一种在钒合金基底上制备Er2O3涂层的方法与流程

文档序号:12699186阅读:638来源:国知局
一种在钒合金基底上制备Er2O3涂层的方法与流程

本发明属于涂层制备技术领域,特别涉及一种在钒合金基底上制备Er2O3涂层的方法。



背景技术:

随着人类社会的发展,人们对于能源的需求越来越大,据专家预测储存量有限的化石能源在未来几十年内将陆续消耗完毕。核聚变能源具有以下独特的优点:(1)海水中蕴含极为丰富的氘,燃料资源丰富;(2)燃料系统安全、易防护;(3)热公害小;(4)燃料废料少。因此,核聚变能也被称为人类未来的永久能源。但是,核聚变能源的开发也面临着一系列的问题,其中之一便是产氚包层中的渗氚问题。目前,产氚包层的设计方案有两种,一种是低活钢铁素体/马氏体和固态锂组合,一种是钒合金和液态锂组合,后者的氚增值比(TBR)最大,但存在磁流体动力学(MHD)压降的问题。一个可行的解决办法是在第一壁结构候选材料钒合金上通过表面处理涂覆一层Er2O3绝缘氧化层。这样可以既有效预防氚渗透的危害,还可以极大地减少膜流带来的MHD压降。截止目前,已有的报道均是在316L不锈钢或马氏体钢上制备防渗氚用Er2O3涂层(Junyou Yang,Hui Chen,Jiansheng Zhang,Shuanglong Feng.Preparation of Er2O3coating on a low activation martensitic steel substrate via the route of sol-gel[J].SURFACE&COATINGS TECHNOLOGY 205(2011):5497-5501;杨旭东,李弢,古宏伟,汤梅.316L不锈钢基体上磁控溅射Er2O3/Er涂层的后处理研究[J].中国稀土学报2009,27(2).)。而关于在钒合金基底上制备Er2O3涂层的文章尚未见到。

本专利申请报道了通过合理的控制实验参数在钒合金基底上制备合格的Er2O3涂层。



技术实现要素:

本发明的目的是提供一种在钒合金基底上制备Er2O3涂层的方法。首先将Er(NO3)3·5H2O溶于无水乙醇中,并加入一定体积的火棉胶,经磁力搅拌后制成溶胶。通过旋涂法将溶胶均匀的涂覆在钒合金表面。然后在真空干燥箱中干燥,随后炉冷。最后在管式炉中热处理获得Er2O3涂层。

本发明提供了一种在钒合金基底上制备Er2O3涂层的方法,具体步骤如下:

1.钒合金基底的预处理

将一定厚度的钒合金板利用线切割的方式切割成所需大小。再分别用600-5000目砂纸打磨,并抛光成镜面,用无水乙醇洗净。然后吹干。

2.溶胶配制

称取一定质量的Er(NO3)3·5H2O溶于无水乙醇中并加入体积分数为3-5%的火棉胶,利用电磁搅拌制成浓度为0.4M-0.6M的溶胶,然后将溶胶密封保存。

3.在钒合金基底上制备Er2O3涂层

将处理好的钒合金固定在旋涂机上,利用滴管滴加适量的溶胶于钒合金片上。先以600-1000rpm低速旋涂5-9s,再以高速4000-6000rpm旋涂20s-40s,可以保证钒合金基体被涂层包覆。将旋涂好的试样放置于真空干燥箱内,分2步加热真空干燥;从室温加热至40-50℃时真空干燥30-50min,然后继续升温,在温度达到70-85℃时再真空干燥30-50min,然后炉冷。利用高温管式炉将干燥后的试样进行热处理。热处理过程在氩气气氛保护下进行,氩气流速为130-180sccm。热处理温度为550-650℃,保温时间为40-75min,采用炉内冷却。

4.重复步骤3以达到需要的涂层厚度。

本发明选择溶胶-凝胶法结合旋涂法在钒合金基底上制备Er2O3涂层,制备的涂层均匀,无裂纹,厚度可控且具有操作简便快捷,成本低廉,反应温度低以及涂层成分单一等明显的优势,能够实现对Er2O3涂层厚度的控制。

附图说明

图1为涂层的表面形貌高倍图,

图2为涂层的表面形貌低倍图,

图3为涂层的截面形貌图,

图4为涂层的XRD图,

从图1,图2可以看出,在钒合金基底上以本方法制备出的Er2O3涂层表面平整且无气孔裂纹等缺陷。图3表明涂层的连续性以及涂层与基底的结合很好。图4表明本实验所采用的工艺参数确实可以使铒的前驱体完全转化为Er2O3

具体实施案例一

1.将经线切割获得的5mm×5mm×1mm的钒合金片用600-5000目砂纸打磨并抛光成镜面,利用无水乙醇洗净。然后吹干。

2.称取4.433g的Er(NO3)3·5H2O并量取0.8ml的火棉胶,加入无水乙醇经磁力搅拌后制成20ml的溶胶。

3.将处理好的钒合金基底固定在旋涂机上,利用滴管滴加适量的溶胶于钒合金片上。以650rpm低速旋涂9s后,再以高速5000rpm旋涂30s。将旋涂好的试样放置于真空干燥箱内,当温度从室温升至50℃时真空干燥30min,之后继续升温,在温度达到85℃时再真空干燥30min,然后炉冷。利用高温管式炉将干燥后的试样进行热处理。热处理过程在氩气气氛保护下进行,氩气流速为150sccm。热处理温度为600℃,保温时间为45min,采用炉内冷却。

4.重复步骤3以达到需要的涂层厚度。

5.利用万用表测试涂层的绝缘性能发现当两电极分别位于覆层和基体时,所测得的电导率为零。当两电极均位于覆层上时,所测得的电导率为零。

具体实施案例二

1.将经线切割获得的5mm×5mm×1mm的钒合金片用600-5000目砂纸打磨并抛光成镜面,利用无水乙醇洗净。然后吹干。

2.称取3.990g的Er(NO3)3·5H2O并量取0.9ml的火棉胶,加入无水乙醇经磁力搅拌后制成20ml的溶胶。

3.将处理好的钒合金基底固定在旋涂机上,利用滴管滴加适量的溶胶于钒合金片上。以900rpm低速旋涂6s后,再以高速5500rpm旋涂25s。将旋涂好的试样放置于真空干燥箱内,当温度从室温升至42℃时真空干燥45min,之后继续升温,在温度达到80℃时再真空干燥40min,然后炉冷。利用高温管式炉将干燥后的试样进行热处理。热处理过程在氩气气氛保护下进行,氩气流速为170sccm。热处理温度为630℃,保温时间为40min,采用炉内冷却。

4.重复步骤3以达到需要的涂层厚度。

5.利用万用表测试涂层的绝缘性能发现当两电极分别位于覆层和基体时,所测得的电导率为零。当两电极均位于覆层上时,所测得的电导率为零。

具体实施案例三

1.将经线切割获得的5mm×5mm×1mm的钒合金片用600-5000目砂纸打磨并抛光成镜面,利用无水乙醇洗净。然后吹干。

2.称取4.877g的Er(NO3)3·5H2O并量取0.7ml的火棉胶,加入无水乙醇,经磁力搅拌后制成20ml的溶胶。

3.将处理好的钒合金基底固定在旋涂机上,利用滴管滴加适量的溶胶于钒合金片上。以750rpm低速旋涂7s后,再以高速4500rpm旋涂35s。将旋涂好的试样放置于真空干燥箱内,当温度从室温升至47℃时真空干燥40min,之后继续升温,在温度达到75℃时再真空干燥50min,然后炉冷。利用高温管式炉将干燥后的试样进行热处理。热处理过程在氩气气氛保护下进行,氩气流速为140sccm。热处理温度为550℃,保温时间为60min,采用炉内冷却。

4.重复步骤3以达到需要的涂层厚度。

5.利用万用表测试涂层的绝缘性能发现当两电极分别位于覆层和基体时,所测得的电导率为零。当两电极均位于覆层上时,所测得的电导率为零。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1