一种高致密度超高温Ta4HfC5陶瓷块材的制备方法与流程

文档序号:14050564阅读:1145来源:国知局
一种高致密度超高温Ta4HfC5陶瓷块材的制备方法与流程

本发明涉及一种高致密度超高温ta4hfc5陶瓷块材的制备方法,属于超高温陶瓷技术领域。



背景技术:

高超音速代表下一代先进飞行器的发展方向,飞行器的高速运动会使其表面的鼻锥、前缘驻点等产生高达上千摄氏度,甚至数千摄氏度的高温,同时要保持高温结构稳定性,而且其内部的推进系统超燃冲压发动机,高温时可达到3000℃,同时在服役的过程中会有氧化和化学侵蚀环境,鉴于这些苛刻的条件,难熔金属材料、石墨材料、纤维增强树脂复合材料、c/c复合材料等难以满足使用需求,需要进一步开发更加耐高温、耐烧蚀的防热材料。tac和hfc具有很高的硬度,优秀的弹性模量,而且能够很好地抵抗化学腐蚀、烧蚀以及热冲击,尤其是tac-hfc系列中的4tac-hfc(ta4hfc5)有着已知材料中极高的熔点4178k,成为航空航天领域新型高温结构的候选材料。

tac和hfc具有相同的nacl型面心立方结构,理论上能够无限固溶,ta4hfc5固溶体得以形成,但是由于其熔点高、硬度大,以及原子之间依靠分子键连接,难以烧结致密。制备块材ta4hfc5陶瓷材料的方法有很多种,如固相烧结法、热压烧结法、热等静压烧结法等。固相烧结法在常压下进行烧结,烧结方式简单,成型的块材致密度低,各项性能差;热压烧结法和热等静压烧结法都存在石墨模具中的c原子向陶瓷材料中扩散产生杂质以及成本较高的问题。



技术实现要素:

本发明内容是针对现有技术存在的问题,提供一种高致密度超高温ta4hfc5陶瓷块材的制备方法,所述制备方法利用sps(放电等离子烧结)技术,降低超高温陶瓷ta4hfc5烧结温度,提高其致密度。

本发明提供的一种高致密度超高温ta4hfc5陶瓷材料块材的制备方法,包含以下步骤:

第一步,配料和混合。

将原始ta4hfc5的固溶体粉末和烧结助熔剂tasi2按照下述的体积百分比用量进行配比:ta4hfc5的固溶体粉末88%~94%、tasi26%~12%,混合配料,得到ta4hfc5/tasi2混合粉末。

第二步,高能球磨。

将第一步中得到的混合粉末放入球磨罐中进行高能球磨,并且采用高纯ar气作为保护气氛,球磨的速度为200~300r/min,球磨的时间为5~20小时,球磨得到d50为4.0μm~1.3μm的混合粉末。

第三步,sps烧结(放电等离子烧结)制备高致密度超高温ta4hfc5陶瓷块材。

将第二步中球磨后的混合粉末装入石墨模具中,然后将石墨模具转移至放电等离子烧结炉炉腔中,施加30mpa~50mpa的轴向压力,在惰性气体的保护下升温至烧结温度1570℃~2000℃进行烧结,烧结的保温时间为3min~15min。

所述烧结温度从室温开始,升温速率为100℃/min,在烧结的过程中放电等离子烧结炉炉腔的真空度为3pa~10pa,保温结束以后,试样随炉冷却至室温,取出,即可得到所述的高致密度超高温ta4hfc5陶瓷块材。

与现有技术相比,本发明具有以下优点:

1、本发明中使用的原料为固溶体ta4hfc5陶瓷材料的粉末形态而非tac和hfc的混合粉末,避免两种粉末混合的复杂程序,以及两种粉末粒径的分布不同和混合的不均对烧结产生影响。

2、本发明中,烧结的过程中可以发现在一定的范围内随着助熔剂添加量的增加,烧结出的试样的致密度越高,性能越好,同时助熔剂的存在还能消耗颗粒表面依附的氧,减少ta4hfc5粉末被氧化。

3、在本发明中采用sps烧结制备的高致密度超高温ta4hfc5陶瓷,具有很高的致密度,随着助熔剂的添加量的不同,试样的致密度可以达到92%~99.9%,烧结出的试样的硬度、弹性模量、断裂韧性等物理性能优异,经测试,维氏硬度为1100hv~2027hv,弹性模量达330gpa~472gpa,断裂韧性达2.37mpa·m1/2~3.12mpa·m1/2

附图说明

图1为本发明所用原材料ta4hfc5的固溶体粉末的xrd图谱,其中曲线a为实施例1中原材料ta4hfc5的固溶体粉末的xrd图谱,曲线b为实施例4中原始ta4hfc5的固溶体粉末的xrd图谱。

图2为烧结后试样的xrd图谱,曲线a为实施例1最终试样xrd图谱、曲线b为实施例2最终试样xrd图谱、曲线c为实施例3最终试样xrd图谱、曲线d为实施例4最终试样xrd图谱、曲线e为实施例5最终试样xrd图谱。

图3a~3e为烧结后试样的sem放大1000倍二次电子图谱,图3a为实施例1最终试样二次电子图谱、图3b为实施例2最终试样二次电子图谱、图3c为实施例3最终试样二次电子图谱、图3d为实施例4最终试样二次电子图谱、图3e为实施例5最终试样二次电子图谱。

具体实施方式

以下通过具体实施例说明本发明技术方案的实施以及所取得的效果,但是不能对本发明的可实施范围形成任何限定。该领域的普通技术人员根据上述内容对本发明的技术方案做出的一些非本质的改进和调整,仍属于本发明的保护范围。

实施例1:应用本发明提供的方法制备一种高致密度超高温ta4hfc5陶瓷块材,具体步骤如下:

第一步,选择tasi2作为助熔剂,tasi2的添加量为6vol.%的体积分数,ta4hfc5的固溶体粉末的体积为94vol.%,按照该体积比,将两种原始粉末混合。

如图1所示曲线a是使用x射线衍射仪分析ta4hfc5的固溶体粉末,显示只有ta4hfc5晶相,表示粉末为ta4hfc5固溶体。

第二步,将第一步的混合粉末进行高能球磨,球磨速度为300r/min,并且采用高纯ar气作为保护气氛,球磨时间15小时,对球磨得到的粉末使用激光粒径分析仪进行粒径分析得到粉末的d50为1.49μm,称量得到3.0g的混合粉末。

第三步,将球磨后的混合粉末烘干后,装入直径为10mm的sps石墨磨具中,抽真空后在真空的状态下(真空度为3pa~10pa,),缓慢加压后达到预设压力30mpa,保压至烧结结束;对石墨模具施加直流脉冲电流加热,升温速率为100℃/min,从室温开始升温达到1650℃;石墨模具中的试样在烧结温度保温5min,然后关闭烧结炉开关,试样随炉冷却,冷却至室温,取出石墨模具,脱模,即得到最终试样—高致密度超高温ta4hfc5陶瓷块材。

最终试样抛光之后使用x射线衍射仪图谱结果如图2中曲线a所示,在sps烧结完成之后,除了ta4hfc5晶相,还有反应生成的sic;表面sem放大1000倍二次电子像如图3a所示,所述高致密度超高温ta4hfc5陶瓷块材的相对密度为92.1%;维氏显微硬度测试结果为1100hv;纳米压痕测试弹性模量为330gpa;压痕法测试断裂韧性计算结果为2.37mpa·m1/2

实施例2:

第一步,选择tasi2作为助熔剂,tasi2的添加量为12vol%的体积分数,ta4hfc5粉末的体积为88vol.%,按照体积比,将两种原始粉末混合。

第二步,粉末混合后进行高能球磨,球磨速度为200r/min,并且采用高纯ar气作为保护气氛,球磨时间20小时,对球磨得到的粉末使用激光粒径分析仪进行粒径分析得到粉末的d50为1.49μm,称量得到3.0g的混合粉末。

第三步,将混合粉末烘干后,装入直径为10mm的sps石墨磨具中,抽真空后在真空的状态下,对石墨模具施加直流脉冲电流加热,升温速率为100℃/min,从室温开始加压,缓慢加压后达到预设压力30mpa,保压至烧结结束;石墨模具中的烧结试样的温度达到1650℃时保温5min,然后关闭烧结炉开关,试样随炉冷却,冷却至室温,取出石墨模具,脱模,即得到最终试样,即高致密度超高温ta4hfc5陶瓷块材。

对最终试样抛光之后进行性能检测,x射线衍射仪图谱结果如图2曲线b所示,在sps烧结完成之后,除了ta4hfc5晶相,还有反应生成的sic;最终试样抛光后(1μm金刚石砂)表面sem放大1000倍二次电子像如图3b所示;相对密度为99.5%;所述高致密度超高温ta4hfc5陶瓷块材维氏显微硬度测试结果为1925hv;纳米压痕测试弹性模量为469gpa;压痕法测试断裂韧性计算结果为2.96mpa·m1/2

实施例3:

第一步,选择tasi2作为助熔剂,tasi2的添加量为12vol%的体积分数,ta4hfc5粉末的体积为88vol%,按照体积比,将两种原始粉末混合。

第二步,混合后的粉末进行高能球磨,球磨速度为300r/min,并且采用高纯ar气作为保护气氛,球磨时间5小时,对球磨得到的粉末使用激光粒径分析仪进行粒径分析得到粉末的d50为1.49μm,称量得到3.0g的混合粉末。

第三步,将混合粉末烘干后,装入直径为10mm的sps石墨磨具中,抽真空后在真空的状态下,对石墨模具施加直流脉冲电流加热,升温速率为100℃/min,从室温开始加压,缓慢加压后达到预设压力30mpa,保压至烧结结束;石墨模具中的烧结试样的温度达到1600℃时保温4min,然后关闭烧结炉开关,试样随炉冷却,冷却至室温,取出石墨模具,脱模,即得到最终试样-高致密度超高温度ta4hfc5陶瓷块材。

最终试样抛光后(1μm金刚石砂)表面sem放大1000倍二次电子像如图3c所示,相对密度为97.7%,维氏显微硬度测试结果为1450hv;纳米压痕测试弹性模量为428.6gpa;压痕法测试断裂韧性计算结果为2.39mpa·m1/2

实施例4:

选择tasi2作为助熔剂,tasi2的添加量为12vol%的体积分数,ta4hfc5粉末的体积为88vol%,按照体积比,将两种原始粉末混合,进行高能球磨,球磨速度为300r/min,并且采用高纯ar气作为保护气氛,球磨时间5小时,对球磨得到的粉末使用激光粒径分析仪进行粒径分析得到粉末的d50为3.63μm,称量得到3.0g的混合粉末。将混合粉末烘干后,装入直径为10mm的sps石墨磨具中,抽真空后在真空的状态下,对石墨模具施加直流脉冲电流加热,升温速率为100℃/min,从室温开始加压,缓慢加压后达到预设压力30mpa,保压至烧结结束;石墨模具中的烧结试样的温度达到1650℃时保温5min,然后关闭烧结炉开关,试样随炉冷却,冷却至室温,取出石墨模具,脱模,即得到最终试样。

所述ta4hfc5粉末的xrd分析结果如图1所示曲线b,结果显示只有ta4hfc5晶相,表示粉末为ta4hfc5固溶体。

对最终试样抛光之后进行性能测试,使用x射线衍射仪图谱结果如图2曲线d所示,在sps烧结完成之后,除了ta4hfc5晶相,还有反应生成的sic;最终试样抛光后(1μm金刚石砂)表面sem放大1000倍二次电子像如图3d所示;相对密度为99.1%;高致密度超高温度ta4hfc5陶瓷块材的维氏显微硬度测试结果为1810hv;纳米压痕测试弹性模量为387gpa;压痕法测试断裂韧性计算结果为2.72mpa·m1/2

实施例5:

选择tasi2作为助熔剂,tasi2的添加量为12vol%的体积分数,ta4hfc5粉末的体积为88vol.%,按照体积比,将两种原始粉末混合,进行高能球磨,球磨速度为200~300r/min,并且采用高纯ar气作为保护气氛,球磨时间15小时,对球磨得到的粉末使用激光粒径分析仪进行粒径分析得到粉末的d50为1.49μm,称量得到67.5g的混合粉末。将混合粉末烘干后,装入直径为40mm的sps石墨磨具中,抽真空后在真空的状态下,对石墨模具施加直流脉冲电流加热,升温速率为100℃/min,从室温开始加压,缓慢加压后达到预设压力50mpa,保压至烧结结束;石墨模具中的烧结试样的温度达到1850℃时保温15min,然后关闭烧结炉开关,试样随炉冷却,冷却至室温,取出石墨模具,脱模,即得到最终试样-高致密度超高温度ta4hfc5陶瓷块材。

对最终试样抛光之后进行性能检测,x射线衍射仪图谱结果如图2曲线e所示,在sps烧结完成之后,除了ta4hfc5晶相,还有反应生成的sic;最终试样抛光后(1μm金刚石砂)表面sem放大1000倍二次电子像如图3e所示;相对密度为99.9%;维氏显微硬度测试结果为2027hv;纳米压痕测试弹性模量为472gpa;压痕法测试断裂韧性计算结果为3.12mpa·m1/2

本发明中所述的致密度是指相对密度,所述的相对密度是指sps所制备试样测量出的真实密度(ρ真)与原料的理论密度(ρ理)的比值。

所述的真实密度(ρ真):为测量得到试样的质量与体积的比值;所述的理论密度(ρ理):为相应体积分数v1的ta4hfc5的理论密度ρ1(14.05g/cm3)和对应体积分数v2的tasi2的密度ρ2(9.14g/cm3)的理论计算值,计算公式如下:

ρ理=ρ1×v1+ρ2×v2

其中v1+v2=100%。

通过上述实施例1~5可知,通过本发明提供的制备方法,可以得到一种高致密度超高温度ta4hfc5陶瓷块材,所述的高致密度是指所述的ta4hfc5陶瓷块材的相对密度达到92.1%以上,维氏显微硬度测试结果为1100~2027hv;纳米压痕测试弹性模量为330~472gpa;压痕法测试断裂韧性计算结果为2.37~3.12mpa·m1/2

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1