轧制接合体及其制造方法与流程

文档序号:22399355发布日期:2020-09-29 18:10阅读:140来源:国知局
轧制接合体及其制造方法与流程

本发明涉及一种轧制接合体及其制造方法。



背景技术:

金属材料被用于各种领域中,例如可用作便携式电子设备等电子设备的集成电路用屏蔽罩等内部保护部件。在这些金属材料中要求高强度和成形加工性。作为这种金属材料,可广泛使用不锈钢。另外,作为其它金属材料,也已知将两种以上的金属板或金属箔层叠而成的轧制接合体(金属层叠材料、包覆材料)。轧制接合体是具有单独材料中不可得的复合特性的高功能性金属材料,例如,为了提高导热性,讨论一种使不锈钢和铜层叠而成的轧制接合体。

作为以往的轧制接合体,例如,已知专利文献1及2中公开的轧制接合体。专利文献1中公开了一种底座和其制造方法,该底座由将由奥氏体系不锈钢形成的第一层、由cu或cu合金形成并层叠于上述第一层上的第二层、以及由奥氏体系不锈钢形成并层叠于上述第二层的与上述第一层相反一侧的第三层轧制接合而成的包覆材料构成,且上述第二层的厚度为上述包覆材料的厚度的15%以上。

另外,专利文献2中公开了一种cu-不锈钢包覆板的制造方法,其特征在于,使cu板和不锈钢钢板的刷整处理后的接合面彼此重合,进行压下率2~10%的冷轧并压接,使之成为复合板,之后,在10-4托(torr)以下的真空中加热至500~1050℃。

现有技术文献

专利文献

专利文献1:日本专利第5410646号公报

专利文献2:日本专利第3168930号公报



技术实现要素:

发明所要解决的问题

在上述现有技术中,对不锈钢层层叠的铜层(第二层)的厚度至多为数十μm~数百μm,难以接合例如数μm~20μm左右的薄金属层。像专利文献1那样,存在如下问题:在制造铜和不锈钢的轧制接合体的情况下,通过重复进行轧制及热处理可以实现薄壁化,但如果提高压下率,则在接合特别薄的金属层的情况下,在金属层上会产生褶皱或裂纹,或者损害金属层的平坦性。在轧制接合体的制品形状为宽幅·长条的情况下,该问题特别显著。另外,如果进行热处理,则像例如铜和铝的轧制接合体那样,由构成材料形成层间脆弱的金属间化合物,可能以该部位为起点进行剥离。

此外,作为在金属层上层叠由其它金属构成的极薄层的技术,也已知镀敷(めっき)或溅射蒸镀等方法。但是,在镀敷中,像对铝的铜镀敷那样,担心用于根据金属的结构不能直接应用镀敷而形成铜镀敷层的基底层可能妨碍目的功能的情况、或者也例如将铜镀敷于不锈钢上时的氰的使用等镀敷液对环境的负荷大的情况、或者绕到基材背面镀敷、在镀敷前处理液或镀敷液对基材背面造成恶影响等。另外,在单面屏蔽的情况下,需要在后工序中剥离并去除屏蔽。在剥离该屏蔽时,如果基材的厚度薄,则可能会导致对基材施加变形、弯曲等。而且,在溅射蒸镀的情况下,在生产性或成本方面存在问题。

因此,本发明是鉴于上述现有状况而创建的,其目的在于提供一种轧制接合体及其制造方法,其中,极薄的金属层不产生褶皱或裂纹等地层叠于其它金属上。

用于解决问题的技术方案

本发明人等进行锐意研究的结果发现通过将极薄的金属层以预先层叠的状态与作为支承体发挥作用的载体层接合,能够解决上述课题,完成发明。即,本发明的主旨如下。

(1)一种轧制接合体,其是层叠了至少三层以上的轧制接合体,包含:可剥离的载体层、极薄金属层及金属箔,其中所述极薄金属层的厚度为0.5μm以上20μm以下。

(2)根据上述(1)所述的轧制接合体,其中,在所述极薄金属层和所述金属箔之间具有一层以上的包含金属的中间层。

(3)根据上述(1)或(2)所述的轧制接合体,其中,所述极薄金属层和所述金属箔的剥离强度比所述载体层和所述极薄金属层的载体剥离强度大。

(4)一种轧制接合体,其是层叠了至少四层以上的轧制接合体,包含可剥离的第一载体层、第一极薄金属层、第二极薄金属层及可剥离的第二载体层,且所述极薄金属层的厚度为0.5μm以上20μm以下。

(5)根据上述(1)~(4)中任一项所述的轧制接合体,其中,所述极薄金属层是选自由铜、铁、镍、锌、锡、铬、金、银、铂、钴及钛、以及以它们中任一种为基的合金构成的组中的金属的层。

(6)根据上述(1)~(3)及(5)中任一项所述的轧制接合体,其中,所述金属箔是选自由铝、铁、铜、镍、镁、银、金及铂、以及以它们中任一种为基的合金构成的组中的金属的箔。

(7)一种轧制接合体的制造方法,所述轧制接合体是层叠了至少三层以上的轧制接合体,所述轧制接合体的制造方法包括:

准备金属箔和由可剥离的载体层及厚度为0.5μm以上20μm以下的极薄金属层构成的层叠体的工序;

通过溅射蚀刻将所述极薄金属层的表面活化的工序;

通过溅射蚀刻将所述金属箔的表面活化的工序;以及

以0~30%的压下率将所述活化的表面彼此轧制接合的工序,

其中在轧制接合后不进行热处理或进行350℃以下的热处理。

(8)一种轧制接合体的制造方法,所述轧制接合体是层叠了至少四层以上的轧制接合体,所述轧制接合体的制造方法包括:

准备由可剥离的第一载体层及厚度为0.5μm以上20μm以下的第一极薄金属层构成的第一层叠体和由可剥离的第二载体层及厚度为0.5μm以上20μm以下的第二极薄金属层构成的第二层叠体的工序;

通过溅射蚀刻将所述极薄金属层的表面活化的工序;以及

以0~30%的压下率将所述活化的表面彼此轧制接合的工序,

其中在轧制接合后不进行热处理或进行350℃以下的热处理。

(9)根据上述(7)所述的轧制接合体的制造方法,其中,在所述金属箔的表面上具有包含金属的中间层,对所述中间层的表面进行溅射蚀刻。

(10)根据上述(7)~(9)中任一项所述的轧制接合体的制造方法,其中,在所述极薄金属层的表面上具有包含金属的中间层,对所述中间层的表面进行溅射蚀刻。

(11)根据上述(7)~(10)中任一项所述的轧制接合体的制造方法,其中,所述极薄金属层是选自由铜、铁、镍、锌、锡、铬、金、银、铂、钴及钛、以及以它们中任一种为基的合金构成的组中的金属的层。

(12)根据上述(7)及(9)~(11)中任一项所述的轧制接合体的制造方法,其中,所述金属箔是选自由铝、铁、铜、镍、镁、银、金及铂、以及以它们中任一种为基的合金构成的组中的金属的箔。

(13)一种轧制接合体的制造方法,所述轧制接合体是层叠了至少两层以上,包含极薄金属层及金属箔,且所述极薄金属层的厚度为0.5μm以上20μm以下的轧制接合体,其中,包含剥离上述(1)所述的轧制接合体的载体层的工序。

(14)一种轧制接合体的制造方法,所述轧制接合体是层叠了至少两层以上,包含第一极薄金属层及第二极薄金属层,且所述极薄金属层的厚度为0.5μm以上20μm以下的轧制接合体,其中,包括:剥离上述(4)所述的轧制接合体的第一载体层的工序;以及剥离第二载体层的工序。

(15)一种轧制接合体,其是将极薄金属层和金属箔层叠的轧制接合体,其中,所述极薄金属层是具有0.5μm以上20μm以下的厚度的铜层,所述金属箔是选自由铝、铁、镍、铜、镁、银、金及铂、以及以它们中任一种为基的合金构成的组中的金属的箔,且所述极薄金属层的厚度的标准偏差σ低于1μm。

本说明书包含成为本申请的优先权的基础的日本国日本专利申请第2018-047241号、第2018-120889号的公开内容。

发明效果

根据本发明,可不产生褶皱或裂纹地得到将0.5μm以上20μm以下的极薄的金属层层叠而成的轧制接合体。

另外,通过溅射蚀刻由可剥离的载体层和极薄金属层构成的层叠体、和由金属箔或可剥离的载体层和极薄金属层构成的层叠体而将表面活化并接合,由此可得到极薄金属层的厚度精度优异的轧制接合体。而且,因为载体层作为极薄金属层的支承体和/或保护层发挥作用,所以接合前的极薄金属层的使用性优异。除此之外,即使在用作轧制接合体后,载体层也作为轧制接合体的支承层和/或保护层发挥作用,因此,轧制接合体的使用性也优异。

附图说明

图1是本发明的第一实施方式的轧制接合体的剖视图。

图2是本发明的第二实施方式的轧制接合体的剖视图。

图3是表示本发明的第一实施方式的轧制接合体的制造工序的图。

图4是表示本发明的第三实施方式的轧制接合体的制造工序的图。

图5是本发明的第四实施方式的轧制接合体的剖视图。

图6是表示本发明的第四实施方式的轧制接合体的制造工序的图。

图7是表示本发明的第五实施方式的轧制接合体的制造工序的图。

实施发明的方式

下面,对本发明进行详细说明。

图1中示出了本发明的第一实施方式的轧制接合体的截面。图1所示的轧制接合体1a通过由载体层主体11及剥离层12构成的可剥离的载体层10、极薄金属层20及金属箔30依次层叠而概略构成。

载体层主体11具有片形状,作为用于防止对轧制接合体1a产生褶皱或弯曲、防止对极薄金属层20的损伤的支承材料或者保护层发挥作用。作为载体层主体11,可举出由铜、铝、镍及其合金类(不锈钢、黄铜等)、将金属涂层于表面而得的树脂等构成的箔或板状物。优选为铜箔。

对载体层主体11的厚度不进行特别限定,根据可挠性等希望的特性适当地设定。具体而言,优选为10μm以上100μm以下左右。如果厚度过薄,则因可能损害载体层10和极薄金属层20的层叠体的使用性而不优选。即,有时在使用时变形且在极薄金属层20上产生褶皱或裂纹。另外,如果载体层主体11过厚,则作为支承材料具有过度刚性,因可能难以与极薄金属层20剥离而不优选。而且,生产由载体层和极薄金属层构成的层叠体的成本也上升。

在降低载体层主体11的剥离强度,且在将载体层10及极薄金属层20的层叠体与金属箔30接合时进行加热的情况下,剥离层12也具有抑制在载体层主体11和极薄金属层20之间可能发生的相互扩散的功能。剥离层12可以为有机剥离层及无机剥离层中的任一种,作为用于有机剥离层的成分,可举出例如含氮有机化合物、含硫有机化合物、羧酸等。作为含氮有机化合物,可举出三唑化合物、咪唑化合物等。作为三唑化合物的例子,可举出1,2,3-苯并三唑、羧基苯并三唑、n’,n’-双(苯并三唑基甲基)脲、1h-1,2,4-三唑、以及3-氨基-1h-1,2,4-三唑等。作为含硫有机化合物的例子,可举出巯基苯并噻唑、硫氰尿酸、2-苯并咪唑硫醇等。作为羧酸的例子,可举出单羧酸、二羧酸等。另外,作为用于无机剥离层的成分,可举出例如ni、mo、co、cr、fe、ti、w、p、zn、镀铬处理膜等。此外,剥离层12的形成可以通过使含剥离层12成分溶液与载体层主体11的表面接触,将剥离层成分固定于载体层主体11的表面等而进行。在使载体层主体11与含剥离层12成分溶液接触的情况下,该接触可以通过向含剥离层成分溶液的浸渍、含剥离层成分溶液的喷雾、含剥离层成分溶液的流下等进行,之后可以进行干燥等来固定。另外,也可以采用通过基于蒸镀或溅射等的气相法覆膜形成剥离层12的成分的方法。

剥离层12的厚度一般为1nm以上1μm以下,优选为5nm以上500nm以下,但不限于此。如果剥离层12的厚度过薄,则存在不能充分进行与极薄金属层20的分离而导致剥离不良的问题。另外,如果厚度过大,则可以剥离,但制造成本高,因此,考虑它们的平衡而适当地设定。

可以根据作为轧制接合体的用途或目的的特性,适当地选择构成极薄金属层20的金属。具体而言,可举出铜、铁、镍、锌、锡、铬、金、银、铂、钴、钛及以它们中任一种为基的合金等。特别优选为选自由铜、镍及以它们中任一种为基的合金构成的组中的金属的层。通过将这些金属与金属箔30轧制接合,能够提高轧制接合体的散热性及轻量性,可得到例如优选用作便携式电子设备的框体的轧制接合体。

极薄金属层20的厚度为0.5μm以上20μm以下。优选为1μm以上12μm以下,更优选为1μm以上7μm以下。在此,极薄金属层20的厚度是指获取轧制接合体1a的截面的光学显微镜照片,测量该光学显微镜照片中任意十点处的极薄金属层20的厚度而得到的值的平均值。此外,在轧制接合体的制造中,因为以规定的压下率接合极薄金属层20和金属箔30,所以轧制接合体1a的极薄金属层20的厚度比接合前薄。

另外,极薄金属层20的厚度的标准偏差σ优选低于1μm。在此,极薄金属层20的厚度的标准偏差σ是指获取轧制接合体的截面的光学显微镜照片,针对该光学显微镜照片的宽度300μm的截面以等间隔测量十点处的极薄金属层20的厚度t1,根据所得的十点的测定值求出的标准偏差。

这种极薄金属层20可以通过无电解镀敷法(無電解めっき)、电解镀敷法等湿式成膜法、溅射及化学蒸镀等干式成膜法或它们的组合形成于剥离层12上。

在比较极薄金属层20和金属箔30的剥离强度、和载体层10和极薄金属层20的剥离强度(在本说明书中称为“载体剥离强度”)的情况下,优选极薄金属层20和金属箔30的剥离强度大。由此,在将载体层10从极薄金属层20上剥离时,可以在极薄金属层20上不产生褶皱或破损等地进行剥离。但是,如果极薄金属层20及金属箔30的剥离强度的值和载体剥离强度的值过近,则实际上有时难以仅剥离载体层10而不对极薄金属层20和金属箔30的界面造成影响,因此,极薄金属层20及金属箔30的剥离强度和载体剥离强度的差优选为0.5n/20mm以上。更优选为1.0n/20mm以上,最优选为3.0n/20mm以上。作为极薄金属层20及金属箔30的剥离强度及载体剥离强度的具体值,极薄金属层20和金属箔30的剥离强度优选为1n/20mm以上。另外,载体层10和极薄金属层20的载体剥离强度比0大即可,优选低于1n/20mm,但在低于约0.1n/20mm的区域中,因剥离材料(载体层10、极薄金属层20、金属箔30)自身刚性的影响,有时不能测量准确的剥离强度。载体剥离强度更优选在0.1n/20mm以上且低于1n/20mm的范围内。此外,上述剥离强度或者载体剥离强度的值是指由轧制接合体1a制作宽度20mm的试验片,将极薄金属层20和金属箔30,或者载体层10和极薄金属层20进行一部分剥离,之后,固定厚膜层侧或硬质层侧,将另一层向固定侧的180°相反侧拉伸时剥离所需的力(单位:n/20mm)。

作为金属箔30,只要是各种金属的板材或箔状的材料就可以应用,根据轧制接合体的用途等适当地选择。例如,优选使用选自由铝、铁、铜、镍、镁、银、金及铂、以及以它们中任一种为基的合金构成的组中的金属的箔,具体而言,可举出sus304、sus316等不锈钢、或者az31、az61、az91、lz91等镁合金、a1050、a1100、1n30等铝或铝合金等箔。

金属箔30的厚度通常为0.01mm以上就可以应用,从所得的轧制接合体的机械强度及加工性的观点来看,优选在0.01mm以上1.8mm以下的范围内。如果考虑处理性,则优选为0.015mm以上。另外,从轧制接合体的轻量化或薄型化的观点来看,接合前的金属箔30的厚度更优选为1.2mm以下,进一步优选为0.8mm以下,特别优选为0.5mm以下。但是,因为轧制接合体的厚度通过接合后的再轧制也可以更薄,所以接合前的金属箔的厚度不限于上述范围。此外,接合前的金属箔30的厚度可以通过千分尺等进行测定,是指在从成为对象的金属箔的表面上随机选择的十点处测定的厚度的平均值。另外,关于使用的箔,与十点测定值的平均值的偏差在所有的测定值中优选为10%以内。特别是,在使用厚度低于1mm的薄箔作为接合的金属箔的情况下,如果偏差大,则散热性等性能可能存在偏差,因此,优选偏差小。

另外,作为本发明的第二实施方式,如图2所示,在极薄金属层20和金属箔30之间可以具备包含金属的中间层40。该中间层40可以为一层,也可以层叠两层以上。作为包含金属的中间层40,可举出设置于极薄金属层20或者金属箔30上的蒸镀或电镀、无电解镀敷形成的金属层。

构成中间层40的金属优选为选自由以下构成的组中的金属:从铜、铁、镍、锌、铬、钴、钛、锡、铂、银及金中选出的单一金属种类、或者由包含这些金属种类的合金。通过设置这些金属层40,不仅能够保护极薄金属层20或金属箔30的表面,进一步提高极薄金属层20和金属箔30的贴紧性,还能够赋予金属层40特有的功能(例如,作为蚀刻加工时的蚀刻停止层的功能等)。中间层40的厚度只要是可发挥提高贴紧性等功能的厚度即可,不进行特别限定。具体而言,优选为0.5μm以上20μm以下的厚度,更优选为0.5μm以上10μm以下。

而且,虽未图示,但根据需要,在不妨碍热导电性、散热性等功能的前提下,为了耐蚀性、抗氧化、防止变色等,也可以将保护层设置于轧制接合体1a、1b的与极薄金属层20或者中间层40接触一侧的相反侧的金属箔30的表面。例如,作为针对由铜构成的金属箔的保护层的例子,可举出化学转化处理层(化成処理層)、ni镀层等。另外,作为针对由镁合金构成的金属箔的保护层的例子,可举出磷酸系、铬酸盐系、阳极氧化处理等化学转化处理层。

接下来,对轧制接合体的制造方法进行说明。准备由可剥离的载体层10及极薄金属层20构成的层叠体和金属箔30,通过冷轧接合(冷間圧延接合)、热轧接合(熱間圧延接合)、表面活化接合等各种方法将它们相互接合而使层间贴紧,由此可得到图1所示的轧制接合体1a。此外,制造轧制接合体时的高压下的接合和/或热处理在接合前后和/或热处理前后使轧制接合体的各层的金属集合组织显著变化,可能损害轧制接合体的特性,因此,优选的是,选择能够避免这种组织变化的接合·热处理条件。

在冷轧接合的情况下,优选的是,在接合后实施稳定化热处理。热轧接合是一边施加接合体的再结晶温度以上的热、一边轧制接合的方法,能够以比冷轧接合低的力进行接合,但是在接合界面容易生成金属间化合物。因此,为了不生成金属间化合物,留意选择加热温度、加热时间的条件。例如,在极薄金属层20为铜且金属箔30为铝的情况等下,通过加热容易在接合界面生成脆弱的金属间化合物,因此,优选的是,热处理温度、进行热轧时的加热温度尽可能低。

作为制造轧制接合体1a的方法优选的方式如下。首先,如图3所示,准备由可剥离的载体层10及厚度为0.5μm以上20μm以下的极薄金属层20构成的层叠体2,和金属箔30,通过溅射蚀刻将极薄金属层20的表面20a活化,通过溅射蚀刻将金属箔30的表面30a活化,将这些活化的表面彼此轧制接合(图3(a)),由此能够制造轧制接合体1a(图3(b))。轧制接合时的压下率优选为0~30%。更优选为0~15%。上述基于表面活化接合的方法能够降低压下率,因此可以维持着剥离层12的功能而进行接合,另外,能够不产生褶皱或裂纹等地形成厚度精度优异的极薄金属层20。而且,因为能够降低极薄金属层20和金属箔30的界面的弯曲,所以在对轧制接合体1a实施图案蚀刻(パターンエッチング)而使用极薄金属层或金属箔作为电路电极时,因厚度精度优异而对形成精密电路有利。特别是,在金属箔30为0.8mm以下或0.5mm以下的薄箔上形成0.5μm以上20μm以下的极薄金属层的情况下,在以往的制造方法中容易产生翘曲,然而通过将由可剥离的载体层10及极薄金属层20构成的层叠体2和金属箔30如上述那样轧制接合,也可以抑制翘曲的产生,在轧制接合体的形状为宽幅·长条的情况下,也发挥效果。

就溅射蚀刻处理而言,例如,可以准备接合的层叠体2或者金属箔30作为宽度100mm~600mm的长条线圈,以层叠体2或金属箔30的接合面为接地的一个电极,在与绝缘支承的另一电极之间施加1mhz~50mhz的交流而产生辉光放电,且以由辉光放电产生的等离子体中露出的电极的面积为上述另一电极的面积的1/3以下而进行。在溅射蚀刻处理中,接地的电极采取冷却辊的形式,防止搬送件的温度上升。

在溅射蚀刻处理中,在真空下在层叠体2或金属箔30的接合面上通过惰性气体进行溅射,由此,完全去除表面的吸附物,且去除表面的氧化物层的一部分或全部。在极薄金属层20或金属箔30是铝或镁或者以它们为基的合金的情况下,特别不必完全去除氧化物层,即使在残留一部分的状态下,也可得到充分的接合力。与完全去除氧化物层的情况相比,通过在使氧化物层残留的同时进行溅射蚀刻,能够大幅减少溅射蚀刻处理时间,提高轧制接合体的生产性。另一方面,优选完全去除铜的氧化物层。作为惰性气体,可以使用氩、氖、氙、氪等或包含它们中至少一种的混合气体。根据金属的种类,可以以约1nm左右的蚀刻量完全去除极薄金属层20或金属箔30的表面的吸附物,特别是,通常可以以5nm~12nm(sio2换算)左右去除铜的氧化物层。

溅射蚀刻的处理条件可以根据极薄金属层20或金属箔30的种类等适当地设定。例如,在真空下,可以以100w~10kw的等离子体输出、0.5m/分~30m/分的线速度进行。因防止向表面的再吸附物,优选此时的真空度高,但可以为例如1×10-5pa~10pa。

经过溅射蚀刻的极薄金属层20及金属箔30的表面彼此的压接可以通过辊压接进行。对辊压接的轧制线负荷(圧延線荷重)不进行特别限定,例如可以设定在0.1tf/cm~10tf/cm的范围而进行。例如,在压接辊的辊直径为100mm~250mm时,辊压接的轧制线负荷更优选为0.1tf/cm~3tf/cm,进一步优选为0.3tf/cm~1.8tf/cm。其中,在辊直径大的情况或层叠体2或金属箔30的接合前的厚度大的情况等下,为了确保接合时的压力,有时需要提高轧制线负荷,但不限于该数值范围。另一方面,如果轧制线负荷过高,则不仅极薄金属层20或金属箔30的表层容易变形,接合界面也容易变形,因此,轧制接合体的各层的厚度精度可能降低。另外,如果轧制线负荷高,则接合时施加的加工应变可能变大。

压接时的压下率优选为30%以下,更优选为8%以下,进一步优选为6%以下。此外,因为厚度在压接前后可以不变,所以压下率的下限值为0%。

就基于辊压接的接合而言,为了防止两者间的接合强度因氧向极薄金属层20或金属箔30表面的再吸附而降低,优选在非氧化气氛中例如真空中或ar等惰性气体气氛中进行。

另外,根据需要,通过压接得到的轧制接合体可以进一步进行热处理。通过热处理,消除极薄金属层20或金属箔30的加工应变,能够提高层间贴紧性。该热处理如果长时间在高温下进行,则可能以剥离层12为起点在载体层10上产生鼓起(フクレ)且以该鼓起为起点剥离载体层10、或者相反地载体层10和极薄金属层20的贴紧性因相互扩散等而提高且难以剥离载体层10。另外,在极薄金属层20和金属箔30的组合中,依次在界面上生成金属间化合物,存在贴紧性(剥离强度)降低的趋势。因此,上述热处理在350℃以下的温度下进行。优选为300℃以下。特别优选为250℃以下。或者,优选的是,在轧制接合后不进行热处理。此外,只要是在从接合后的轧制接合体中剥离·去除载体层10后,就可以进行在极薄金属层20及金属箔30的界面下不生成金属间化合物的温度范围内的热处理。例如,在将载体层10剥离·去除后的极薄金属层20和金属箔20的组合为铜和不锈钢的情况下,也可以进行600℃以上的高温下的热处理。

另外,根据需要,通过上述表面活化接合制造的轧制接合体可以进一步实施轧制(再轧)。由此,具有如下优点:能够制造附加价值高的薄结构的轧制接合体,另外,能够通过调质轧制进行材料的调质。在进行再轧的情况下,在再轧后的状态下测定压下率。即,接合前的层叠体2及金属箔30的总厚度t0和再轧后的轧制接合体的厚度t的比t/t0为压下率。

通过以上工序可得到轧制接合体1a。此外,如图2所示,在制造在极薄金属层20和金属箔30之间具有包含金属的中间层40的轧制接合体1b的情况下,准备由可剥离的载体层10及在表面上具有中间层的厚度为0.5μm以上20μm以下的极薄金属层20构成的层叠体或在表面具有中间层的金属箔,将对这些中间层的表面进行了溅射蚀刻而与另一个、表面通过溅射蚀刻而被活化的金属箔或极薄金属层接合。除此以外,根据上述制造轧制接合体1a的方法,可得到轧制接合体1b。

接下来,参照图4对本发明的第三实施方式的轧制接合体的制造方法进行说明。图4所示的轧制接合体1c是将厚度为0.5μm以上20μm以下的极薄金属层20及金属箔30层叠而得到的双层结构的轧制接合体。由图1所示的具备载体层10的轧制接合体1a可得到该轧制接合体1c。即,如图4所示,准备轧制接合体1a(图4(a)),通过剥离该轧制接合体1a的载体层10(图4(b)),可得到双层结构的轧制接合体1c(图4(c))。

双层结构的轧制接合体1c具有厚度为0.5μm以上20μm以下的厚度精度优异的极薄金属层20,在极薄金属层20上不会产生裂纹或褶皱。这种轧制接合体1c可以优选用作便携式电子设备、pc等各种电子设备、汽车等输送设备用电子部件、家电用电子部件等的罩、框体、壳体、加强部件、散热·电磁波屏蔽等功能部件等的成型品。

另外,因为可以将厚度精度优异的极薄金属层层叠,所以也可以通过选择蚀刻处理形成微细电路,可以用作微细电子电路用基板。

接下来,基于图5对本发明的第四实施方式的轧制接合体进行说明。图5所示的轧制接合体1d是将可剥离的第一载体层10a、第一极薄金属层20a、第二极薄金属层20b及可剥离的第二载体层10b依次层叠的四层结构的轧制接合体。第一极薄金属层20a及第二极薄金属层20b的厚度为0.5μm以上20μm以下,优选为1μm以上12μm以下,更优选为1μm以上7μm以下。而且,可剥离的第一载体层10a以及可剥离的第二载体层10b分别由第一载体层主体11a及第一剥离层12a、以及第二载体层主体11b及第二剥离层12b构成。载体层主体、剥离层及极薄金属层的结构如上述第一实施方式中说明的那样。

图6是说明第四实施方式的轧制接合体的制造工序的图。如图6所示,就第四实施方式的轧制接合体1d而言,首先,准备由可剥离的第一载体层10a及厚度为0.5μm以上20μm以下的第一极薄金属层20a构成的第一层叠体2a和由可剥离的第二载体层10b及厚度为0.5μm以上20μm以下的第二极薄金属层20b构成的第二层叠体2b,接着,通过溅射蚀刻将第一极薄金属层20a的表面20aa和第二极薄金属层20b的表面20ba活化,以0~30%的压下率将活化的表面彼此轧制接合(图6(a))。由此,可得到轧制接合体1d(图6(b))。与图3的情况同样,优选的是,在轧制接合后进行350℃以下的热处理或不进行热处理。此外,只要是在从接合后的轧制接合体中剥离·去除载体层10a及10b后,就可以进行在极薄金属层20及金属箔30的界面上不生成金属间化合物的温度范围内的热处理。其它的轧制接合时的条件等构成与制造图3的轧制接合体1a时的构成同样。

接下来,参照图7对本发明的第五实施方式的轧制接合体的制造方法进行说明。图5所示的轧制接合体1e是将厚度为0.5μm以上20μm以下的第一极薄金属层20a及厚度为0.5μm以上20μm以下的第二极薄金属层20b层叠而得到的双层结构的轧制接合体。由图5所示的具备第一载体层10a及第二载体层10b的轧制接合体1d可得到该轧制接合体1e。即,如图7所示,准备轧制接合体1d(图7(a)),通过剥离该轧制接合体1d的第一载体层10a及第二载体层10b(图7(b)),可得到双层结构的轧制接合体1e(图7(c))。

该轧制接合体1e将厚度为0.5μm以上20μm以下的厚度精度优异的两层极薄金属层层叠。这种轧制接合体1e利用其薄度,可用作极薄的电磁波屏蔽材料或二次电池的负极用集电箔等。另外,在极薄金属层为铜的情况下,利用其热传导率的高度和薄度,可用作电子设备的散热部件或热输送器件或者这些部件,由此,可以充分利用散热性,同时实现金属层带来的高强度化和省空间化。而且,因为能够将厚度精度优异的极薄金属层层叠,所以也可以通过选择蚀刻处理形成微细电路,也可以用作微细电子电路用基板。

实施例

下面,基于实施例及比较例对本发明进行更加详细地说明,但本发明不限于这些实施例。

(实施例1)

首先,准备50μm厚度的铝箔(1n30),和在由电解铜构成的18μm厚度的载体层主体上经由作为剥离层的约50nm厚度的有机剥离层(羧基苯并三唑(cbta)等)设置有5μm厚度的铜层的层叠体,将铜层及铝箔的表面彼此轧制接合,制造目的轧制接合体。

在进行轧制接合时,对铜层及铝箔的表面实施溅射蚀刻处理,将表面活化。对铜层的溅射蚀刻在0.3pa下、等离子体输出400w、5分钟的条件下实施,对铝箔的溅射蚀刻在0.3pa下、等离子体输出400w、5分钟的条件下实施。压接时的线负荷为1.0t/cm(333mpa),表面活化接合产生的压下率均为0%。

(实施例2)

除轧制接合由使用约30nm厚度的无机剥离层(镍层及镀铬层(クロメート層)等)作为剥离层的载体层及铜层构成的层叠体之外,与上述实施例1同样,得到轧制接合体。

(比较例1)

除在通过表面活化接合将铜层及铝箔的表面彼此轧制接合后,在380℃下进行1小时的热处理外,与上述实施例1同样,得到轧制接合体。

(比较例2)

除在通过表面活化接合将铜层及铝箔的表面彼此轧制接合后,在380℃下进行1小时的热处理外,与上述实施例2同样,得到轧制接合体。

关于实施例1及2、比较例1及2中得到的轧制接合体,测定铜层及铝箔之间的界面(包覆界面)的剥离强度、以及载体层和铜层之间的载体剥离强度(载体层的剥离强度)。此外,本实施例及比较例的剥离强度是指使用180°剥离强度(也称为180°剥离强度)测定的值。由实施例1及2、比较例1及2中得到的轧制接合体制作20mm宽度的试验片,首先,为了测定载体层和极薄铜层之间的载体剥离强度,在将载体层和极薄铜层进行一部分剥离后,固定载体层侧或极薄铜层侧,测定将另一层向固定侧的180°相反侧拉伸时剥离所需的力,使用n/20mm作为单位。接下来,为了测定极薄铜层及铝箔之间的界面处的剥离强度,在将载体层全部剥离后,将极薄铜层和铝箔进行一部分剥离,为了避免在测定剥离强度时切断极薄铜层,将加强用胶带粘贴于极薄铜层侧。而且,将粘贴有上述加强用胶带的极薄铜层侧或铝箔侧固定,测定将另一层向固定侧的180°相反侧拉伸时剥离所需的力,使用n/20mm作为单位。另外,对剥离层上的鼓起的产生状态进行评价。将评价结果示于表1。

如表1所示,关于实施例1及2的轧制接合体,包覆界面的剥离强度比载体层的剥离强度大,另外,将载体层的剥离强度维持在0.1n/20mm以上且低于1n/20mm的低值。由此,可以从极薄铜层上仅剥离载体层,通过载体层作为铜层的保护层·支承体发挥作用,能够在极薄铜层上不产生裂纹或褶皱地在铝箔上形成厚度精度优异的极薄铜层。

另一方面,就比较例1的轧制接合体而言,剥离层整体因热处理而产生鼓起。可看到载体层的贴紧性因鼓起而减弱,载体层无意地从铜层剥离的现象,可知未得到作为载体层的保护层·支承体的效果。

另外,关于比较例2的轧制接合体,因热处理,在载体层和铜层的界面上越不能剥离,贴紧强度就越增加。推测其原因在于载体层和剥离层、极薄金属层和剥离层因热处理而分别相互扩散并合金化。或者,载体层和极薄金属层经由剥离层而相互扩散,由此贴紧强度也进一步可能过度增加。因此,不能得到形成有铝箔上的极薄铜层的双层结构的轧制接合体。

[表1]

(实施例3)

首先,准备50μm厚度的不锈钢箔(sus316),和在由电解铜构成的18μm厚度的载体层主体上经由作为剥离层的约50nm厚度的有机剥离层(羧基苯并三唑(cbta)等)设置有5μm厚度的铜层的层叠体,将铜层及不锈钢箔的表面彼此轧制接合,制造目的轧制接合体。

在进行轧制接合时,对铜层及不锈钢箔的表面实施溅射蚀刻处理,将表面活化。对铜层的溅射蚀刻在0.3pa下、等离子体输出700w、5分钟的条件下实施,对不锈钢箔的溅射蚀刻在0.3pa下、等离子体输出700w、20分钟的条件下实施。压接时的线负荷为1.0t/cm(333mpa),表面活化接合产生的压下率均为0%。

(实施例4)

除轧制接合由使用约30nm厚度的无机剥离层(镍层及镀铬层等)作为剥离层的载体层及铜层构成的层叠体外,与上述实施例3同样,得到轧制接合体。

(比较例3)

除在通过表面活化接合将铜层及不锈钢箔的表面彼此轧制接合后,在380℃下进行1小时的热处理外,与上述实施例3同样,得到轧制接合体。

(比较例4)

除在通过表面活化接合将铜层及不锈钢箔的表面彼此轧制接合后,在380℃下进行1小时的热处理外,与上述实施例4同样,得到轧制接合体。

关于实施例3及4、比较例3及4中得到的轧制接合体,测定铜层及不锈钢箔之间的界面(包覆界面)处的剥离强度、以及载体层和铜层之间的载体剥离强度(载体层的剥离强度)。另外,对剥离层上的鼓起的产生状态进行评价。将评价结果示于表2。

如表2所示,关于实施例3及4的轧制接合体,包覆界面的剥离强度比载体层的剥离强度大,另外,载体层的剥离强度均低于1n/20mm,具体而言,维持在0.1n/20mm~0.25n/20mm附近的低值。由此,可以从极薄铜层上仅剥离载体层,通过载体层作为铜层的保护层·支承体发挥作用,能够在极薄铜层上不产生裂纹或褶皱地在不锈钢箔上形成厚度精度优异的极薄铜层。

另一方面,就比较例3的轧制接合体而言,剥离层整体因热处理而产生鼓起。可看到载体层的贴紧性因鼓起而减弱,载体层无意地从铜层剥离的现象,可知不能得到作为载体层的保护层·支承体的效果。

另外,关于比较例4的轧制接合体,剥离层的一部分因热处理而产生鼓起,载体层的贴紧性减弱。

[表2]

(实施例5)

首先,准备15μm厚度的不锈钢箔(sus304),和在由电解铜构成的18μm厚度的载体层主体上经由作为剥离层的约30nm厚度的无机剥离层(镍层及镀铬层等)设置有5μm厚度的铜层的层叠体,将铜层及不锈钢箔的表面彼此轧制接合,制造目的轧制接合体。

在进行轧制接合时,对铜层及不锈钢箔的表面实施溅射蚀刻处理,将表面活化。对铜层的溅射蚀刻在0.3pa下、等离子体输出700w、10分钟的条件下实施,对不锈钢箔的溅射蚀刻在0.3pa下、等离子体输出700w、20分钟的条件下实施。压接时的线负荷为0.5t/cm(167mpa),表面活化接合产生的压下率均为0%。

关于实施例5中得到的轧制接合体,测定铜层及不锈钢箔之间的界面(包覆界面)处的剥离强度、以及载体层和铜层之间的载体剥离强度(载体层的剥离强度)。另外,对剥离层上的鼓起的产生状态进行评价。将评价结果示于表3。

如表3所示,关于实施例5的轧制接合体,包覆界面的剥离强度比载体层的剥离强度大,另外,将载体层的剥离强度维持在0.1n/20mm以下的低值。由此,可以从极薄铜层仅剥离载体层,通过载体层作为铜层的保护层·支承体发挥作用,能够在极薄铜层上不产生裂纹或褶皱地在不锈钢箔上形成厚度精度优异的极薄铜层。

[表3]

符号说明

1a、1b、1c、1d、1e轧制接合体

2层叠体

10载体层

10a第一载体层

10b第二载体层

11载体层主体

11a第一载体层主体

11b第二载体层主体

12剥离层

12a第一剥离层

12b第二剥离层

20极薄金属层

20a第一极薄金属层

20b第二极薄金属层

20a极薄金属层的表面

20aa第一极薄金属层的表面

20ba第二极薄金属层的表面

30金属箔

30a金属箔的表面

40中间层

本说明书中引用的全部刊物、日本专利及日本专利申请通过引用而直接被编入本说明书中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1