磁铁矿纳米粒子的合成和形成铁基纳米材料的方法

文档序号:3367353阅读:658来源:国知局
专利名称:磁铁矿纳米粒子的合成和形成铁基纳米材料的方法
技术领域
本发明总的来说涉及纳米粒子的合成,更具体地说,涉及铁基纳米粒子、尤其是具有许多重要的技术应用的氧化铁、硫化铁纳米粒子材料的尺寸控制合成。
背景技术
磁铁矿Fe3O4是已经发现的具有许多重要应用的三种常见铁氧化物FeO、Fe2O3和Fe3O4中之一。市场上已知为“铁磁流体”的磁性铁氧化物纳米粒子分散体已经广泛用于例如真空容器的转轴密封、各种电子仪器的振动阻尼和航空电子技术、机器人技术、机床和驱动系统位置感知[K.Raj,R.Moskowitz,J.Magn.Mag Mater.,85,233(1990).]。磁铁矿是半金属化材料。其黑色粒子分散体已经用于印刷,作为高质量的调色剂或油墨[美国专利4991191、美国专利5648170和美国专利6083476,这里引入作为参考]。磁铁矿分散体也用于制造液晶器件,包含彩色显示器、单色光开关和可调波长滤波器[美国专利3648269、美国专利3972595、美国专利5948321、美国专利6086780和美国专利6103437,这里引入作为参考]。作为具有高居里温度(858K)的半导体铁氧磁材料,磁铁矿在隧道器件制造中已经显示了巨大的潜能,[G.Gong,et al,Phys.Rev.B,56,5096(1997).J.M.D.Coey,et al,Appl.Phys.Lett.,72,734(1998).X.Li,et al,J.Appl.Phys.,83,7049(1998).T.Kiyomura,et al,J.Appl.Phys.,88,4768(2000).R.G.C.Moore,et al,Physica E,9,253(2001).S.Soeya,et al,Appl.Phys.Lett.,80,823(2002).]。磁铁矿纳米粒子在临床医学中的使用是诊断医学和药物传送中的重要领域。具有10-20nm尺寸的磁铁矿纳米粒子是超顺磁性的。这些粒子干扰外部均匀磁场,并且能够在活体内磁性定位,便于为医学诊断提供磁谐振成像(MRI)[US6123920、US6048515、US6203777、US6207134,D.K.Kim,etal,J.Magn.Mater.,225,256(2001),这里引入作为参考]和为癌症治疗提供AC磁场感应激励[US6165440和US6167313,A.Jordan,etal,J.Magn.Mag.Mater.,201,413(1999),这里引入作为参考]。
磁性铁氧化物流体的所有这些医学和技术上的应用需要磁性粒子的尺寸在单畴尺寸范围内,整个粒子尺寸分布窄以便粒子具有均匀的物理性能、生物分布、生物杀灭和衬度效果。例如,对于医学应用来说,平均粒子尺寸总的来说应在2-15nm的范围内,对于用作血液混合剂(blood pool agent)来说,包含任何涂覆材料的平均整个粒子尺寸最好小于30nm。然而,制造具有理想的尺寸、可接受的尺寸分布而没有粒子聚集的粒子始终是一个问题。
在现有技术中已经使用制备磁铁矿铁磁流体的两个通用方法。在第一方法中,通过在球磨机中用表面活性剂和载体溶剂长时间研磨磁铁矿制备磁性流体,如在美国专利US3215572和美国专利US3917538中所例举的,所述专利在这里引入作为参考。在第二方法中,通过将用油酸酯单层覆盖的共沉淀磁铁矿转移到非极性溶剂中,得到磁铁矿流体的稳定分散体。该方法的主要特征是通过在包含二价铁(Fe2+)和三价铁(Fe3+)离子的水溶液中的化学反应得到超精细磁性氧化物,并且实现水溶液中磁性粒子上表面活性剂的强烈吸附,如美国专利US4019994、US4855079和US6086780(引入上述专利作为参考)和其它公开文献[Y.S.Kang,et al.,Chem.Mater.8,2209(1996).C.-Y.Hong,et al,J.Appl.Phys.81,4275(1997).T.Fried,et al,Adv.Mater.13,1158(2001).]所例举的。该方法不像研磨方法那样需要长的制备时间,并且适合磁性流体的批量生产。但是,它需要不断调整溶液的PH值以便确保粒子的形成和稳定。近来,[R.Vijayakumar,et al,Materials Sci.Eng.A286,101(2000).G.B.Biddlecombe,et al.,J.Mater.Chem.,11,2937(2001).]报导了来自Fe(II)盐的Fe3O4的第三种声化学合成方法。所有这些技术的主要缺点是得到的磁性粒子的尺寸分布、这些粒子的成份和/或粒子之间的相互作用力的不均匀性。该工艺在向更小尺寸的磁铁矿纳米晶体方面进展非常有限。

发明内容
本发明提供一种通过在有机溶剂中使铁盐和醇、羧酸及胺混合并将该混合物加热到200-360℃制备磁铁矿纳米粒子材料的方法。通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子可以控制粒子的尺寸。利用本发明得到了尺寸在2nm到20nm范围内的、具有窄的尺寸分布的磁铁矿纳米粒子。本发明可以容易地延伸到其它的铁氧化物基纳米粒子材料和涂覆了铁氧化物的纳米粒子材料,包括MFe2O4(M=Co、Ni、Cu、Zn、Cr、Ti、Ba、Mg)和MRFeOx(R=稀土金属)纳米材料。通过在反应混合物中用硫醇代替醇,本发明还可以实现硫化铁基纳米粒子材料的合成。可以将磁铁矿纳米粒子氧化为γ-Fe2O3或α-Fe2O3,或者可以将磁铁矿纳米粒子还原为bcc-Fe纳米粒子,同时可以使用铁氧化物基材料来制备二元铁基金属纳米粒子,例如CoFe、NiFe和FeCoSmx纳米粒子。
本发明的目的是提供一种合成Fe3O4纳米粒子材料的的方法,该材料具有控制的粒子尺寸。本发明的第二目的是制备其它类型的铁氧化物纳米粒子材料,例如MFe2O4、RFeO3或MRFeOx纳米粒子材料。本发明的第三目的是制备涂覆了铁氧化物的纳米粒子材料。本发明的第四目的是制备硫化铁和涂覆了硫化铁的纳米粒子材料,本发明的其它目的是制备金属纳米材料。
为了利用本发明制备Fe3O4,在溶剂中将铁盐与烷基醇、脂族酸(alphabetic acid)和伯胺混合。在200℃至360℃的温度范围内加热该混合物。冷却后,从它们的分散体中沉淀出磁铁矿纳米粒子,并且再分散到溶剂中。通过调整铁与酸/胺的比例或者反应温度控制粒子尺寸。通过将小的Fe3O4纳米粒子添加到该混合物中并且加热进行回流,也可以得到大尺寸的粒子。将不同的金属盐添加到该混合物中将得到MFe2O4纳米材料,同时将不同类型的纳米粒子添加到混合物中将生成涂覆了铁氧化物的芯-壳粒子材料。通过在混合物中用硫醇代替醇,可以制备硫化铁纳米材料和涂覆了硫化铁的芯-壳纳米材料。根据施加的反应温度的不同,使氧通过Fe3O4材料将生成γ-Fe2O3或α-Fe2O3,而使包含氢气的气体通过Fe3O4粒子将生成bcc-Fe纳米粒子材料。


通过下面参考附图对本发明最佳实施例的详细描述将更好地理解前面描述的和其它的目的、方面和优点,其中图1是通过铁盐的还原/分解制备Fe3O4纳米粒子的一般性方案示意图;图2示出了由图1所示的方案制备的6nm Fe3O4粒子的TEM图像;图3示出了根据图1所示的方案通过用更多的铁氧化物涂覆6nmFe3O4纳米粒子制备的8nm Fe3O4纳米粒子的TEM图像;图4示出了根据图1所示的方案通过用更多的铁氧化物涂覆8nmFe3O4纳米粒子制备的12nmFe3O4纳米粒子的TEM图像;图5A-5C示出了根据图1所示的方案通过用更多的铁氧化物涂覆12nmFe3O4纳米粒子制备的16nmFe3O4纳米晶体的三个TEM图像;图5A是2D纳米晶体集合体(assembly)的低分辨率图像;图5B是3D超晶格纳米晶体集合体(assembly)的低分辨率图像,和图5C是几个纳米晶体的高分辨率原子晶格图像;图6示出了(A)4nm、(B)8nm、(C)12nm和(D)16nmFe3O4纳米晶体集合体的X射线衍射图形。由它们的己烷分散体将样品淀积在玻璃衬底上。在CoKα辐照(λ=1.788965A)下在西门子D-500衍射仪上收集衍射图形;图7A和7B示出了室温下(例如,15℃-30℃)Fe3O4纳米晶体材料的磁滞回线,图7A来自4nmFe3O4,图7B来自8nmFe3O4;图8示出了硫化铁纳米晶体材料的X射线衍射图形;图9是示意图,表明由Fe3O4纳米粒子开始,可以制备其它各种铁基纳米粒子材料;和图10示出了(A)16nmFe3O4纳米晶体和(B)通过在250℃下用O2氧化16nmFe3O42小时得到的γ-Fe2O3纳米晶体和(C)通过400℃下和Ar+H2(5%)下还原Fe3O42小时得到的bcc-Fe纳米晶体集合体的X射线衍射图形。
具体实施例方式
如上所述,本发明的第一目的是提供一种用于合成Fe3O4纳米粒子的方法,该Fe3O4纳米粒子具有控制的粒径和尺寸分布。如图1所示,可以通过在醚溶剂中混合铁盐、醇、羧酸和胺并且加热该化合物进行回流制备铁氧化物纳米粒子材料。形成黑色溶液。冷却到室温(例如15℃-30℃)之后,用乙醇处理该化合物,从溶液中沉淀出黑色的磁性材料。将该黑色产物在酸和胺存在的情况下溶解在己烷中,用乙醇再沉淀。这样,可以从纳米粒子产物中除去高沸点溶剂和其它的有机杂质,得到纯的Fe3O4纳米粒子材料。将该材料分散到各种溶剂中以便得到黑棕色的溶液。TEM分析表明粒子接近单分散。利用上述过程,通过改变稳定剂/铁的比例或者提高反应温度,可以制得具有2nm-12nm尺寸范围的磁铁矿纳米粒子。图2是根据图1制备且由其己烷分散体淀积在非晶碳表面上的6nmFe3O4纳米晶体的TEM图像。这种纳米晶体可以作为籽晶,用于形成大的Fe3O4纳米晶体。
利用籽晶促进的生长还可以制备较大的Fe3O4纳米晶体。将小的Fe3O4纳米晶体即籽晶与图1所示的更多原料混合,并且加热进行回流。通过控制小的纳米晶体籽晶的量,可以形成各种尺寸的Fe3O4纳米晶体。根据所用的小Fe3O4和铁盐混合物的相对重量,该方法可以得到尺寸在4nm-20nm范围内的Fe3O4纳米粒子。例如,混合和加热62mg的8nmFe3O4纳米粒子与2mmol的铁盐、10mmol的醇、2mmol的羧酸和2mmol的胺,形成12nmFe3O4纳米粒子,而混合和加热15mg的8nmFe3O4与相同量的铁盐和其它有机前体,得到16nm的Fe3O4纳米粒子。
图3-5C是利用籽晶促进的生长方法制备的各种尺寸的Fe3O4纳米晶体的TEM图像。与图2所示的磁铁矿纳米晶体相比,这些图像表明籽晶促进的生长不仅生成了更大的纳米晶体,还使纳米晶体的尺寸分布变窄,生成更均匀的纳米晶体材料,并且便于纳米晶体超晶格的形成,如图5B所示。通过单个纳米晶体的高分辨率TEM和一组纳米晶体的X射线衍射揭示出这些纳米晶体(fcc尖晶石结构)的高质量晶体特性。在高分辨率TEM图像(图5C)中清楚地看到与d(111)=4.86埃的晶格常数对应的原子晶格。该fcc尖晶石结构的晶胞参数是8.41埃,与标准Fe3O4的参数一致。图6示出了由图1的图形(A)和籽晶促进的生长图形(B-D)制备的各种尺寸的Fe3O4纳米晶体集合体的X射线衍射图形。由图6中X射线的宽化,可以从Scherrer公式评估平均粒径Lhkl=Kλ/βcosθ其中L是沿着密勒指数(hkl)方向的平均晶粒尺寸,λ是所用的X射线的波长,K是Scherrer常数,并且其值大约为0.9,θ是布喇格角,β是弧度半高处的峰宽度。该计算确认了该粒子尺寸与通过对TEM图像进行统计分析确定的平均粒径匹配,表明每个粒子是单个的晶体。
由于Fe3O4纳米晶体的小尺寸,因此在室温下它们是超顺磁性的。图7A和7B示出了室温下两种不同的Fe3O4纳米晶体材料的磁滞回线。图7A来自4nm Fe3O4纳米晶体,图7B来自8nm Fe3O4纳米晶体。由于具有低的磁各向异性能量(KV)的小粒子的热扰动(KT),可以看出较小的粒子(4nm)需要较强的磁场使它们排列。
图1所示的方法可以容易地延伸到更复杂的纳米粒子材料例如MFe2O4纳米粒子材料的合成。这包括在溶剂中将M(或R)盐和铁盐与烷基醇、脂族酸(alphabetic acid)和伯胺混合,并加热该混合物进行回流。金属盐可来自任何以下的盐Zn、Cu、Ni、Co、Mn、Cr、V、Ti、Mg、Ba和稀土金属。而且,铁盐可以是下列任何盐Fe(OOCCH3)2、Fe(acac)2、Fe(acac)3、FeC2O4和Fe2(C2O4)3。也可以以类似的方式制备一些非化学计量比的纳米材料例如FeMoxOy、CoSmxFeyOz。
图1所示的相同方法还可以制备涂覆了铁氧化物的纳米粒子材料。例如,在溶剂中将铁盐和FePt纳米粒子与烷基醇、脂族酸和伯胺混合、然后加热该混合物进行回流将得到涂覆了Fe3O4的FePt纳米粒子。该工艺具有较高的一般性,并且可以应用到其它的涂覆铁氧化物的纳米粒子的合成,包括磁性的Co、Ni、Fe、FePt等和非磁性的Au、Ag、Cu、Pt、Pd等。
用烷硫醇(RSH)代替Fe3O4合成中的醇(ROH)得到硫化铁纳米材料。图8是合成的硫化铁纳米晶体材料的X射线衍射图形。它与磁黄铁矿FeS相匹配。与铁氧化物涂覆试验类似,通过在溶剂中将纳米粒子与铁盐、硫醇、羧酸和胺混合并且加热回流,也可以制备涂覆了硫化铁的纳米粒子。纳米粒子芯不仅包括磁性纳米粒子,而且包括非磁性纳米粒子。该工艺同样可以延伸到制备其它复杂的纳米材料,包含非化学计量比的FeMoSx和CoMoSx纳米材料。
Fe3O4基纳米晶体材料可以用作其它铁氧化物纳米晶体材料和金属纳米晶体材料的起始材料。图9显示了Fe3O4的各种转变的例子。例如,使氧通过Fe3O4纳米晶件集合体在250℃得到γ-Fe2O3纳米晶件集合体,在500℃则得到α-Fe2O3纳米晶件集合体。在400℃使还原气体[Ar+H2(5%)]通过Fe3O4纳米晶件集合体得到bcc-Fe纳米晶件集合体。在图10中示出了上述转变,其中线A来自开始的Fe3O4,线B来自在250℃、氧气下退火2小时的Fe3O4,线C来自在400℃、Ar+H2(5%)下退火2小时的Fe3O4。线B与众所周知的γ-Fe2O3匹配,而线C相当于一般的bcc-Fe。同样,也可以使用其它的氧化物纳米材料例如CoFeOx、NiFeOx或SmCoFeOx等纳米材料作为一些金属纳米材料CoFe、NiFe或SmCoFex合成的起始材料。
下面示出了本发明如何用于4nmFe3O4纳米晶体材料的一般合成。在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1,2-十六烷二醇(2.58g,10mmol)、油酸(6mmol)、油胺(6mmol)和二辛醚(20mL),并加热回流30分钟。然后应移走加热源,黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出Fe3O4纳米晶体,并且容易地将Fe3O4纳米晶体再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。通过改变稳定剂/铁盐的比例或反应温度,以类似的方式可以制备直到12nm直径的各种尺寸的Fe3O4。
下面说明了本发明如何用于16nmFe3O4纳米晶体材料的一般合成。在氮气下在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL)和分散在己烷中的8nmFe3O4纳米粒子(15mg),并搅拌和加热到100℃以便除去己烷。然后应加热混合物回流30分钟。移走加热源,黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,并在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出Fe3O4纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。可以使用这种籽晶促进的生长法来制备尺寸范围在4nm至20nm内的各种尺寸的Fe3O4纳米粒子材料。
下面说明本发明如何用于CoFe2O4纳米晶体材料的一般合成。在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、乙酰丙酮合钴(II)(1mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL),并加热回流30分钟。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,并在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出CoFe2O4纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。通过将钴盐改变为其它的金属盐,可以制备各种MFe2O4纳米晶体材料,其中M=Zn、Cu、Ni、Co、Mn、Cr、V、Ti、Mg或Ba。
下面说明本发明如何用于制备涂覆了Fe3O4的FePt纳米材料的一般工艺。在氮气下在玻璃容器中混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十八醇(2.70g,10mmol)、油酸(2mmol)、油胺(2mmol)、苯基醚(20mL)和分散在己烷中的4nmFePt纳米粒子,搅拌并加热到100℃以便除去己烷,然后加热该化合物30分钟进行回流。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出纳米晶体,它们可以容易地再分散在烷烃溶剂、芳香族溶剂或含氯的溶剂中。该工艺可以容易地延伸到其它类型的涂覆了铁氧化物的纳米材料,这些涂覆了铁氧化物的纳米材料的芯包括磁性(Co、Ni、Fe)和非磁性(Ag、Au、Pd、Pt、Cu或其它聚合物基粒子)的纳米粒子。
下面说明本发明如何用于硫化铁纳米晶体材料的一般合成。混合乙酰丙酮合铁(III)(706mg,2mmol)、1-十六烷硫醇(6mmol)、油酸(2mmol)、油胺(2mmol)和苯基醚(20mL),并加热30分钟进行回流。移走加热源,使黑棕色的反应混合物冷却到室温。然后应添加乙醇。通过离心法沉淀并分离黑色产物。弃去黄棕色上层清液,在存在油酸和油胺的情况下将黑色产物分散在己烷中。应通过离心法除去任何未溶解的沉淀。通过添加乙醇和离心沉淀出硫化铁纳米晶体。该工艺可以用来制备其它的金属硫化物例如硫化钴、硫化镍等以及涂覆了金属硫化物的纳米粒子材料。
上面制备的铁氧化物和硫化铁基纳米粒子材料在例如铁磁流体、数据存储、传感器、医学成像、药品输送、催化作用和磁及光学器件等方面具有重要用途。
因此,如上所述,本发明提供了一种方法,通过在有机溶剂中混合铁盐与乙醇、羧酸和胺并且将混合物加热到200-360℃制备磁铁矿纳米粒子材料。可以通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子来控制粒子的尺寸。利用本发明得到了尺寸在2nm至20nm的具有窄的尺寸分布的磁铁矿纳米粒子。可以容易地将本发明延伸到其它的铁氧化物基纳米粒子材料,包括MFe2O4(M=Co、Ni、Cu、Zn、Cr、Ti、Ba、Mg)纳米材料和涂覆了铁氧化物的纳米粒子材料。通过在反应混合物中用硫醇代替醇,本发明还提供了硫化铁基纳米粒子材料的合成。磁铁矿纳米粒子可以氧化为γ-Fe2O3或α-Fe2O3,或者可以还原为bcc-Fe纳米粒子,同时可以使用铁氧化物基材料来制备二元铁基金属纳米粒子,例如CoFe、NiFe和FeCoSmx纳米粒子。
在按照最佳实施例已经描述了本发明的同时,本领域技术人员应理解可以在上下文的精神和范围内修改以实施本发明。
权利要求
1.一种制备铁氧化物纳米粒子材料的方法,包括在有机溶剂中混合铁盐与醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物以便制备纳米晶体分散体。
2.如权利要求1所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
3.如权利要求1所述的方法,其中所述铁盐包括Fe(OOCCH3)2、Fe(acac)2、Fe(acac)3、FeC2O4和Fe2(C2O4)3之一,其中acac=CH3COCHCOCH3。
4.如权利要求1所述的方法,其中所述醇包括具有基本式R(OH)的有机醇,并且包含一元醇和多元醇。
5.如权利要求1所述的方法,其中所述有机酸包括具有基本式为RCOOH、RSOH、RPOH的有机酸。
6.如权利要求1所述的方法,其中所述胺包括RNH2、R2NH和R3N之一。
7.如权利要求1所述的方法,其中所述溶剂包括ROH、R-O-R和R-N-R之一。
8.如权利要求1所述的方法,其中所述分散体包括水、醇、丙酮、烷烃、芳香溶剂和含氯溶剂之一。
9.一种制备金属掺杂的铁氧化物纳米粒子材料的方法,包括在有机溶剂中混合铁盐与金属盐、醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物以便形成纳米晶体分散体。
10.如权利要求9所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
11.如权利要求9所述的方法,其中所述金属盐包括下列化合物及其它们的衍生物之一Co(OOCCH3)2、Co(acac)2、Co3(柠檬酸根)2、Ni(OOCCH3)2、Ni(acac)2、Ni(草酸根)、Cu(OOCCH3)2、Cu(acac)2、Cu(草酸根)、Zn(OOCCH3)2、Zn(acac)2、Zn(草酸根)、Mn(OOCCH3)2、Mn(acac)2、Mg(OOCCH3)2、Mg(acae)2、Ba(OOCCH3)2、Ba(acac)2、Sm(OOCCH3)3、Sm(acac)3、MoO2(acac)2,其中acac=CH3COCHCOCH3。
12.如权利要求9所述的方法,其中所述纳米材料包括化学计量比的MFe2O4、非化学计量比的MFexOy、FeMoxOy和CoSmxFeyOz。
13.一种制备涂覆了铁氧化物的纳米粒子材料的方法,包括在有机溶剂中混合纳米粒子与铁盐、有机醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物以便形成纳米晶体分散体。
14.如权利要求13所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
15.如权利要求13所述的方法,其中所述纳米粒子包括金属氧化物、金属和聚合物之一。
16.如权利要求15所述的方法,其中所述金属氧化物包括Fe、Co、Ni、Cu、Zn、Mn、Cr、V、Ti、Mg、Ca、Ba和Sm2O3之一的氧化物。
17.如权利要求15所述的方法,其中所述金属包括Fe、Co、Ni、Cu、Ag、Au、Pd和Pt中之一。
18.如权利要求15所述的方法,其中所述聚合物包括二氧化硅和聚烃(polyhydrocarbon)之一。
19.如权利要求13所述的方法,其中所述铁氧化物包括FeOx和MFexOy之一。
20.一种制备硫化铁纳米粒子材料的方法,包括在有机溶剂中混合铁盐与有机硫醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物以便形成纳米晶体分散体。
21.如权利要求20所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
22.如权利要求20所述的方法,其中所述硫醇包括来自基本式RSH的任何硫醇。
23.一种制备金属掺杂的硫化铁纳米粒子材料的方法,包括在有机溶剂中混合铁盐与金属盐、有机硫醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物。
24.如权利要求23所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
25.如权利要求23所述的方法,其中所述金属盐包括下列化合物及其衍生物之一MoO2(acac)2、Mo(OOCCH3)2、Co(OOCCH3)2和Co(acac)2。
26.一种制备涂覆了硫化铁的纳米粒子材料的方法,包括在有机溶剂中混合纳米粒子与金属盐、有机硫醇、有机酸和有机胺,以便形成混合物;加热所述混合物;将所述混合物冷却到室温;从所述混合物中沉淀产物;和在溶剂中分散所述产物以便形成纳米晶体分散体。
27.如权利要求26所述的方法,其中所述加热包括将所述混合物加热到200℃和360℃之间的温度。
28.一种制备Fe2O3纳米晶体材料的方法,包括在30℃之上的温度下用氧化剂氧化Fe3O4纳米晶体。
29.如权利要求28所述的方法,其中所述温度在200℃和500℃之间。
30.如权利要求28所述的方法,其中所述氧化剂包括氧和过氧化物之一。
31.一种制备Fe基纳米晶体的方法,包括在高于30℃的温度下用还原剂还原Fe3O4和MFeOx纳米晶体之一。
32.如权利要求31所述的方法,其中所述温度在250℃和500℃之间。
33.如权利要求31所述的方法,其中所述Fe纳米晶体包括二元金属FeM和多元金属CoFeSmx、CoFeMox中之一,其中M=Co和Ni、Cu、Zn、Cr。
34.如权利要求31所述的方法,其中所述还原剂包括氢、金属氢化物和适于给出电子的物质中之一。
全文摘要
描述了一种通过在有机溶剂中混合铁盐与醇、羧酸和胺并将该混合物加热到200-360℃制备磁铁矿纳米粒子材料的方法和结构。通过改变铁盐与酸/胺的比例或者通过用更多的铁氧化物涂覆小的纳米粒子可以控制粒子的尺寸。利用本发明得到了尺寸在2nm到20nm范围内的具有窄尺寸分布的磁铁矿纳米粒子。本发明可以容易地延伸到其它的铁氧化物基纳米粒子材料,包括MFe
文档编号C22C38/00GK1454851SQ0311076
公开日2003年11月12日 申请日期2003年4月15日 优先权日2002年4月17日
发明者孙守恒 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1