铅阳极泥熔炼烟尘气化及分级控温回收工艺的制作方法_2

文档序号:9300701阅读:来源:国知局
221、第二级气体过滤单元222和第三级气体过滤单元223同样采用了相同的保温措施,以使第一级气体过滤单元221和第二级气体过滤单元222的炉气入口温度彡炉气出口温度。上述第一级控温冷却单元211、第二级控温冷却单元212以及第三级控温冷却单元213采用图4的控温冷却单元210。动力装置230为风机。
[0024]上述工艺中还采用了一种全新设计的控温冷却单元210,以作为其第一级控温冷却单元211和第二级控温冷却单元212。如图2、3所示,该温冷却单元210包括进气通道210b、收灰筒210a,所述收灰筒210a下部设有排灰装置,收灰筒210a上部排列安装有至少两组间壁冷却器210c,这些间壁冷却器210c的管内通道分别构成被冷却气流路,管外采取液冷或/和气冷,各间壁冷却器210c的被冷却气流路的进气口并联于所述进气通道210b上并分别设有阀门210d,被冷却气流路的排气口分别随各自所在的间壁冷却器210c的管内通道经过最多I至2次弯折后由上往下伸入收灰筒210a,所述进气通道210b上设有炉气输入口 210e,收灰筒210a上设有炉气输出口 210f。作为所述排灰装置的一般结构,如图2、3,其包括位于收灰筒210a下部的锥形沉灰室,锥形沉灰室的底部设有排灰口,排灰口连接排灰阀210g。该控温冷却单元210单元主要具有如下优点:第一、采用间壁冷却器210c进行热交换,冷却介质与本冷却介质之间不直接接触,不会向本冷却介质中弓I入其他杂质;第二、各间壁冷却器210c的被冷却气流路的进气口并联于所述进气通道210b上并分别设有阀门210d,通过控制这些阀门210d的开启数量,可调整控温冷却单元210单元的换热面积,简单、迅速实现出口温度的调整,且由于气体物质往往在一定的温度范围内实现凝华,对温度控制并不要求十分精确,因此该控温设计能够满足本发明的炉气分级控温收尘净化工艺要求;第三、析出的粉尘不易堵塞间壁冷却器210c的管内通道,并且能够在收灰筒210a中实现有效沉降回收。为了更好的调节控温冷却单元210的出口温度,可以选择开度可精度调整的阀门210d,这样就能够通过控制阀门210d开启数量和开度,提高控温的精确性。
[0025]图2示出了上述控温冷却单元210 —种更为具体的结构。如该图所示,其中各间壁冷却器210c的管道均为一个从连接在进气通道210b上的阀门210d竖直向上延伸至最高点后又向下折回并竖直下降至收灰筒210a内的结构,因此各间壁冷却器210c的被冷却气流路的排气口实际上分别随各自所在的间壁冷却器210c的管内通道经过I次弯折后由上往下伸入收灰筒210a,这样,进入被冷却气流路的炉气先在间壁冷却器210c的管道中由下往上运动然后再折返后由上往下运动,其间析出的粉尘能够被炉气基本上带入至收灰筒210a,既能够有效避免间壁冷却器210c的管内堵塞,同时由于间壁冷却器210c的管道折回而增大了换热面积。在图3的控温冷却单元210中,间壁冷却器210c的管外选择了气冷方式,其具体可以根据间壁冷却器210c的管道材料、尺寸等因素来确定换热效率并以此选择自然对流冷却或强制吹风冷却。另外,图3的控温冷却单元210中进气通道210b直接设置在收灰筒210a上方并与收灰筒210a之间通过一个隔板隔离,结构紧凑合理。
[0026]图3示出了上述控温冷却单元210另一种更为具体的结构。如该图所示,其中的进气通道210b位于收灰筒210a的上方并上下相隔一定高度,间壁冷却器210c并列安装在进气通道210b与收灰筒210a之间,间壁冷却器210c的管道为竖直设置的直管,该管道的上端通过阀门210d连接进气通道210b,下端伸入收灰筒210a。该结构中各间壁冷却器210c的管道均为竖直设置的直管,被冷却气体在该直管中由上往下运动并将析出的粉尘完全带入至收灰筒210a中,从而杜绝粉尘堵管问题。但是,由于间壁冷却器210c的管道没有弯折,因此换热面积较小,这时一是可考虑增加间壁冷却器210c的管道长度,二是间壁冷却器210c的管外可以选择液冷方式,例如采取喷淋或如图4中所示在间壁冷却器210c的管道外设水冷夹套210h,水冷夹套210h的两端分别设有进水口 210i和出水口 210j。
[0027]图4所示为另一种铅阳极泥熔炼烟尘气化分级控温回收工艺,如该图所示,该设备包括顺序连接在气化炉100之后的第一级控温冷却单元211、第一级气体过滤单元221、第二级控温冷却单元212、第二级气体过滤单元222和动力装置230,动力装置230驱动气化炉100产生的炉气依次通过第一级控温冷却单元211、第一级气体过滤单元221、第二级控温冷却单元212以及第二级气体过滤单元222。采用上述设备的铅阳极泥熔炼烟尘气化分级控温回收工艺的步骤包括:1)将回收得到的铅阳极泥熔炼烟尘装入气化炉100,然后向气化炉100中通入惰性气体,使铅阳极泥熔炼烟尘在惰性气氛下加热至600 - 900°C进行气化,然后将气化炉100产生的含有三氧化二锑和三氧化二砷两种凝华温度不同的气态待回收物质的炉气引入一炉气分级控温收尘净化设备200 ;2)在确保气态待回收物质基本不析出的温度条件下,将所述炉气引入该设备中的第一级控温冷却单元211,第一级控温冷却单元211的炉气出口温度控制为400 - 550°C,使部分待回收物质冷却析出形成第一粉尘并收集在第一级控温冷却单元211中;3)在确保气态待回收物质基本不析出的温度条件下,将第一级控温冷却单元211排出并携带有第一粉尘的炉气引入第一级气体过滤单元221中进行除尘净化并进一步收集得到第一粉尘;4)在确保气态待回收物质基本不析出的温度条件下,将第一级气体过滤单元221排出的炉气引入第二级控温冷却单元212,第二级控温冷却单元212的炉气出口温度控制为110 - 120°C,使部分待回收物质冷却析出形成第二粉尘并收集在第二级控温冷却单元212中;5)在确保气态待回收物质基本不析出的温度条件下,将第二级控温冷却单元212排出并携带有第二粉尘的炉气引入第二级气体过滤单元222中进行除尘净化并进一步收集得到第二粉尘;上述收集得到的第一粉尘以及气化炉100中残留的物质均为富集锑的粉尘,第二粉尘为富集砷的粉尘,第二级气体过滤单元222排出的气体进入后续回收处理或排放。此后,第二级气体过滤单元222排出的气体进入动力装置230,然后从动力装置230的出口再经烟囱排放。
[0028]图4所示的铅阳极泥熔炼烟尘气化分级控温回收工艺,所述的气化炉100与第一级控温冷却单元211之间、第一级控温冷却单元211与第一级气体过滤单元221之间、第一级气体过滤单元221与第二级控温冷却单元212之间、第二级控温冷却单元212与第二级气体过滤单元222之间均通过保温管道相连,同时要求各保温管道的入口温度<保温管道的出口温度,各保温管道具体采用夹套保温方式(当然也可采用电加热等其他方式保温),夹套内采用高温烟气加热,从而确保炉气在气化炉100、第一级控温冷却单元211、第一级气体过滤单元221、第二级控温冷却单元212和第二级气体过滤单元222之间传送时保持在使气态待回收物质基本不析出的温度状态下,既防止粉尘析出而堵塞管道,同时也将待回收物质的相变严格限制在各控温冷却单元210中,提高回收效率。同时,由于第一级气体过滤单元221工作温度较高,故第一级气体过滤单元221采用了耐高温烧结铁铝多孔材料滤芯作为过滤元件,从而保证过滤元件使用寿命,第一级气体过滤单元221的出口含尘量控制在5mg/m3以下;第二级气体过滤单元222则采用布袋作为过滤元件,同时要求第二级气体过滤单元222的出口含尘量同样控制在5mg/m3以下,另外,第一级气体过滤单元221和第二级气体过滤单元222同样采用了保温措施,即在它们的外壳上安装了保温夹套,并用高温烟气加热保温,以使第一级气体过滤单元221和第二级气体过滤单元222的炉气入口温度 < 炉气出口温度,从而防止炉气中的物质在过滤过程中发生相变析出固体颗粒而堵塞过滤元件,延长过滤元件的使用寿命。另外,动力装置230具体采用风机。
[0029]实施例1
[0030]采用图1所示的铅阳极泥熔炼烟尘气化分级控温回收工艺,气化炉温度750°C,气化时采用Ar气,第一级控温冷却单元211的炉气出口温度为400°C,第二级控温冷却单元212的炉气出口温度控制为300°C,第三级控温冷却单元213为110°C。试验结果为:气化炉100残留物质主要为Sb2O3,残留物质的重量为铅阳极泥熔炼烟尘原料重量的45%,残留物质中含砷0.35% (重量);第一粉尘含砷0.96% (重量),第一粉尘的重量约为铅阳极泥熔炼烟尘原料重量的30% ;第二粉尘含砷2.5% (重量),收集到的第二粉尘为铅阳极泥熔炼烟尘原料重量的8% ;第三粉尘含砷为61% (重量),第三粉尘总重量为铅阳极泥熔炼烟尘原料重量的15%。
[0031]实施例2
[
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1