分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法与流程

文档序号:11580117阅读:564来源:国知局

本发明属于压电陶瓷技术领域,尤其涉及一种分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法。



背景技术:

压电陶瓷材料作为一种陶瓷功能材料,具有将机械能与电能相互转换的压电性能。除此之外,压电陶瓷材料还具有介电性能和力学性能等。由于压电陶瓷材料具有优异的电学性能,而且其制备工艺简单、可靠、成本低廉,因此压电陶瓷材料在社会的发展过程中应用十分广泛,尤其是在电子元器件领域。其中pnn-pzt系压电陶瓷体材料具有典型的abo3型锆钛矿结构,可以通过掺杂一定量的其它元素或适当的工艺改进来提高压电陶瓷材料的综合性能,但是陶瓷样品的稳定性很难得到提高,为了解决这一问题,很多研究人员也已经研究过提高pnn-pzt压电陶瓷电学性能及其稳定性,比如稀土掺杂ceo2及sm2o3,金属氧化物co2o3等,但是压电陶瓷样品的稳定性问题得不到根本解决。目前对压电陶瓷材料的改性主要从基础配方上、掺杂及制备工艺上等三个方向进行相关调整,但是对于压电陶瓷样品的稳定性能得不到根本解决。

综上所述,因为铌镍锆钛酸铅(pnn-pzt)配方较为复杂,在制浆、湿磨等过程中发生沉淀、分层等现象,导致产品出现电学性能差异较大、稳定性差,电学性能下降等问题。



技术实现要素:

本发明的目的在于提供一种分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法,旨在解决因为铌镍锆钛酸铅(pnn-pzt)配方较为复杂,在制浆、湿磨等过程中发生沉淀、分层等现象,导致产品出现电学性能差异较大、稳定性差,电学性能下降的问题。

本发明是这样实现的,一种分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷,所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷按照摩尔百分比为:pb(ni1/3nb2/3)z(zrxtiy)1-zo3;0≤x≤1,0.2≤y≤0.8,0.2≤z≤0.8,分散剂ho(ch2ch2o)nh,a=0~0.3wt.%。

进一步,所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷按照摩尔百分比为pb(ni1/3nb2/3)z(zrxtiy)1-zo3,其中x=0.8~1,y=0.5~0.6,z=0.4~0.5,分散剂ho(ch2ch2o)nh浓度,其中a为0~0.1wt.%。

本发明的另一目的在于提供一种所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷的制备方法,所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷的制备方法包括以下步骤:

步骤一,将原料pb3o4、zro2、tio2、nb2o5、ni2o3,按照摩尔比pb(ni1/3nb2/3)z(zrxtiy)1-zo30≤x≤1,0.2≤y≤0.8,0.2≤z≤0.8),分散剂ho(ch2ch2o)nh,a=0~0.3wt.%;称量混合好后,球磨介质为酒精和锆球,球磨16h,转速为300r/min,然后将球磨好后的粉料放入烘箱内70℃烘干、过40目筛子;

步骤二,将过筛后得到的混合粉料放入刚玉坩埚内,压实,加盖,在箱式电阻炉中900℃预烧2h,然后随炉冷却;

步骤三,预烧好的粉料二次球磨、烘干、过筛,加入5wt.%-7wt.%的石蜡进行造粒,之后将其过筛,在5mpa的压强下压制成直径12mm,厚度为1.2mm的陶瓷圆片;

步骤四,圆形陶瓷片放入坩埚中,密封,放入箱式电阻炉中进行烧结,烧结温度范围为1160~1220℃,保温2h,然后随炉自然冷却至室温;

步骤五,将烧结好的陶瓷片进行清洁,采用丝网印刷技术在其上下表面印刷银浆,置于炉中,升温至800℃并保温30min,自然冷却至室温,然后将烧好银的样品放置于硅油中加热到50~70℃,施加2kv/mm的直流电场,极化30min。

本发明的另一目的在于提供一种利用所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷制备的电子元器件。

本发明的另一目的在于提供一种利用所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷制备的压电执行器。

本发明的另一目的在于提供一种利用所述分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷制备的压电滤波器。

本发明提供的分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法,以聚乙二醇为分散剂,能提高压电陶瓷材料的电学性能及其稳定性,同时也降低了烧结温度,提供了一种铌镍锆钛酸铅(pnn-pzt)压电陶瓷材料的分散剂改性的新制备工艺。采用添加分散剂来制备压电陶瓷样品,因为分散剂有助于不同粉末粒子间的均匀分布,有利于烧结时钙钛矿相的均匀分布,进而有利于压电陶瓷材料的综合性能。因此,分散剂不仅可以提高压电陶瓷材料的综合性能,而且也可以改善其样品的稳定性;对于压电陶瓷材料的制备来说是非常好的手段,同时还可以降低烧结温度,在一定程度上解决pbo的挥发的问题。

本发明以铌镍锆钛酸铅pb(ni1/3nb2/3)z(zrxtiy)1-zo3(pnnzt)压电陶瓷为基础配方,以聚乙二醇(ho(ch2ch2o)nh)为分散剂,有利于形成晶粒更加均匀如图3,提高了pnnzt压电陶瓷材料的电学性能及其稳定性,同时降低了烧结温度,通过聚乙二醇浓度与烧结温度的调整来制备具有较好综合性能的pnnzt弛豫型压电陶瓷材料,当聚乙二醇分散剂的浓度a=0~0.1wt.%时,得到了一种综合性能良好的压电陶瓷,其d33=597.6pc/n,kp=0.662,tanδ=2.09%。通过加入不同浓度的聚乙二醇(ho(ch2ch2o)nh)作为分散剂(a=0~0.8wt.%),采用固相烧结合成法,获得了一种新型的具有优异综合电学性能的弛豫型压电陶瓷,其中该压电陶瓷样品的压电常数d33值达到650pc/n,机电耦合系数kp值达到0.632,室温介电损耗仅为1.95%,同时性能的稳定性也得到相应的提高,相比于没有加入聚乙二醇作为分散剂的陶瓷材料,d33值只有520pc/n,机电耦合系数kp值只有0.60,室温介电损耗为2.32%,已经有了很大的提高,这对于该体系在电子材料领域的应用范围也更加的广泛,其制备工艺稳定、可靠,具有较大的工业应用价值。

附图说明

图1是本发明实施例提供的分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷的制备方法流程图。

图2是本发明实施例提供的添加聚乙二醇分散剂5%、10%、15%、20%和0%的xrd衍射图。

图3是本发明实施例提供的添加聚乙二醇分散剂5%、10%、15%和20%的sem图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

下面结合附图对本发明的应用原理作详细的描述。

本发明实施例提供的分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷按照摩尔百分比为:pb(ni1/3nb2/3)z(zrxtiy)1-zo3(0≤x≤1,0.2≤y≤0.8,0.2≤z≤0.8),分散剂ho(ch2ch2o)nh(a=0~0.3wt.%)。

上述原料为pb3o4、zro2、tio2、zro2、ni2o3、ho(ch2ch2o)nh。

最佳的原料组成及摩尔百分比为pb(ni1/3nb2/3)z(zrxtiy)1-zo3,其中x=0.8~1,y=0.5~0.6,z=0.4~0.5,分散剂ho(ch2ch2o)nh浓度,其中a为0~0.1wt.%。

所制备的压电陶瓷材料样品都是单一钙钛矿结构如图2。

如图1所示,本发明实施例提供的分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷的制备方法包括以下步骤:

s101:将原料pb3o4、zro2、tio2、zro2、ni2o3,按照摩尔比pb(ni1/3nb2/3)z(zrxtiy)1-zo3(0≤x≤1,0.2≤y≤0.8,0.2≤z≤0.8),分散剂ho(ch2ch2o)nh(a=0~0.3wt.%),称量混合好后,球磨介质为酒精和锆球,球磨16h,转速为300r/min,然后将球磨好后的粉料放入烘箱内70℃烘干、过40目筛子;

s102:将过筛后得到的混合粉料放入刚玉坩埚内,压实,加盖,在箱式电阻炉中在900℃预烧2h,然后随炉冷却;

s103:预烧好的粉料二次球磨、烘干、过筛,加入5wt.%-7wt.%的石蜡进行造粒,之后将其过筛,在5mpa的压强下压制成直径12mm,厚度为1.2mm的陶瓷圆片;

s104:圆形陶瓷片放入坩埚中,密封,放入箱式电阻炉中进行烧结,烧结温度范围为1160~1220℃烧结,保温2h,然后随炉自然冷却至室温;

s105:将烧结好的陶瓷片进行清洁,采用丝网印刷技术在其上下表面印刷银浆,置于炉中,升温至800℃并保温30min,自然冷却至室温,然后将烧好银的样品放置于硅油中加热到50~70℃,施加2kv/mm的直流电场,极化30min。

将极化好的陶瓷片,放置在室温下,24h后测量样品的各项电学性能。

下面结合具体实施例对本发明的应用原理作进一步的描述。

本发明实施例所使用的原料pb3o4、zro2、tio2、nb2o5和ni2o3均为化学纯原料,所选分散剂为聚乙二醇ho(ch2ch2o)nh。

配方1:所述聚乙二醇ho(ch2ch2o)nh的浓度为0.2%;

配方2:所述聚乙二醇ho(ch2ch2o)nh的浓度为0.4%;

配方3:所述聚乙二醇ho(ch2ch2o)nh的浓度为0.6%;

配方4:所述聚乙二醇ho(ch2ch2o)nh的浓度为0.8%。

本发明的制备方法如下:

配料

将原料pb3o4、zro2、tio2、nb2o5、ni2o3,按照摩尔比pb(ni1/3nb2/3)z(zrxtiy)1-zo3(0≤x≤1,0.2≤y≤0.8,0.2≤z≤0.8),分散剂ho(ch2ch2o)nh(a=0~0.3wt.%),称量混合好后,球磨介质为酒精和锆球,球磨16h,转速为300r/min,然后将球磨好后的粉料放入烘箱内70℃烘干、过40目筛子;

预烧

将步骤(1)过筛后得到的混合粉料放入刚玉坩埚内,压实,加盖,在箱式电阻炉中900℃预烧2h,然后随炉冷却;

压片

将步骤(2)中预烧好的粉料二次球磨、烘干、过筛,加入5wt.%-7wt.%的石蜡进行造粒,之后将其过筛,在10mpa的压强下压制成直径12mm,厚度为1.2mm的陶瓷圆片;

烧结

将步骤(3)的圆形陶瓷片放入坩埚中,密封,放入箱式电阻炉中进行烧结,烧结温度范围为1160~1220℃,保温2h,然后随炉自然冷却至室温;

刷银、极化

将步骤(4)烧结好的陶瓷片进行清洁,采用丝网印刷技术在其上下表面印刷银浆,置于炉中,升温至800℃并保温30min,自然冷却至室温,然后将烧好银的样品放置于硅油中加热到50~70℃,施加2kv/mm的直流电场,极化30min;

测试电学性能

将步骤(5)极化好的陶瓷片,放置在室温下,24h后测量样品的各项电学性能。

具体实施如下:

聚乙二醇ho(ch2ch2o)nh浓度分别为x=0、x=0.2、x=0.4、x=0.6、x=0.8%,烧结温度1200℃,分别记录在表1中;

表11200℃下,不同分散剂浓度样品的电学性能参数

当聚乙二醇浓度a=0~0.8wt.%时,烧结温度为1200℃时(表2中),tanδ=1.96%(automatielcrmeter4225),d33=650pc/n(准静态方法,model/zj-a,china),kp=0.632,相比于没有添加ho(ch2ch2o)nh分散剂的陶瓷样品,电学性能及其稳定性有很大的提高。

本发明主要通过选择合适的分散剂种类及其浓度,并选用合适的烧结温度来制备得到既有优异综合电学性能还有稳定性也得到提高的压电陶瓷材料,该体系的压电陶瓷材料能够广泛的应用于电子元器件领域,比如压电执行器、压电滤波器等。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1