用于印刷电路板和通孔的无电极金属化的环保稳定催化剂的制作方法

文档序号:12699196阅读:280来源:国知局

本发明涉及用于印刷电路板和通孔的无电极金属化的环保稳定催化剂,其包括一定摩尔比的淀粉稳定剂和催化金属纳米粒子并且不含锡。更具体地说,本发明涉及用于印刷电路板和通孔的无电极金属化的环保稳定催化剂,其包括一定摩尔比的淀粉稳定剂和催化金属纳米粒子并且不含锡以在存储期间以及在无电极电镀期间使催化剂稳定化,并且所述催化剂良好粘附到印刷电路板的介电材料以使得光滑并且均匀的金属沉积在板表面上和通孔壁上。



背景技术:

印刷电路板(PCB)包括依赖于钻探和电镀通孔(PTH)的层压不导电介电材料以形成板的相对侧面与内层之间的连接。无电极电镀是用于在表面上制备金属涂层的熟知方法。介电表面的无电极电镀需要预先将催化剂涂覆到待电镀衬底上。用以在无电极电镀之前催化或活化层压不导电介电衬底区的最常使用的方法是用含水性锡-钯胶体的酸性氯化物介质处理衬底。胶体由被呈[SnCl3-]络合物外壳形式的锡(II)离子稳定层包围的钯核心组成,所述络合物充当表面稳定基团以避免胶体在悬浮液中凝聚。

在活化过程中,锡/钯胶体催化剂吸附到介电衬底,如含有环氧树脂或聚酰亚胺的衬底上以活化无电极金属沉积。理论上,催化剂充当无电极金属电镀浴中从还原剂到金属离子的电子转移路径中的载体。虽然无电极电镀的性能受许多因素影响,如电镀溶液的添加剂组合物,但活化步骤对于控制无电极电镀的速率和机制来说才是关键的。

近年来,随着电子装置尺寸减小和所需性能提高,在电子包装工业中对无缺陷电子电路的需求越来越高。虽然锡/钯胶体在商业上已持续数十年用作无电极金属电镀的活化剂并且一直提供可接受的服务,但其具有许多随着对更高品质电子装置的需求提高变得更加明显的缺点。锡/钯胶体的稳定性是主要问题。如上文所提及,锡/钯胶体通过锡(II)离子层稳定化并且其抗衡阴离子可以防止钯凝聚。催化剂对空气敏感并且容易氧化成锡(IV),因此胶体无法保持其胶态结构。此氧化进一步通过在无电极电镀期间提高温度和搅动来促进。如果锡(II)浓度下降到临界水平,如接近零,那么钯金属粒子的尺寸、附聚物和沉淀物生长,因此变得无催化活性。因此,对更稳定的催化剂的需求增加。另外,钯的较高并且波动的成本促进工业搜寻价格低廉的金属。

已付出了相当多的努力来研发新型和改进的催化剂。因为钯的高成本,已付出许多努力来研发无钯催化剂,如胶态银催化剂。另一研究方向为不含锡钯催化剂,因为氯化亚锡成本较高并且氧化锡需要单独的加速步骤。除在总体无电极方法中添加另一个步骤以外,加速步骤中所使用的材料通常从待电镀衬底剥去催化剂,在电镀层中留下非所需空隙。此在印刷电路板制造中典型地使用的玻璃纤维衬底上是尤其常见的。然而,此类不含锡催化剂已显示为活性不够并且在印刷电路板制造中依赖于通孔电镀。此外,此类催化剂典型地在存储后活性逐渐降低,因此使得此类催化剂对于商业用途来说是不可靠和不可行的。

已研究锡络合物的替代稳定部分,如聚乙烯吡咯烷酮(PVP)和树枝状聚合物。在文献中,多个研究小组已报导稳定和均匀的PVP受保护纳米粒子。在文献中也已报导其它金属胶体,如银/钯和铜/钯,其中钯经较便宜金属部分置换;然而,到目前为止,仍不含锡/钯胶态催化剂的商业上可接受的替代物。因此,仍然需要稳定并且可靠的无电极金属电镀催化剂。



技术实现要素:

一种无电极电镀方法,其包含:提供衬底;将水性催化剂溶液涂覆到所述衬底上,所述水性催化剂溶液包含一种或多种选自银、金、铂、钯、铱、铜、铝、钴、镍和铁的金属的纳米粒子;淀粉;以及选自由葡萄糖、蔗糖、半乳糖、果糖、麦芽糖以及其混合物组成的群组的还原剂,其中淀粉与还原剂的重量比是150:1到1:5,所述水性催化剂溶液不含锡;使催化的衬底与无电极金属电镀浴接触;以及用无电极金属电镀浴使金属无电极沉积于催化的衬底上。

催化剂可以用于使金属无电极电镀在衬底上,包括具有金属表面的衬底和具有介电材料的那些衬底。本发明的催化剂在存储后以及在无电极金属电镀期间是稳定的。相比于常规锡/钯催化剂,其并不易于氧化。另外,催化剂良好粘附到可以是金属、介电材料或其组合的衬底表面和孔口壁。本发明的催化剂对衬底的良好粘附性以及本发明的催化剂在衬底上的稳定性使得无电极电镀的金属能够在衬底上形成均匀并且平面的金属沉积物。本发明的催化剂也在孔口的壁和拐点上实现均匀、平面并且保形的金属电镀。催化剂典型地用于在电解金属电镀,如铜电镀之前在孔口的表面和壁上形成薄镀层或触击层。用本发明的催化剂形成的触击层在电解金属电镀期间帮助实现均匀并且基本上完整的孔口(如印刷电路板中的通孔)填充形成。

与催化剂的碳水化合物还原剂组合的淀粉稳定剂不仅能够使得催化剂良好粘附到衬底,而且还是生物可降解的,因此其并不存在环境危害。另外,本发明的催化剂不含锡并且并不会引起常规锡/钯催化剂的环境毒性处理问题。

具体实施方式

如本说明书通篇所使用,除非上下文另外明确指示,否则以下缩写将具有以下含义:A=安培;A/dm2=安培每平方分米;℃=摄氏度;g=克;mg=毫克;ppm=百万分率;ppm=mg/L;L=升,nm=纳米;μm=微米(micron/micrometer);mm=毫米;cm=厘米;b.v.=按体积计;DI=去离子;mL=毫升;Mw=重量平均分子量;除非另外指出,否则所有量都是重量百分比。所有数值范围是包括性的并且可按任何次序组合,除非很明显这些数值范围被限制于总计为100%。

如在整个说明书中所使用,“特征”是指衬底上的几何结构。“孔口”是指包括通孔和盲通道的凹陷特征。如本说明书通篇所使用,除非另外指定,否则术语“电镀”是指金属无电极电镀。术语“平面”是指具有均匀的表面构形的基本上平坦的表面。“沉积”和“电镀”在本说明书通篇可互换使用。术语“印刷电路板”和“印刷布线板”在本说明书通篇可互换使用。不定的冠词“一个(种)(a和an)”表示单数和复数两者。

水性催化剂溶液包括选自银、金、铂、钯、铱、铜、铝、钴、镍和铁的金属纳米粒子;一种或多种稳定淀粉;以及选自由以下组成的群组的还原剂:葡萄糖、蔗糖、半乳糖、果糖、麦芽糖以及其混合物。优选地,金属选自银、金和铜,更优选地,金属选自银和铜,最优选地,金属是银。优选地,淀粉稳定化合物具有以下通式:

其中“n”是使得淀粉的Mw是1000或更大,优选10,000到1000,000的数字。

稳定淀粉化合物和还原剂以足够的量包括于水性催化剂中以提供所需稳定和无电极金属电镀。优选地,淀粉与还原剂的重量比是150:1到1:5,更优选110:1到1:2,并且最优选80:1到1:1。可以进行微量实验以获得使无电极金属电镀催化剂稳定化的特定淀粉稳定剂或淀粉稳定剂与还原剂的组合的量。一般来说,一种或多种稳定化合物以250ppm到10g/L的量包括于水性催化剂中。一般来说,以10ppm到250ppm的量包括还原剂。

任选地,一种或多种抗氧化剂包括于催化剂中。此类抗氧化剂包括(但不限于)有机酸,如单羧酸和聚羧酸。此类酸的实例包括苯甲酸和其衍生物、抗坏血酸、异抗坏血酸、苹果酸、乙酸、酒石酸、罗谢尔(Rochelle)盐和柠檬酸。以10ppm到200ppm,优选20ppm到100ppm的量包括此类酸。

金属来源包括所属领域和提供具有催化活性的金属的文献中已知的常规水可溶金属盐中的任一种。可以使用两种或更多种催化金属的混合物。包括此类盐以提供100ppm到2000ppm,优选300ppm到1500ppm的量的金属。银盐包括(但不限于)硝酸银、乙酸银、三氟乙酸银、甲苯磺酸银、三氟甲磺酸银、氟化银、氧化银、硫代硫酸银三钠和氰化银钾。钯盐包括(但不限于)氯化钯、乙酸钯、氯化钯钾、氯化钯钠和硝酸钯。金盐包括(但不限于)氰化金、三氯化金、三溴化金、氯化钾金、氰化钾金、氯化钠金和氰化钠金。铂盐包括(但不限于)氯化铂和硫酸铂。铱盐包括(但不限于)三溴化铱和氯化铱钾。铜盐包括(但不限于)硫酸铜和氯化铜。镍盐包括(但不限于)氯化镍和硫酸镍。钴盐包括(但不限于)乙酸钴、氯化钴、溴化钴和硫酸钴铵。铝盐包括(但不限于)硫酸铝和硫酸铝钠。铁盐包括(但不限于)柠檬酸亚铁铵、草酸亚铁铵和硫酸亚铁铵。优选地,金属盐是银、铜和金。更优选地,金属盐是银和铜。最优选地,盐是银。

金属与淀粉与还原剂的重量比在0.1-0.5g/L到0.1-13g/L到0.05到1g/L范围内。优选地,金属与淀粉与还原剂的比率在0.2-0.3g/L到1-6g/L到0.1-0.6g/L范围内。

构成水性催化剂的组分可以任何次序组合。可以使用所属领域和文献中已知的任何适合的方法来制备水性催化剂。虽然组分的特定参数和量可能随着方法而变化,但一般来说,首先使稳定化合物中的一种或多种溶解于足够量的水中。在剧烈搅动下将作为水溶液的金属的一种或多种来源与稳定剂溶液组合以形成均匀的混合物。任选地,接着可以在剧烈搅动下将含有一种或多种还原剂的水溶液与稳定剂和金属盐的混合物混合。方法步骤和溶液典型地在室温下进行;然而,可以改变温度以帮助溶解反应组分并且促进金属离子还原。尽管不受理论束缚,稳定剂可以涂布或包围部分或大多数金属以催化剂溶液稳定化。金属和稳定剂的粒子直径大小在至少1nm,典型地1nm到1000nm或如2nm到500nm范围内。优选地,粒子尺寸范围为2nm到300nm,更优选2nm到100nm,并且最优选2nm到10nm。

如此合成的催化剂的pH可以在酸性到轻度碱性范围内。如果催化剂是碱性的,那么在使用无电极金属化催化剂之前使pH减小到低于7。可以将一种或多种酸或其盐添加到催化剂中以提供小于7,优选1-6.5,更优选2-6的pH范围。可以使用足够量的无机或有机酸或其盐以使pH保持在所希望的范围下。也可以使用无机和有机酸和盐的混合物。无机酸的实例是盐酸、硫酸和硝酸。有机酸包括单和聚羧酸,如二羧酸。有机酸的实例是苯甲酸、抗坏血酸、异抗坏血酸、苹果酸、马来酸、草酸、乙酸、柠檬酸和酒石酸。

可以使用催化剂来无电极金属电镀各种衬底。此类衬底包括(但不限于)以下材料,包括无机和有机物质,如玻璃、陶瓷、瓷、树脂、纸、布以及其组合。金属包覆和非包覆材料也是可以使用催化剂金属电镀的衬底。

衬底还包括印刷电路板。此类印刷电路板包括由热固性树脂、热塑性树脂以及其组合(包括纤维,如玻璃纤维,和前述浸透实施例)包覆和非包覆的金属。

热塑性树脂包括(但不限于)缩醛树脂、丙烯酸树脂(如丙烯酸甲酯)、纤维素树脂(如乙酸乙酯)、丙酸纤维素、乙酸丁酸纤维素和硝酸纤维素、聚醚、尼龙、聚乙烯、聚苯乙烯、苯乙烯掺合物(如丙烯腈苯乙烯和共聚物和丙烯腈-丁二烯苯乙烯共聚物)、聚碳酸酯、聚氯三氟乙烯和乙烯基聚合物和共聚物,如乙酸乙烯酯、乙烯醇、乙烯基缩丁醛、氯乙烯、氯乙烯-乙酸酯共聚物、偏二氯乙烯和乙烯基缩甲醛。

热固性树脂包括(但不限于)邻苯二甲酸烯丙酯、呋喃、三聚氰胺-甲醛、酚-醛和酚-糠醛共聚物(单独的或与丁二烯丙烯腈共聚物或丙烯腈-丁二烯-苯乙烯共聚物复合)、聚丙烯酸酯、硅酮、脲甲醛、环氧树脂、烯丙基树脂、邻苯二甲酸甘油酯以及聚酯。

多孔材料包括(但不限于)纸、木材、玻璃纤维、布和纤维,如天然和合成纤维,如棉花纤维和聚酯纤维。

催化剂可以用于电镀低和高Tg树脂两者。低Tg树脂的Tg低于160℃并且高Tg树脂的Tg为160℃和更高。典型地,高Tg树脂的Tg为160℃到280℃或如170℃到240℃。高Tg聚合物树脂包括(但不限于)聚四氟乙烯(PTFE)和聚四氟乙烯掺合物。此类掺合物包括例如具有聚苯醚和氰酸酯的PTFE。其它类型的包括具有高Tg的树脂的聚合物树脂包括(但不限于)环氧树脂,如双官能和多官能环氧树脂、双马来酰亚胺/三嗪和环氧树脂(BT环氧树脂)、环氧树脂/聚苯醚树脂、丙烯腈丁二烯苯乙烯、聚碳酸酯(PC)、聚苯醚(PPO)、聚亚苯基醚(PPE)、聚苯硫醚(PPS)、聚砜(PS)、聚酰胺、聚酯(如聚对苯二甲酸乙二酯(PET)和聚对苯二甲酸丁二酯(PBT))、聚醚酮(PEEK)、液晶聚合物、聚氨基甲酸酯、聚醚酰亚胺、环氧树脂以及其复合物。

催化剂可以用于将金属沉积于印刷电路板的通孔或通道的壁上。可以在制造印刷电路板的水平和垂直方法两者中使用催化剂。

水性催化剂可以与常规无电极金属电镀浴一起使用。虽然设想催化剂可以用于无电极沉积可以经无电极电镀的任何金属,但典型地,所述金属选自铜、铜合金、镍或镍合金。更典型地,金属选自铜和铜合金,最典型地,使用铜。可商购无电极铜电镀浴的一个实例是CIRCUPOSITTM 880无电极铜浴(可购自马萨诸塞州马波罗的陶氏电子材料有限责任公司(Dow Electronic Materials,LLC,Marlborough,MA))。

典型地,铜离子源包括(但不限于)水溶性卤化物、硝酸盐、乙酸盐、硫酸盐和铜的其它有机和无机盐。可以使用此类铜盐中的一种或多种的混合物提供铜离子。实例包括硫酸铜(如五水合硫酸铜)、氯化铜、硝酸铜、氢氧化铜和氨基磺酸铜。组合物中可以使用常规量的铜盐。一般来说,组合物中的铜离子浓度可以在0.5g/L到30g/L范围内。

一种或多种合金金属也可以包括于无电极组合物中。此类合金金属包括(但不限于)镍和锡。铜合金的实例包括铜/镍和铜/锡。典型地,铜合金是铜/镍。

镍和镍合金无电极浴的镍离子源可以包括镍的一种或多种常规水可溶盐。镍离子源包括(但不限于)硫酸镍和卤化镍。镍离子源可以常规量包括于无电极合金组合物中。典型地,以0.5g/L到10g/L的量包括镍离子源。

使衬底金属化中所使用的方法步骤可以取决于待电镀表面是否为金属或介电的而变化。特定步骤和步骤顺序也可以随着方法而变化。用于无电极金属电镀衬底的常规步骤可以与催化剂一起使用;然而,水性稳定化金属催化剂并不需要如许多常规无电极电镀方法中的加速步骤。因此,当使用催化剂时,优选排除加速步骤。一般来说,将催化剂涂覆到准备用金属无电极电镀的衬底表面,继而涂敷金属电镀浴。无电极金属电镀参数,如温度和时间可以是常规的。可以使用常规衬底制备方法,如清洁或使衬底表面脱脂,使表面粗糙化或微粗糙化,蚀刻或微蚀刻表面,溶剂膨胀应用,除胶渣通孔和各种冲洗和抗变色处理。此类方法和调配物在所属领域中是熟知的并且公开于文献中。

典型地,当待金属电镀的衬底是介电材料,如在印刷电路板表面上或通孔壁上时,用水冲洗板,清洁,并且继而使通孔壁除胶渣。典型地,预备或软化通孔的介电表面或胶渣是以应用溶剂膨胀开始。

可以使用任何常规溶剂膨胀剂。特定类型可以取决于介电材料的类型而变化。上文公开介电质的实例。可以进行微量实验以测定哪种溶剂膨胀剂适用于特定介电材料。介电质的Tg通常决定所使用的溶剂膨胀剂的类型。溶剂膨胀剂包括(但不限于)二醇醚和其相关醚乙酸酯。可以使用常规量的二醇醚和其相关醚乙酸酯。可商购的溶剂膨胀剂的实例是CIRCUPOSITTM Hole Prep 211A、CIRCUPOSITTM Hole Prep 3303和CIRCUPOSITTM Hole Prep 4120(可购自罗门(Rohm)和陶氏电子材料公司)。

任选地,衬底和通孔用水冲洗。接着施加促进剂。可以使用常规促进剂。此类促进剂包括硫酸、铬酸、碱性高锰酸或等离子蚀刻。典型地,使用碱性高锰酸作为促进剂。可商购促进剂的一个实例是CIRCUPOSITTM促进剂4130和CIRCUPOSITTM MLB促进剂3308(可购自陶氏电子材料公司)。

任选地,衬底和通孔再次用水冲洗。接着施用中和剂以中和促进剂残留的任何残余物。可以使用常规中和剂。典型地,中和剂是含有一种或多种胺的水性酸性溶液或3wt%过氧化物和3wt%硫酸的溶液。可商购的中和剂的实例是CIRCUPOSITTM MLB中和剂216-5。衬底和通孔用水冲洗并且可以在调节步骤之前保持湿润或干燥。

在除胶渣之后,施用酸或碱性调节剂。可以使用常规调节剂。此类调节剂可以包括一种或多种阳离子性表面活性剂、非离子性表面活性剂、络合剂和pH调节剂或缓冲剂。可商购的酸调节剂的实例是CIRCUPOSITTM调节剂3320和CIRCUPOSITTM调节剂3327(可购自陶氏电子材料公司)。适合的碱性调节剂包括(但不限于)含有一种或多种季胺和多元胺的水性碱性表面活性剂溶液。可商购的碱性表面活性剂的实例是CIRCUPOSITTM调节剂231、3325、813和860。在调节之后,衬底和通孔用水冲洗。

可以在调节之后进行微蚀刻。可以使用常规微蚀刻组合物。微蚀刻被设计以在暴露的金属上提供微粗糙化金属表面(例如内层和表面蚀刻),以便增强后续沉积的无电极和稍后电镀物金属的粘附性。微蚀刻剂包括(但不限于)10g/L到200g/L过硫酸钠或氧代单过硫酸钠或过氧代单过硫酸钾和硫酸(1-5%)混合物,或一般硫酸/过氧化氢。可商购的微蚀刻组合物的实例是CIRCUPOSITTM微蚀刻剂3330和PREPOSITTM 748。在蚀刻之后,衬底用水冲洗。

任选地,可以接着对微蚀刻衬底和通孔进行预浸渍。可以使用足够量的无机或有机酸或其盐。也可以使用无机和有机酸和盐的混合物。无机酸的实例是盐酸、硫酸和硝酸。有机酸包括单和聚羧酸,如二羧酸。有机酸的实例是苯甲酸、抗坏血酸、异抗坏血酸、苹果酸、马来酸、草酸、乙酸、柠檬酸和酒石酸。

接着将淀粉稳定化催化剂涂覆到衬底和通孔上。在催化剂中的停留时间可以在1-15分钟,典型地2-8分钟范围内变化。温度可以在室温到80℃或如30℃到60℃范围内。在施用催化剂之后,衬底和通孔用水冲洗。

衬底和通孔的壁接着用金属,如铜、铜合金、镍或镍合金与无电极浴电镀。典型地,将铜电镀在衬底表面和通孔壁上。镀敷时间和温度可以是常规的。典型地,在20℃到80℃,更典型地30℃到60℃的温度下进行金属沉积。衬底可以浸没于无电极电镀浴中或无电极可以经由流体泵送或将条喷射到衬底上。典型地,沉积可以进行5秒到30分钟;然而,电镀时间可以取决于衬底上的金属的厚度变化。

任选地,可以对金属施用抗变色剂。可以使用常规抗变色组合物。抗变色剂的一个实例是ANTI TARNISHTM 7130(可获自陶氏电子材料公司)。衬底可以任选地冲洗并且接着可以将板干燥。

进一步加工可以包括通过光成像和在衬底上的进一步金属沉积(如铜、铜合金、锡和锡合金的电解金属沉积)而进行的常规加工。

催化剂可以用于将金属无电极电镀在衬底上,包括介电材料的衬底并且在存储后和在无电极金属电镀期间是稳定的。催化剂是生物可降解的,因此其并不存在环境危害。淀粉稳定化金属催化剂实现无加速步骤的无电极金属电镀并且实现衬底,甚至印刷电路板的通孔的壁的金属电镀。

以下实例并不意图限制本发明的范围,而是进一步说明本发明。

实例1

淀粉/银催化剂合成,其中葡萄糖作为还原剂

通过在50℃到55℃下加热的情况下在含有900mL DI水的烧杯中使6g/L淀粉溶解制备淀粉/银催化剂。制成50g/L的淀粉溶液。将472mg硝酸银添加到50mL DI水中并且搅拌直到其完全溶解为止。将混合物添加到溶液中并且剧烈搅拌,同时连续地加热。将pH调节到9-13并且使100mg葡萄糖溶解于20mL DI水中并且极剧烈地搅动溶液混合物。溶液迅速从无色改变为红棕色,指示银离子还原成银金属。接着将最终体积调节到一升。用无机或有机酸再调节溶液pH并且如此合成的催化剂具有5到10的pH,如使用ACCUMET AB15pH计所测量。将含有水性催化剂溶液的烧杯放置于50℃水浴中持续约12小时以测试其稳定性。在约12小时之后,无可观测到的沉淀物,指示催化剂仍是稳定的。

实例2

无电极铜电镀

实例1中制备的催化剂溶液用作储备溶液并且2份等分试样用DI水稀释到250ppm的纳米粒子浓度。用抗坏血酸将等分试样的pH调节到3或5。糊精与还原剂的重量比为约60:1。

尺寸为10cm×5cm的两个裸露的层压物试片用3%b.v.CIRCUPOSITTM调节剂231调节并且在室温下用自来水冲洗。接着使每个试片浸没于两个含有糊精/银催化剂的等分试样中的一个中约5分钟以用催化剂预涂布每个试片。在催化作用期间,在约40℃的温度下加热具有试片的水性催化剂浴。接着在36℃下将催化的试片浸没在CIRCUPOSITTM 880无电极铜电镀浴中约15分钟。无电极铜电镀浴的pH为约12。

从无电极铜浴中移出试片并且在室温下用去离子水冲洗。两个试片似乎完全被铜电镀。在试片的整个表面上铜沉积物似乎是光滑、均匀并且平面的。根据ASTM D3359,使用3M 250胶带测试来测试铜沉积物的粘附性。将胶带施加到每个试片的一个表面并且从试片拉出胶带。在胶带上未观测到铜沉积物,指示每个试片的良好铜粘附性。

实例3

通孔电镀

提供具有多个通孔的六种不同层压物:NP-175、370HR、TUC-752、SY-1141、SY-1000-2和FR-408。NP-175来自南亚公司(Nan Ya)。370HR和FR4-408来自伊索拉(Isola)。TUC-752来自台湾联合技术公司(Taiwan Union Technology)并且SY-1141和SY-1000-2来自生益(Shengyi)。层压物的Tg值在140℃到180℃范围内。每个层压物为5cm×12cm。每个层压物的通孔处理如下:

1.每个层压物的通孔用CIRCUPOSITTM MLB调节剂211在78℃下除胶渣7分钟;

2.每个层压物的通孔接着用流动的自来水冲洗4分钟;

3.通孔接着在13的pH下在78℃下用CIRCUPOSITTM MLB促进剂213水性高锰酸溶液处理10分钟;

4.通孔接着在流动的自来水中冲洗4分钟;

5.通孔接着在46℃下用CIRCUPOSITTM MLB中和剂216-5溶液处理5分钟;

6.每个层压物的通孔接着用流动的自来水冲洗4分钟;

7.通孔接着在含有3%CIRCUPOSITTM调节剂231碱性调节剂的水性浴中在40℃下处理5分钟;

8.每个层压物的通孔接着用流动的自来水冲洗4分钟;

9.通孔接着在室温下用PREPOSTTM 748处理2分钟;

10.每个层压物的通孔接着用流动的自来水冲洗4分钟;

11.六个层压物的通孔接着在40℃下用来自经6g/L淀粉稳定化的硝酸银的300ppm银催化剂催化5分钟,其中催化剂粒径在7-10nm范围内。还原剂为200ppm葡萄糖。用抗坏血酸将催化剂的pH调节到约6;

12.通孔接着用流动的自来水冲洗4分钟;

13.层压物接着在40℃下并且在约13的pH下浸没在CIRCUPOSITTM 880无电极铜电镀浴中并且使铜沉积于通孔壁上持续15分钟;

14.铜电镀层压物接着用冷水冲洗4分钟;

15.接着用压缩空气干燥每个铜电镀层压物;并且

16.使用下文所描述的背光方法检测层压物的通孔壁的铜电镀覆盖度。

每个板侧向地切割以暴露通孔的电镀有铜的壁。从每个板获取约1mm厚的十个侧向孔洞以测定通孔壁覆盖度。使用普遍可接受的背光定级标度。每个板的1mm截面放置在50X放大率的常规光学显微镜下。通过在显微镜下观测到的光量测定铜沉积物的品质。如果未观测到光,那么截面完全为黑色并且在背光标度上评定为5,指示通孔壁的完全铜覆盖。如果光穿过整个截面而无任何黑暗区域,那么这表明器壁上存在极少到无铜金属沉积并且截面评定为0。如果截面具有一些黑暗区域以及明亮区域,那么其被评定为0与5之间。

除NP-175板外,淀粉/银催化剂的平均背光值为4.5和更大。典型地,4.5和更大的背光值指示在电镀工业中商业上可接受的催化剂。

实例4

淀粉/银催化剂合成,其中蔗糖作为还原剂

通过在50℃到55℃下加热的情况下在含有900mL DI水的烧杯中使5g/L淀粉溶解制备淀粉/银催化剂。将472mg硝酸银添加到50mL DI水中并且搅拌直到其完全溶解为止。将混合物添加到溶液中并且剧烈搅拌,同时连续地加热。将pH调节到9-13并且使300mg蔗糖溶解于20mL DI水中。在极剧烈搅动下将DI水添加到溶液混合物中。溶液迅速从无色改变为红棕色,指示银离子还原成银金属。接着将最终体积调节到一升。用无机或有机酸再调节溶液pH并且如此合成的催化剂具有约5到10的pH,如使用ACCUMET AB15pH计所测量。将含有水性催化剂溶液的烧杯放置于50℃水浴中持续约12小时以测试其稳定性。在约12小时之后,无可观测到的沉淀物,指示催化剂仍是稳定的。

实例5

淀粉/银催化剂合成,其中半乳糖作为还原剂

通过在50℃到55℃下加热的情况下在含有900mL DI水的烧杯中使4g/L淀粉溶解制备淀粉/银催化剂。将472mg硝酸银添加到50mL DI水中并且搅拌直到其完全溶解为止。将混合物添加到溶液中并且剧烈搅拌,同时连续地加热。将pH调节到9-13并且使300mg半乳糖溶解于20mL DI水中。在极剧烈搅动下将DI水添加到溶液混合物中。溶液迅速从无色改变为红棕色,指示银离子还原成银金属。接着将最终体积调节到一升。用无机或有机酸再调节溶液pH并且如此合成的催化剂具有约5到10的pH,如使用ACCUMET AB15pH计所测量。将含有水性催化剂溶液的烧杯放置于50℃水浴中持续约12小时以测试其稳定性。在约12小时之后,无可观测到的沉淀物,指示催化剂仍是稳定的。

实例6

淀粉/银催化剂合成,其中果糖作为还原剂

通过在50℃到55℃下加热的情况下在含有900mL DI水的烧杯中使5g/L淀粉溶解制备淀粉/银催化剂。将472mg硝酸银混合于50mL DI水中并且剧烈并连续地加热直到其完全溶解为止。将pH调节到9-13并且将150mg溶解于20mL DI水中的果糖添加到溶液中并且极剧烈地搅动混合物。溶液迅速从无色改变为红棕色,指示银离子还原成银金属。接着将最终体积调节到一升。用无机或有机酸再调节溶液pH并且如此合成的催化剂具有5到10的pH,如使用ACCUMET AB15pH计所测量。将含有水性催化剂溶液的烧杯放置于50℃水浴中持续约12小时以测试其稳定性。在约12小时之后,无可观测到的沉淀物,指示催化剂仍是稳定的。

实例7

淀粉/银催化剂合成,其中麦芽糖作为还原剂

通过在50℃到55℃下加热的情况下在含有900mL DI水的烧杯中使4g/L淀粉溶解制备淀粉/银催化剂。搅拌含472mg硝酸银的50mL DI水直到其完全溶解为止。将pH调节到9-13并且使300mg麦芽糖溶解于20mL DI水中。在极剧烈搅动下将DI水添加到溶液混合物中。溶液迅速从无色改变为红棕色,指示银离子还原成银金属。接着将最终体积调节到一升。用无机或有机酸再调节溶液pH并且如此合成的催化剂具有5到10的pH,如使用ACCUMET AB15pH计所测量。将含有水性催化剂溶液的烧杯放置于50℃水浴中持续约12小时以测试其稳定性。在约12小时之后,无可观测到的沉淀物,指示催化剂仍是稳定的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1