显示了荧光强度的曲线(λex=336.2nm,λem=375nm)。
在暴露于填充有芘的胶束之后的荧光强度几乎和图5中的6LE的起始强度相同。在第一次循环(释放-填充,24h)之后,荧光强度恢复到起始水平。第二次循环也一样。第一次释放(0-12h)和第二次释放(24-36h)显示了相同的强度下降。这些结果表明,胶束包覆层是稳定的,并且可以重复填充和释放芘。第三次暴露(48-60h)是在4℃的水中。荧光强度的下降比头两次释放(暴露于22℃的水)要慢。尽管PLA链段的活动性也可能影响芘(憎水药物)从胶束的释放,温度可能同样影响芘在胶束中的扩散系数。如果填充比芘更大的分子,释放速率可能更低。
实施例6为了评价胶束层阻止分子自由渗透的能力,采用聚丙烯薄膜(25微米厚,45%的孔隙,0.25微米的孔径),即PP作为底基。用聚甲基丙烯酸羟乙基酯PHEMA覆盖薄膜,通过将聚丙烯薄膜浸入10%的甲醇溶液,并室温干燥,随后进行这里所述的等离子体处理。用前面所述实施例1的单层胶束和实施例4的多层胶束包覆此氨基化的样品。通过测量荧光素异硫氰酸酯(FiTC)右旋糖苷(从Sigma Aldrich公司购买)从薄膜的一侧到另一侧的扩散来测试右旋糖苷对样品薄膜的渗透。所用的仪器(4)如图7所示。样品薄膜(1)将容器的一侧和另一侧分开,其一侧装有PBS溶液(2),另一侧装有在PBS溶液中的0.1%(重量/体积)的FITC右旋糖苷溶液(3)。将容器的温度设定在25℃。每24小时取样3.0ml的PBS溶液,并通过样品荧光强度的变化测定右旋糖苷的渗透速率。
图8显示了右旋糖苷渗透通过胶束包覆薄膜的曲线。作为比较,同样显示了在和胶束包覆相同条件下,对有PHEMA的PP(聚丙烯)薄膜的渗透率以及用PEG-乙醛处理过的有PHEMA的薄膜的渗透率。当用PEG包覆PHEMA/PP薄膜时,右旋糖苷的渗透率增加。这归因于PHEMA表面的侵蚀。由多层胶束包覆层来补偿此侵蚀。胶束包覆层有效地覆盖了表面。在胶束包覆3层的情况下,由于胶束、聚烯丙基胺(PAIAm;重均分子量为10,000,可从日本东京Nittobo化学公司购买)形成的网络以及层厚度的增加,明显阻止了渗透速率。
以上优选实施方案和实施例用来说明本发明的范围与精神。这些实施方案和实施例将使得那些本领域内技术人员清楚还有其它实施方案和实施例。其它实施方案和实施例也在本发明的预期范围内。
因此,本发明仅通过权利要求书来加以限制。
权利要求
1.一种被包覆的生物医学设备,其中包覆层包括至少一种固定在所述生物医学设备表面的聚合物胶束,所述胶束有一个亲水内核与一个憎水外壳或一个憎水内核与一个亲水外壳,所述胶束由一种HLB值范围为约1-约40的嵌段共聚物组成。
2.按照权利要求1的被包覆生物医学设备,其中所述嵌段共聚物的HLB值范围是约4-约20。
3.按照权利要求1的被包覆生物医学设备,其中胶束有一个外部亲水壳和一个内部憎水核。
4.按照权利要求1的被包覆生物医学设备,其中胶束有一个外部憎水壳和一个内部亲水核。
5.按照权利要求1的被包覆生物医学设备,其中胶束被共价键合到生物医学设备的表面。
6.按照权利要求5的被包覆生物医学设备,其中胶束通过选自以下基团的共价键键合到生物医学设备的表面 -O-,-S-, 和
7.按照权利要求1的被包覆生物医学设备,其中胶束有一个亲水外壳和一个憎水内核,并且亲水外壳被共价键合到生物医学设备的表面。
8.按照权利要求1的被包覆生物医学设备,其中胶束有一个憎水外壳和一个亲水内核,并且憎水外壳被共价键合到所述生物医学设备的表面。
9.按照权利要求7的被包覆生物医学设备,其中亲水外壳基本上由聚乙二醇、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯基吡咯烷酮或聚乙烯醇组成。
10.按照权利要求9的被包覆生物医学设备,其中亲水外壳是聚乙二醇。
11.按照权利要求7的被包覆生物医学设备,其中憎水内核是甲基丙烯酸甲酯、硅氧烷、聚(α-羟基羧酸)或聚(ω-羟基羧酸)。
12.按照权利要求11的被包覆生物医学设备,其中憎水内核包括聚(α-羟基羧酸)或聚(ω-羟基羧酸)或甲基丙烯酸甲酯。
13.按照权利要求1的被包覆生物医学设备,其中憎水内核在其末端有一个自由基活性基团。
14.按照权利要求13的被包覆生物医学设备,其中所述憎水外壳在其末端有一个烯键式可聚合基团。
15.按照权利要求14的被包覆生物医学设备,其中烯键式不饱和可聚合基团是一种自由基活性可聚合丙烯酸酯、自由基活性可聚合苯乙烯基、自由基活性可聚合甲基丙烯酸酯或自由基活性可聚合乙烯基乙基醚。
16.按照权利要求1的被包覆生物医学设备,其中所述亲水内核在其末端有一个自由基活性基团。
17.按照权利要求16的被包覆生物医学设备,其中所述亲水外壳在其末端有一个烯键式不饱和可聚合基团。
18.按照权利要求17的被包覆生物医学设备,其中烯键式不饱和可聚合基团是一种自由基活性可聚合丙烯酸酯、自由基活性可聚合苯乙烯基、自由基活性可聚合甲基丙烯酸酯或自由基可聚合乙烯基乙基醚。
19.按照权利要求1的被包覆生物医学设备,其中生物医学设备用单层所述胶束包覆。
20.按照权利要求1的被包覆生物医学设备,其中生物医学设备用多层所述胶束包覆。
21.按照权利要求20的被包覆生物医学设备,其中生物医学设备用最多6层所述胶束包覆。
22.按照权利要求20的被包覆生物医学设备,其中多层包括至少一套由两层聚合物胶束和一层夹在它们中间的第二聚合物组成的共价键合层,所述第二聚合物的分子量大于8000道尔顿,其上面具有大量选自氨基、羧基和磺酸基的官能团。
23.按照权利要求22的被包覆生物医学设备,其中第二聚合物是聚烯丙基胺、聚乙烯基胺、多熔素、甲壳素、聚乙烯亚胺、聚(甲基)丙烯酸、羧甲基纤维素、藻酸、肝素或聚苯乙烯磺酸。
24.按照权利要求20的被包覆生物医学设备,其中至少两个胶束层相互交联。
25.按照权利要求20的被包覆生物医学设备,其中生物医学设备用多层聚合物胶束包覆,其中多层包括至少一套由两层聚合物胶束和夹在它们中间的一种低分子量分子组成的共价键合层,低分子量分子选自低级亚烷基二胺、戊二醛和乙烷二硫醇。
26.按照权利要求1的被包覆生物医学设备,其中嵌段共聚物分子式如下 其中,L是指如下分子式的部分 或 其中,R1和R2独立地指氢原子、C1-10烷基、芳基或芳基-C1-3烷基;r指2-5的整数,和其中,m指2-10,000的整数;n指2-10,000的整数;p指1-5的整数;和z指乙酰基、丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基。
27.按照权利要求1的被包覆生物医学设备,其中嵌段共聚物分子式如下 其中,X是指有1-10个碳原子的烷基,它有一个氨基、羧基或巯基;Y是指如下分子式的部分或 其中,R11和R12独立地指氢原子或C1-5烷基;R3指氢原子或甲基;R4指被羟基取代的C1-5烷基,该羟基可以被保护;和q指2-5的整数,以及其中,z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基;m指2-10,000的整数;以及,n指2-10,000的整数。
28.按照权利要求1的被包覆生物医学设备,其中嵌段共聚物分子式如下 其中,A指从有如下分子式的糖残基通过Malaprade氧化反应衍生而来的基团 其中,虚线(---)之一指单键,而另一个指氢原子;和a和b独立地指0或1的整数,以及其中L1指下述分子式的连接基团 或 其中,R5和R6独立地指氢原子、C1-6烷基、芳基或C1-3烷芳基;以及其中,m指2-10,000的整数;n指2-10,000的整数;和z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基、或乙烯基苄基。
29.按照权利要求1-28中任何一项的被包覆生物医学设备,其中生物医学设备是隐形眼镜或眼内透镜。
30.一种用于减少生物医学设备在插入动物体后的蛋白质污染的方法,所述方法包括用一种固定在所述生物医学设备表面的有效数量的抑制蛋白质吸附的聚合物胶束来包覆该生物医学设备,所述胶束有一个亲水外壳和一个憎水内核或一个憎水外壳和一个亲水内核,该胶束由一种HLB值范围是约1-约40的嵌段共聚物组成。
31.按照权利要求30的方法,其中所述嵌段共聚物的HLB值范围是约4-约20。
32.按照权利要求30的方法,其中胶束有一个亲水外壳和一个憎水内核。
33.按照权利要求30的方法,其中胶束有一个憎水外壳和一个亲水内核。
34.按照权利要求30的方法,其中胶束被共价键合到生物医学设备的表面。
35.按照权利要求34的被包覆生物医学设备,其中亲水内核通过选自下列的共价键键合到生物医学设备的表面 -O-,-S-, 和
36.按照权利要求30的方法,其中胶束有一个亲水外壳和一个憎水内核,并且亲水外壳被共价键合到生物医学设备的表面。
37.按照权利要求30的方法,其中胶束有一个憎水外壳和一个亲水内核,并且憎水外壳被共价键合到所述生物医学设备的表面。
38.按照权利要求36的方法,其中亲水外壳基本上由聚乙二醇、聚丙烯酰胺、聚甲基丙烯酰胺、聚乙烯基吡咯烷酮、聚乙烯醇或聚甲基丙烯酸酯或聚丙烯酸酯组成。
39.按照权利要求38的方法,其中亲水外壳是聚乙二醇。
40.按照权利要求36的方法,其中憎水内核是甲基丙烯酸甲酯、硅氧烷、聚(α-羟基羧酸)、聚(ω-羟基羧酸)。
41.按照权利要求40的方法,其中憎水内核包括聚(α-羟基羧酸)、聚(ω-羟基羧酸)或甲基丙烯酸甲酯。
42.按照权利要求33的方法,其中憎水外壳在其末端有一个自由基活性基团。
43.按照权利要求42的方法,其中所述憎水外壳在其末端有一个烯键式不饱和可聚合基团。
44.按照权利要求43的方法,其中所述烯键式不饱和可聚合基团是自由基活性可聚合丙烯酸酯、自由基活性可聚合苯乙烯基、自由基活性可聚合甲基丙烯酸酯或自由基可聚合乙烯基乙基醚。
45.按照权利要求32的方法,其中所述亲水外壳在其末端有一个自由基活性基团。
46.按照权利要求45的方法,其中所述亲水外壳在其末端有一个烯键式不饱和可聚合基团。
47.按照权利要求46的方法,其中烯键式不饱和可聚合基团是自由基活性可聚合丙烯酸酯、自由基活性可聚合苯乙烯基、自由基活性可聚合甲基丙烯酸酯或自由基可聚合乙烯基乙基醚。
48.按照权利要求30的方法,其中生物医学设备用一层胶束包覆。
49.按照权利要求30的方法,其中生物医学设备用多层聚合物胶束包覆。
50.按照权利要求49的方法,其中生物医学设备用最多6层聚合物胶束包覆。
51.按照权利要求49的方法,其中多层包括至少一套由两层聚合物胶束和一层夹在它们中间的第二聚合物组成的共价键合层,所述第二聚合物的分子量大于8000道尔顿,其上面具有大量选自氨基、羧基和磺酸基的官能团。
52.按照权利要求51的方法,其中第二聚合物是聚烯丙基胺、聚乙烯基胺、多熔素、甲壳素、聚乙烯亚胺、聚(甲基)丙烯酸、羧甲基纤维素、藻酸、肝素或聚苯乙烯磺酸。
53.按照权利要求49的方法,其中生物医学设备用多层聚合物胶束包覆,其中多层包括至少一套由两层聚合物胶束和夹在它们中间的一种低分子量分子组成的共价键合层,低分子量分子选自低级亚烷基二胺、戊二醛和乙烷二硫醇。
54.按照权利要求30的方法,其中生物医学设备是隐形眼镜或眼内透镜。
55.按照权利要求30的方法,其中嵌段共聚物有如下分子式 其中,L是指下述分子式的部分 或 其中,R1和R2独立地指氢原子、C1-10烷基、芳基或芳基-C1-3烷基;r指2-5的整数,和其中,m指2-10,000的整数;n指2-10,000的整数;p指1-5的整数;和z指乙酰基、丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基。
56.按照权利要求30的方法,其中嵌段共聚物有如下分子式 其中,X是指有1-10个碳原子的烷基,它有一个氨基、羧基或巯基;Y是指有下述分子式的部分或 其中,R11和R12独立地指氢原子或C1-5烷基;R3指氢原子或甲基;R4指被羟基取代的C1-5烷基,该羟基可以被保护;和q指2-5的整数,以及其中,z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基或乙烯基苄基;m指2-10,000的整数;以及,n指2-10,000的整数。
57.按照权利要求30的方法,其中嵌段共聚物有如下分子式 其中,A指从有如下分子式的糖残基通过Malaprade氧化反应衍生而来的基团 其中,虚线(---)之一指单键,而另一个指氢原子;和a和b独立地指0或1的整数,以及其中L1指下述分子式的连接基团 或 其中,R5和R6独立地指氢原子、C1-6烷基、芳基或C1-3烷芳基;以及其中,m指2-10,000的整数;n指2-10,000的整数;和z指丙烯酰基、甲基丙烯酰基、肉桂酰基、烯丙基、或乙烯基苄基。
58.按照权利要求30-57中任何一项的方法,其中生物医学设备是隐形眼镜或眼内透镜。
59.一种将客体分子释放到动物体内的方法,它包括(a)将所述客体分子结合到生物医学设备或胶束的表面上,或进入生物医学设备或胶束内,(b)用至少一种固定在生物医学设备表面上的聚合物胶束包覆该生物医学设备,所述胶束包含一个憎水外壳和一个亲水内核或包含一个亲水外壳和一个憎水内核,所述胶束由一种HLB值范围是约1-约40的嵌段共聚物组成,以及(c)将所述生物医学设备插入所述动物体内。
60.按照权利要求59的方法,其中客体分子是一种药物。
61.按照权利要求59的方法,其中生物医学设备是隐形眼镜或眼内透镜。
62.按照权利要求60的方法,其中生物医学设备是隐形眼镜,药物是对治疗眼疾有用的药剂。
63.按照权利要求60的方法,其中药物连到生物医学设备上的连接是可生物降解的。
64.按照权利要求62的方法,其中眼疾是干眼综合症。
65.按照权利要求59的方法,其中胶束是层合的。
66.按照权利要求65的方法,其中药物释放是逐渐衰弱的。
67.一种用于减少生物医学设备在插入动物体内后的微生物污染的方法,该方法包括用有效数量的抗微生物的聚合物胶束包覆所述生物医学设备,所述胶束有一个亲水外壳和一个憎水内核或一个憎水外壳和一个亲水内核,所述胶束由一种HLB值范围是约1-约40的嵌段共聚物组成。
68.按照权利要求67的方法,其中所述嵌段共聚物的HLB值范围是大约4-大约20。
69.按照权利要求67的方法,其中在生物医学设备上附加存在一种抗微生物剂。
70.按照权利要求58的方法,其中生物医学设备是隐形眼镜。
71.按照权利要求70的方法,其中隐形眼镜由聚甲基丙烯酸羟乙基酯构成。
72.按照权利要求1的被包覆生物医学设备,它基本上阻止右旋糖苷对其的渗透。
全文摘要
本发明涉及一种被包覆的生物医学设备,所述胶束有一个亲水外壳和一个憎水内核,或一个憎水外壳和一个亲水内核,该胶束由一种HLB值范围是约1-约40的嵌段共聚物组成。该生物医学设备上面有一个包覆层或多个包覆层。本发明还涉及该胶束作为药物载体的用途。
文档编号A61L31/10GK1434730SQ00818177
公开日2003年8月6日 申请日期2000年11月3日 优先权日1999年11月4日
发明者片冈一则, 长崎幸夫, 惠本和法, 饭岛道弘 申请人:片冈一则, 长崎幸夫, 惠本和法, 饭岛道弘
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1