一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤的制作方法

文档序号:2687387阅读:161来源:国知局
专利名称:一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤的制作方法
技术领域
本发明涉及ー种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤,尤其涉及同时具有平顶模场、大模式面积和超低限制损耗的光子晶体光纤,属于光纤技术领域。
背景技术
高功率光纤激光器由于在效率、散热和光束质量等方面的优势,在エ业加工、医疗和国防等领域具有广泛的应用前景。然而,拉曼散射、布里渊散射以及四波混频等非线性效应限制了高效率光纤激光器输出功率的进ー步提高。非线性效应与光强之间有很大关系,通过提高光纤的模式面积可以有效的降低光强,进而对非线性效应产生抑制作用。光子晶体光纤(PCF),又被称为微结构光纤或多孔光纤,其结构设计灵活可调,这使得它具有许多传统光纤不具备的特性,如高双折射、超低限制损耗、色散可调等等。此种光纤的发明为实现大模式面积提供了ー种非常有效的办法。 已有研究证明,对光子晶体光纤的石英纤芯进行掺杂,掺杂Zr02、Ti02、Al203、Ge02、P2O5等材料可以使石英玻璃的折射率増加(高掺杂),掺杂B203、F等原料可以使石英玻璃的折射率降低(低掺杂),掺杂后的光纤能够获得更大的模式面积,但是目前这种掺杂技术仅仅局限于单芯光纤,限制了模式面积的进ー步提高。如果采用多芯光纤,虽然与单芯光纤相比可以获得更大的模场面积,但从其每个纤芯来看,输出光束均为传统的高斯光束,当泵浦光功率较大时,很容易损伤光纤端面。

发明内容
本发明目的在于提供一种同时具有大模场面积、低限制损耗和平顶模式的ー种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤。本发明主要是采用四芯光子晶体光纤并对纤芯进行掺杂,同时又设计合理的包层空气孔结构參数。本发明的光子晶体光纤的主要结构是由四个纤芯和光纤包层组成的。其中,光纤包层内设有均匀的多层正方形阵列分布的空气孔,空气孔直径d=4i!m,两孔间距A =10 u m。由四组缺失3, 3个空气孔的单元构成纤芯,四个纤芯对称地分布在空气孔方阵即四个象限的对角线上。其中,每个纤芯由纯石英内芯和折射率高的掺杂环形区域组成,其中石英内芯的半径ra在6 10 ii m范围。而包在内芯外面的高掺杂环形区域是在石英内掺杂了增加折射率的氧化物一二氧化锗,并且掺杂的摩尔百分数为4. 119T4. 38%,使折射率(在I. 4502 I. 4506范围内)略高于石英内芯的折射率(I. 45)。该高掺杂环形区域的外环半径rb=18 u m,于是高掺杂环形区域圆环厚度为其外环半径rb与内环半径ra的差,即rb-ra,控制在8 12iim范围内。本发明与现有技术相比具有如下优点
I、与单芯光纤相比四芯光子晶体光纤能够有效增大模式面积,能够承受更强的泵浦光,从而有效降低非线性效应的影响,大大提高光纤传输激光功率的阈值。
2、多层气孔正方形排列形成包层使得限制损耗很低,超低的限制损耗減少了传输过程中的能量损失,可以传输高功率。3、由于对四个纤芯的环形区域进行了増大折射率的高掺杂,使得纤芯中环形区域的折射率高于内芯折射率,因此从此种光纤中输出的光束不再呈高斯状,而是平顶状分布,即输出光束为能量均匀分布的平顶模场,具有较低的峰值功率,大大提高了光纤的热损伤阈值,同时这种掺杂也可以使光纤获得更大的模式面积。4、由纯石英内芯和高掺杂环形区域组成的纤芯使得这种光纤的有效模式面积随波长的增大而减小,而传统光纤或者光子晶体光纤的有效模式面积随波长的增大而増大。这也是本发明的ー个独特之处。



图I是本发明实施例I的光子晶体光纤横截面图。图2是本发明实施例I的光子晶体光纤模场分布图。图3是本发明实施例I光子晶体光纤的有效模式面积和限制损耗随波长变化关系图。图4是本发明实施例2光子晶体光纤的有效模式面积和限制损耗随波长变化关系图。图5是本发明实施例3光子晶体光纤的有效模式面积和限制损耗随波长变化关系图。图6是本发明实施例4光子晶体光纤的有效模式面积和限制损耗随波长变化关系图。
具体实施例方式实施例I
在图I所示的本发明实施例I的光子晶体光纤横截面图中,该光纤主要是由纤芯和光纤包层组成的。其中,光纤包层I内有1343-3H=133个均匀的正方形阵列的空气孔2,空气孔直径d=4iim,两孔间距A=10iim。四组缺失:T 3个空气孔的单元构成纤芯,四个纤芯对称地分布在四个象限的对角线上。每个纤芯包括有内芯3和掺杂的环形区域4,其中内芯为石英材质,其半径ra=6 y m,而包在内芯外面的高掺杂环形区域为石英基掺杂了摩尔百分比为4. 25%的ニ氧化锗,使其折射率为I. 4504,略高于石英内芯的折射率I. 45。上述高掺杂环形区域的厚度为其外环半径rb (为18iim)与内环半径ra的差,;rb-ra=18_6=12 y m。在图2所示的本发明实施例I的光纤在I. 55 ym处的模场分布图中,从图中可以看出,各个纤芯输出的激光能量相同,并且在纤芯区域均匀分布,形成平顶模场。在图3所示的本发明实施例I光纤的有效模式面积和限制损耗随波长的变化关系图中,该光纤的有效模式面积在2900 Um2以上,属于大模式面积光纤,并且随着波长的增大其有效模式面积减小,在光通信的低损耗传输窗ロ入=1. 55 y m处,其有效模式面积为3107 iim2。在整个计算波长范围内,该光纤的限制损耗都极低。在传输窗ロ入=I. 55 Um处,它的限制损耗为9. 71/10_6 dB/km。实施例2本发明实施例2与实施例I基本相同,不同之处在于掺杂ニ氧化锗的摩尔百分比减小到4. 11% (对应折射率I. 4502),其有效模式面积和限制损耗随波长的变化关系如图4所示。从图中可以看出,该光纤与实施例I光纤相比,获得了较小的有效模式面积和更高的限制损耗。在入=I. 55 ym处,其有效模式面积为2934 iim2,限制损耗为1.42,10-4 dB/km。实施例3
本发明实施例3与实施例I基本相同,不同之处在于掺杂ニ氧化锗的摩尔百分比增加到4. 38%(对应折射率I. 4506),其有效模式面积和限制损耗随波长的变化关系如图5所示。从图中可以看出,该光纤与第一实施例光纤相比获得了更大的有效模式面积和更低的限制损耗。在入=I. 55 um处,其有效模式面积为3244 u m2,限制损耗为I. 32,10_6 dB/km。实施例4 本发明实施例4与实施例I基本相同,不同之处在于内纤芯半径ra増加到10 u m,则掺杂圆环部分的厚度rb-ra=18-10=8i!m,其有效模式面积和限制损耗随波长的变化关系如图6所示。从图中可以看出,该光纤与实施例I光纤相比,获得了更大的有效模式面积,但是限制损耗也有所增加。在入=1. 55 U m处,其有效模式面积为3395 u m2,限制损耗为I. 02,10_4dB/km。
权利要求
1.一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤,它是由纤芯和光纤包层组成的,其特征在于光纤包层内设有均匀的多层正方形阵列分布空气孔,空气孔直径d=4 μ m,两孔间距Λ =10 μ m,由四组缺失3' 3个空气孔的单元构成纤芯,四个纤芯对称地分布在四个象限的对角线上,每个纤芯由纯石英内芯和折射率高的掺杂环形区域组成,其中石英内芯的半径1'£1在6"10 μ m,高掺杂的环形区域的外半径rb=18 μ m,掺杂区域圆环的厚度即rb_ra控制在8 12 μ m内。
2.根据权利要求I所述的一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤,其特征在于包在内芯外面的高掺杂环状区域是由石英内掺杂二氧化锗形成,掺杂的摩尔百分数控制在4. 119Γ4. 38%,相应的使其折射率控制在I. 4502 I. 4506的范围内,略高于石英内芯的折射率1.45。
全文摘要
一种空气孔正方形排列纤芯环状掺杂四芯光子晶体光纤,它由光纤包层和纤芯组成的。光纤包层由多层空气孔正方形阵列分布形成;四组缺失空气孔的单元构成纤芯,四个纤芯对称地分布在四个象限的对角线上。上述纤芯由内芯和掺杂型环状区域组成,其中内芯与光纤包层同为石英材质,而包在内芯外面的掺杂环状区域为石英内掺杂了增加折射率的氧化物,使其折射率略高于纤芯的折射率。本发明所采用的纤芯环状掺杂四芯结构可以有效地增大模式面积同时降低非线性效应,纤芯环状掺杂可以形成平顶模场,有效降低光纤的热损伤效应,多层空气孔正方形阵列分布形成包层可以实现超低限制损耗,极大地减少传输过程中的能量损失。
文档编号G02B6/02GK102819062SQ201210268078
公开日2012年12月12日 申请日期2012年7月31日 优先权日2012年7月31日
发明者李曙光, 张晓霞 申请人:燕山大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1