一种耐热碳纳米管改性碳纤维增强纸基摩擦材料及其制备方法与流程

文档序号:11148565阅读:437来源:国知局

本发明涉及离合器摩擦材料技术领域,尤其涉及一种耐热碳纳米管改性碳纤维增强纸基摩擦材料及其制备方法。



背景技术:

近年来,随着汽车产业以及航空工业的迅速发展,摩擦材料领域的研究也发生了急速的增长。纸基摩擦材料作为一类重要的湿式摩擦材料,主要应用于汽车传动系统中的离合器上。如何提高纸基摩擦材料的摩擦系数、摩擦稳定性、耐热性以及耐磨性仍然是目前纸基摩擦材料面临的主要问题。为此,许多学者已经从提高材料中纤维与树脂之间的界面结合与寻找出摩擦性能优异的填料体系两方面入手,展开了研究。《碳纳米管改性碳纤维增强纸基摩擦材料的制备与研究》一文首先通过添加竹纤维和碳纳米管制备出了界面结合性较好的纸基摩擦材料。研究发现,碳纳米管的加入能够很好地改善材料中纤维和树脂的界面结合性能,从而提高了材料的摩擦性能。当碳纳米管含量为4wt.%时,试样的动摩擦系数达到最大值,为0.1031,此时,试样的摩擦稳定性和耐磨性能也较好。热分析结果显示,试样在加热到1000℃过程中,添加4wt.%碳纳米管的试样的质量损失比未添加碳纳米管的试样减少了10%。扫描电镜测试结果表明,在整个体系中,竹纤维能够很好的附着于碳纤维上,改善了碳纤维和树脂之间的界面结合性能,而碳纳米管优先吸附于竹纤维上,这又保护了竹纤维在摩擦过程中的受热分解,提高了试样的耐热性能。为了更进一步提高材料的摩擦性能,我们在上述体系中分别加入了碳化硅、碳化硼、氧化铝、氧化锆以及硼化锆等填料以及稀土化合物,并研究了填料含量和稀土种类等与试样摩擦性能之间的关系,对不同填料在体系中的作用形式以及试样的摩擦性能进行了初步探讨。结果表明,当试样中含有3wt.%Ce(NO3)3和15wt.%硼化锆时,材料的摩擦性能最佳,材料的动摩擦系数为0.13285,动/静摩擦系数比为0.9010,动摩擦系数在500次摩擦过程中的变异系数为0.75,磨损率为0.6×10-8cm3J-1。最后,研究了以硼化锆为填料、碳纳米管改性碳纤维增强纸基摩擦材料的压缩回弹性能、导热性能、耐热性能以及动态力学性能,并分析了这些性能与试样摩擦性能之间的关系。结果表明,随着硼化锆含量的增加,虽然试样的压缩率和导热系数略有下降,但是,动态力学测试和综合热分析结果表明,含有15wt.%硼化锆的试样具有较高的储能模量和耐热性能。通过材料的组成-储能模量-耐热性-摩擦性能关系的研究,发现体系中储能模量和耐热性能对材料的摩擦性能起关键作用,试样的储能模量越大,制动稳定性越好,耐热性能越好,摩擦稳定性越高,材料的磨损率越低。

以上得到摩擦材料具有良好的性能,但是直接混合得到的材料容易分离,使得摩擦性能不稳定,制动性能不稳定。上述文章使用马来酸酐对碳纳米管进行改性,提高了碳纳米管的分散性,能够分散在竹纤维表面,与竹纤维形成稳定的结合,但是竹纤维的耐热性还是不尽如人意,虽然碳纳米管改善了竹纤维的耐热性和摩擦性,但是在受热情况下,马来酸酐形成的高分子物质碳化,碳纳米管与竹纤维分离,影响摩擦性能。

添加芳纶纤维能够改善摩擦材料的摩擦性能,但是芳纶纤维的耐热性较差,使其在重载荷机械中的应用受到了一定限制。而且芳纶纤维表面惰性、结晶程度高,与基体结合不好,影响了芳纶的复合材料的性能。用稀土对碳纤维和竹纤维表面进行改性,提高了纤维的耐磨性和耐热性,但是稀土与纤维的结合并不牢固,摩擦后易分离,造成摩擦性能的改变。还需要改善摩擦材料的耐热性、摩擦稳定性、抗老化性、抗菌性、韧性、防静电性、耐磨性、防打滑、致密性、导热性等其他性能。



技术实现要素:

本发明目的就是为了弥补已有技术的缺陷,提供一种耐热碳纳米管改性碳纤维增强纸基摩擦材料及其制备方法。

本发明是通过以下技术方案实现的:

一种耐热碳纳米管改性碳纤维增强纸基摩擦材料,由下列重量份的原料制成:纳米铜粉1.1-1.4、碳纤维52-54、竹纤维27-28、碳纳米管3.5-4、全硫化纳米粉末羧基丁腈橡胶2.3-2.8、芳纶浆粕5-5.5、硅烷偶联剂kh-550 1.3-550 1.3-1.5、硝酸铈3-3.5、碳化硅10-11、硼化锆14-15、固含量为20%腰果壳油改性酚醛树脂10-12、纳米碳溶胶3-3.5、纳米二氧化硅2-2.5、二茂铁硼酸1-1.5、水适量。

所述耐热碳纳米管改性碳纤维增强纸基摩擦材料的制备方法,包括以下步骤:

(1)将芳纶浆粕分散在水中,加入硅烷偶联剂kh-550 1.3-550,搅拌均匀,再加入纳米铜粉,搅拌10-15分钟,干燥,粉碎,得到改性芳纶浆粕;

(2)将碳纳米管、全硫化纳米粉末羧基丁腈橡胶混合研磨均匀,得到粉末,将竹纤维加入水中,边搅拌边加入所述粉末,搅拌均匀,超声分散7-10分钟,干燥,在11-12MPa,120-125℃,时间处理40-50s,得到改性竹纤维;

(3)将改性芳纶浆粕、改性竹纤维以及其他剩余成分放入水中,在疏解机中疏解均匀,得到悬浮液,将悬浮液倒入100-150目筛的纸张成型器中制成厚度为0.7-0.8μm的薄片,将薄片在105-108℃下真空干燥20-23分钟,将腰果壳油改性酚醛树脂喷涂在薄片上,自然晾干,再放入硫化机中硫化,硫化条件为11-12MPa,120-125℃,时间为250-260s,即得。

本发明的优点是:本发明使用纳米铜粉吸附在芳纶浆粕表面,提高了芳纶浆粕的耐热性,使得摩擦材料更加致密,摩擦系数更稳定,客服了芳纶浆粕热稳定性差的缺点。通过使用碳纳米管对竹纤维进行改性,提高了竹纤维的耐热性,但是受摩擦后容易与竹纤维分离,使得摩擦系数不稳定,结合使用全硫化纳米粉末羧基丁腈橡胶,经过加热反应,使得碳纳米管与竹纤维形成稳定牢固的结合,提高了摩擦稳定性,同时提高了竹纤维的稳定性,在受热时形成柔软的碳化膜,使得摩擦系数高而稳定。通过使用纳米碳溶胶、纳米二氧化硅、二茂铁硼酸提高了摩擦材料的耐热性、致密性,延长了使用寿命,减少纤维脱落现象,提高了散热性。

具体实施方式

一种耐热碳纳米管改性碳纤维增强纸基摩擦材料,由下列重量份(公斤)的原料制成:纳米铜粉1.1、碳纤维52、竹纤维27、碳纳米管3.5、全硫化纳米粉末羧基丁腈橡胶2.3、芳纶浆粕5、硅烷偶联剂kh-550 1.3、硝酸铈3、碳化硅10、硼化锆14、固含量为20%腰果壳油改性酚醛树脂10、纳米碳溶胶3、纳米二氧化硅2、二茂铁硼酸1、水适量。

所述耐热碳纳米管改性碳纤维增强纸基摩擦材料的制备方法,包括以下步骤:

(1)将芳纶浆粕分散在水中,加入硅烷偶联剂kh-550,搅拌均匀,再加入纳米铜粉,搅拌10分钟,干燥,粉碎,得到改性芳纶浆粕;

(2)将碳纳米管、全硫化纳米粉末羧基丁腈橡胶混合研磨均匀,得到粉末,将竹纤维加入水中,边搅拌边加入所述粉末,搅拌均匀,超声分散7分钟,干燥,在11MPa,120℃,时间处理40s,得到改性竹纤维;

(3)将改性芳纶浆粕、改性竹纤维以及其他剩余成分放入水中,在疏解机中疏解均匀,得到悬浮液,将悬浮液倒入100目筛的纸张成型器中制成厚度为0.7μm的薄片,将薄片在105℃下真空干燥20分钟,将腰果壳油改性酚醛树脂喷涂在薄片上,自然晾干,再放入硫化机中硫化,硫化条件为11MPa,120℃,时间为250s,即得。

实验数据:

本实施例的薄片的动摩擦系数为0.1412,动/静摩擦系数比为0.9105,动摩擦系数在500次摩擦过程中的变异系数为0.71,磨损率为0.55×10-8cm3J-1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1