一种两亲性聚羧酸水泥分散剂及其制备方法与流程

文档序号:12092667阅读:265来源:国知局

本发明属于水泥混凝土用外加剂技术领域,具体涉及一种两亲性聚羧酸水泥分散剂及其制备方法。



背景技术:

聚羧酸水泥分散剂,由于其掺量低、减水率高、保坍性好、分子结构可调性强、绿色环保等优点,成为目前混凝土外加剂市场的最重要产品。

聚羧酸是一种梳形高分子,其主链富含羧酸基团,侧链为聚氧化烯基,当它被加入水泥浆体中时,主链可以定向吸附在水泥颗粒表面,通过主链的静电斥力和侧链形成的水化吸附层的空间排斥力起到分散作用。然而,聚羧酸的主要作用体现在前期对混凝土流动性能的改善,对混凝土后期性能,如力学性能、耐久性的改善不大。

纳米粒子,由于其可以对混凝土进行改性从而提升其力学性能,成为近年来建筑材料技术领域的研究热点。对纳米粒子与混凝土的作用机理的认识目前主要有以下几方面:

1.纳米粒子可与混凝土通过物理或者化学作用相结合,改变水泥材料以硅氧键为主的键型,引入具有特殊功能的其它键型如具有韧性的有机碳氢键型来改善混凝土的力学性能。

2.纳米粒子可覆盖混凝土的微观孔结构,增加密实性,从而改善其抗渗性和耐久性。

3.纳米粒子可以影响水泥的水化和凝结硬化过程。

最近几年已经有许多关于纳米粒子外加剂的报道,例如:

专利CN201110074730.6,使用多壁碳纳米管和纳米二氧化硅来提高混凝土的早期强度,专利CN201310098136.6使用氧化石墨烯来改善混凝土的的抗折、抗压和抗拉强度,但是这两种技术均成本高昂,不适合大规模推广。

专利EP2695850A1使用原位成核的硅酸钙纳米粒子来改善混凝土韧性,但其制备条件苛刻,过程难以控制;专利CN201110199693.8通过乳液聚合合成交联聚苯乙烯为核的聚羧酸纳米粒子来改善混凝土的抗渗性,但显然球形聚羧酸纳米粒子的减水性能并不能满足工程需求。



技术实现要素:

为解决现有聚羧酸水泥分散剂对混凝土力学性能的提升没有任何帮助的问题,本发明将聚羧酸水泥分散剂和纳米材料的优势结合起来,提供一种两亲性聚羧酸水泥分散剂及其制备方法,所述两亲性聚羧酸水泥分散剂既拥有聚羧酸优良的减水、保坍、结构可调等优点,又具有纳米材料改善混凝土力学性能的功能,如抗折强度、抗压强度和抗渗性;本发明所述产品一定会对建筑材料技术领域产生深远影响。

本发明研究者发现,聚合物纳米粒子通过与混凝土中无机离子之间发生物理或化学作用,将具有韧性的有机碳氢键引入混凝土微观结构中,同时覆盖混凝土的微观孔结构,增加密实性,进而提升了混凝土的抗折强度、抗压强度和抗渗性等力学性能。

本发明所述两亲性聚羧酸水泥分散剂,其是一种具有蠕虫状微观形态的聚羧酸粒子的分散液。其组成包括聚羧酸纳米粒子和水。

所述蠕虫状结构参见附图,这是一个两亲性高分子自组装的说法,随着两亲性高分子的疏水单元比例提高,自组装体会经历从球,到蠕虫状,再到囊泡状的变化;本发明所述蠕虫状,与蠕虫状无机晶体中的“蠕虫状”没关系。

所述高分子自组装是指高分子在不受人类外力之介入下,自行聚集、组织成规则结构的现象。

本发明研究者发现,对比普通梳形聚羧酸,蠕虫状两亲性聚羧酸纳米粒子在水泥颗粒表面具有更厚的吸附层,且由于蠕虫状粒子的比表面积和接触面积大,可使其冠层的吸附基团更加容易地吸附在水泥颗粒表面,因此将水溶性的聚羧酸改造成蠕虫状纳米粒子结构,不仅不会损失其减水与保坍作用,还赋予了其改善混凝土力学性能的能力。

本发明所述的两亲性聚羧酸粒子的微观形态为蠕虫状,其组成结构为内核-外冠两层。外冠层由亲水的聚合物链段A和聚合物链段B组成,内核层由疏水的聚合物链段C组成。通过聚合物在水相中的亲水-疏水作用,最终自组装成蠕虫状纳米粒子。两亲性聚羧酸粒子的内外两层聚合物通过共价键相连;所述两亲性聚羧酸粒子的重均分子量为15000~40000;

所述的聚合物链段A、B、C具有如下所示的结构通式;

其中,R1为-H或-COOH,R2为-H、-CH3或-CH2COOH,R3为-H或-CH3,R4为1~4个碳原子的烷基,x、y、n、p、q表示各重复单元的重复单元数;

上述内外两层的作用分别为:外冠层:通过链段A的羧基基团的锚固作用将聚羧酸粒子吸附在水泥颗粒上,利用链段A的静电排斥和链段B的空间位阻提升水泥颗粒的分散性;内核层有两重作用:1.增加吸附层厚度,提高粒子分散能力;2.与水泥材料相结合,填充混凝土微观孔结构,改善其抗渗性和耐久性。

本发明所述两亲性聚羧酸水泥分散剂的制备方法,首先通过RAFT溶液聚合合成外层的含有RAFT功能末端的聚合物A和聚合物B,再以这些RAFT功能末端为反应位点通过RAFT乳液聚合合成聚合物链段C,即得到所述两亲性聚羧酸粒子,即本质上两亲性聚羧酸粒子是由两嵌段聚合物AC和BC在水中混合自组装而成的。

本发明所述的两亲性聚羧酸水泥分散剂的制备包括以下两个步骤:

1)外冠层的制备:

(i)聚合物A的合成:将RAFT试剂、单体a、引发剂和水充分混合,保持聚合浓度为30~60%,在N2气氛下,升温至60-80℃,反应1~3h后即得聚合物A溶液;

(ii)聚合物B的合成:将RAFT试剂、单体b、引发剂和水充分混合,保持聚合浓度为50~100%,在N2气氛下,升温至60~80℃,反应1~3h后即得聚合物B溶液;

2)核-冠纳米粒子的制备:将步骤1)中制备的聚合物A、聚合物B与单体c、引发剂和水混合,在1000rpm速度下搅拌10~20min形成稳定乳液后,保持聚合浓度30~50%,在N2气氛下,升温至60~80℃,反应6~12h后,用35%氢氧化钠溶液中和反应液pH为6~8,反应所得分散液无需提纯、浓缩、干燥等步骤,直接用作减水剂使用。

步骤1)中所述RAFT试剂为S,S'-双(2-甲基-2-丙酸基)三硫代碳酸酯(BDMAT)、2-(乙基三硫代碳酸酯基)-2-甲基丙酸(EMP)、(4-氰基-4-[(乙基硫烷基硫羰基)硫烷基]戊酸(CETPA)中的一种;

步骤1-i)中所述单体a为不饱和酸,是丙烯酸、甲基丙烯酸、衣康酸、富马酸、马来酸或马来酸酐中的至少一种;

步骤1-i)中所述RAFT试剂、单体a、和引发剂的摩尔比为5:(50~200):1;

步骤1-ii)中所述单体b为甲基丙烯酸聚乙二醇单甲醚酯大单体,其重均分子量为500~2000,分子量过低和过高都会影响产品性能;

步骤1-ii)中所述RAFT试剂、单体b、和引发剂的摩尔比为3:(30~50):1;

步骤1-i)中反应浓度为30~60%,反应温度为60-80℃,步骤1-ii)中反应浓度为50~100%,反应温度为60-80℃,反应浓度、温度过低会导致转化率偏低,影响后续反应,过高会使RAFT试剂不能有效调控反应;

步骤1-i)和1-ii)中反应时间为1~3h,反应时间过短会导致转化率偏低,影响后续反应,过长浪费能源,影响生产效率;

步骤1-i)和1-ii)中用到的RAFT试剂,两者相同,为在前述三个RAFT试剂中任选一个。

步骤2)中所述单体c为苯乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯等单体中的至少一种;

步骤2)中所述聚合物A、聚合物B、单体c和引发剂的摩尔比为(1.5-2.8):(1.2~2.5):(100~250):1;

步骤2)要在1000rpm下高速搅拌使反应体系形成稳定乳液后,再进行反应,搅拌时间为10~20min,若时间不够可适当延长搅拌时间或者提高搅拌速度;

步骤2)中反应浓度为30-50%,浓度过低不能制备出蠕虫状纳米粒子,过高会使反应体系不稳定,产生沉淀;

步骤2)中反反应温度为60-80℃,反应时间为6~12h,反应温度过低、时间过短会导致转化率偏低,影响产品性能,温度过高、时间过长会浪费能源,影响生产效率;

步骤1)和2)中所述引发剂为过硫酸钾、过硫酸铵、偶氮二异丁基脒盐酸盐(V-50),偶氮二异丁咪唑啉盐酸盐(VA-044),偶氮二氰基戊酸(V-501),偶氮二异丙基咪唑啉(VA-061)中的一种,这些都是水溶性引发剂,具有较高的引发效率;

步骤1)和2)中所述聚合浓度是指反应混合溶液中除水外所有物质的质量之和占反应体系总质量的比例;

共聚反应结束后,反应产物可直接用作水泥分散剂的主成分使用,更为进一步用35%氢氧化钠水溶液中和后使用,以增强产品的储存稳定性。这为本领域的公知技术。氢氧化钠的用量以调节反应产物的pH值为6~8为宜。中和后,上述结构通式中所含羧基会部分或全部转化为羧酸盐。由于中和对所述聚羧酸纳米粒子的分子量影响很小,本发明对之进行忽略。

在本发明的另一方面,还提供了所述两亲性聚羧酸水泥分散剂作为水泥分散剂的应用。

本发明所述的两亲性聚羧酸水泥分散剂其应用方法与已知的水泥分散剂相同,本领域技术人员普遍知悉其应用方法。

本发明所述的两亲性聚羧酸粒子其掺量为总胶凝材料的0.05%~0.3%,所述掺量为纯固体掺量,所述百分比为质量百分比。掺量过低会使其性能变劣,掺量过高会造成经济上的浪费且性能并不能提高。

本发明所述的两亲性聚羧酸水泥分散剂可与市售的其它减水剂,如木质磺酸盐类减水剂、萘系磺酸盐类减水剂、聚羧酸水泥分散剂等混合使用,亦可加入引气剂、缓凝剂、早强剂、膨胀剂、增粘剂、减缩剂和消泡剂后使用。

本发明与现有技术相比具有以下优点:

本发明的两亲性聚羧酸粒子在混凝土应用中不仅掺量低、减水率高、保坍性强,还可大幅提升混凝土抗压强度、抗折强度和抗渗性等力学性能。

附图说明

图1是实施例2制备的两亲性聚羧酸粒子的透射电镜(TEM)扫描图。

具体实施方式

以下给出本发明所述的两亲性聚羧酸水泥分散剂的详细制备方法,其目的在于让熟悉该领域的技术人员能够了解本发明的内容并据以实施,但这些实施例绝不限制本发明的范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

本发明实施例中,聚合物分子量采用配备3Mz-Gel SD plus 10μm(美国Agilent公司)色谱柱的凝胶渗透色谱仪(GPC,美国WATERS公司)进行测定,流动相:0.01M NaBF4的DMF溶液,流速:1.0mL/min,试样质量百分比浓度:0.50%;反应转化率通过配备Waters Xbridge C18色谱柱(美国Waters公司)的LC600高效液相色谱仪(HPLC,美国LabTech公司)进行测定,流动相:4:1的甲醇/水混合溶液,流速:0.8mL/min,试样质量百分比浓度:0.50%;透射电镜(TEM)图片在加速电压200kV下由Tecnai G2F20电子显微镜(美国FEI公司)观测而得。

本发明实施例中所用原料小分子RAFT试剂(>97%)购于Sigma-Aldrich公司,甲基丙烯酸聚乙二醇单甲醚酯大单体(双键保留值>98%)为南京博特新材料有限公司生产,其它原料均为市售普通分析纯化学试剂。

实施例中的合成方法分为两部分,首先通过可逆加成-断裂链转移聚合法(RAFT)制备聚合物A和B(此合成反应转化率达到98%以上,因此无需提纯直接进行下一步反应),接下来聚合物A和B(含有RAFT功能末端)共同调控下的疏水单体乳液聚合法制备蠕虫状两亲性聚羧酸水泥分散剂,反应所得分散液无需提纯、浓缩、干燥等步骤,直接用作减水剂使用。

实施例1:

向装有搅拌器的烧瓶中加入RAFT试剂EMP9.33g、丙烯酸30g、V-50引发剂2.26g(原料摩尔比依次为5:50:1)和水27.7g充分混合,此时聚合浓度为60%,在N2气氛下,升温至60℃,反应1h后即得含RAFT功能末端的聚合物A-1溶液,HPLC测得单体转化率为99.2%;

向装有搅拌器的烧瓶中加入RAFT试剂EMP4.03g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=600)180g、V-501引发剂1.67g(原料摩尔比依次为3:50:1)充分混合,此时聚合浓度为100%,在N2气氛下,升温至60℃,反应3h后即得含RAFT功能末端的聚合物B-1,HPLC测得单体转化率为98.6%;

将聚合物A-1溶液和聚合物B-1混合,再加入疏水单体苯乙烯247.8g、V-501引发剂4.14g和水1070g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为2.8:1.2:160:1,聚合浓度为30%,在N2气氛下,升温至60℃,反应12h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为16200。

实施例2:

向装有搅拌器的烧瓶中加入RAFT试剂CETPA6.11g、丙烯酸20g+甲基丙烯酸5.97g、V-50引发剂1.25g(原料摩尔比依次为5:60+15:1)和水33.4g充分混合,此时聚合浓度为50%,在N2气氛下,升温至70℃,反应1h后即得含RAFT功能末端的聚合物A-2溶液HPLC测得单体转化率为98.9%;

向装有搅拌器的烧瓶中加入RAFT试剂BDMAT3.38g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=1000)180g、VA-044引发剂1.29g(原料摩尔比依次为3:45:1)和水46.2g充分混合,此时聚合浓度为80%,在N2气氛下,升温至70℃,反应2h后即得含RAFT功能末端的聚合物B-2溶液,HPLC测得单体转化率为99.3%;

将聚合物A-2和B-2溶液混合,再加入疏水单体甲基丙烯酸叔丁酯149.7g、V-50引发剂2.38g和水601.6g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为2.64:1.36:120:1,聚合浓度为35%,在N2气氛下,升温至70℃,反应6h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为26500。

实施例3:

向装有搅拌器的烧瓶中加入RAFT试剂BDMAT4.61g、丙烯酸23.5g+马来酸酐8.01g、VA-044引发剂1.06g(原料摩尔比依次为5:100+25:1)和水37.2g充分混合,此时聚合浓度为50%,在N2气氛下,升温至70℃,反应2h后即得含RAFT功能末端的聚合物A-3溶液,HPLC测得单体转化率为98.7%;

向装有搅拌器的烧瓶中加入RAFT试剂CETPA4.22g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=1200)240g、过硫酸铵引发剂1.21g(原料摩尔比依次为3:37.5:1)和水163g充分混合,此时聚合浓度为60%,在N2气氛下,升温至70℃,反应2h后即得含RAFT功能末端的聚合物B-3溶液,HPLC测得单体转化率为98.2%;

将聚合物A-3和B-3溶液混合,再加入疏水单体丙烯酸叔丁酯87.0g+丙烯酸异丙酯33.2g、V-50引发剂2.19g和水546.3g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为2.02:1.98:120:1,聚合浓度为35%,在N2气氛下,升温至70℃,反应8h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为24700。

实施例4:

向装有搅拌器的烧瓶中加入RAFT试剂CETPA2.93g、丙烯酸19.2g+富马酸7.72g、V-50引发剂0.602g(原料摩尔比依次为5:120+30:1)和水30.5g充分混合,此时聚合浓度为50%,在N2气氛下,升温至70℃,反应3h后即得含RAFT功能末端的聚合物A-4溶液,HPLC测得单体转化率为98.4%;

向装有搅拌器的烧瓶中加入RAFT试剂CETPA4.84g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=1200)220g、V-501引发剂1.7g(原料摩尔比依次为3:30:1)和水151g充分混合,此时聚合浓度为60%,在N2气氛下,升温至70℃,反应1h后即得含RAFT功能末端的聚合物B-4溶液,HPLC测得单体转化率为99.1%;

将聚合物A-4和B-4溶液混合,再加入疏水单体苯乙烯45.9g+甲基丙烯酸叔丁酯62.7g、V-50引发剂1.99g和水363.8g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为1.51:2.49:120:1,聚合浓度为40%,在N2气氛下,升温至70℃,反应10h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为28300。

实施例5:

向装有搅拌器的烧瓶中加入RAFT试剂BDMAT2.32g、丙烯酸18.95g+衣康酸6.42g、VA-061引发剂0.411g(原料摩尔比依次为5:160+30:1)和水42.2g充分混合,此时聚合浓度为40%,在N2气氛下,升温至80℃,反应3h后即得含RAFT功能末端的聚合物A-5溶液,HPLC测得单体转化率为98.5%;

向装有搅拌器的烧瓶中加入RAFT试剂CETPA3.63g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=1600)220g、V-501引发剂1.27g(原料摩尔比依次为3:30:1)和水225g充分混合,此时聚合浓度为50%,在N2气氛下,升温至80℃,反应2h后即得RAFT功能末端的聚合物B-5溶液,HPLC测得单体转化率为98.3%;

将聚合物A-5和B-5溶液混合,再加入疏水单体甲基丙烯酸甲酯27.5g+甲基丙烯酸丁酯39.0g、过硫酸钾引发剂1.48g和水121.7g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为1.5:2.5:100:1,聚合浓度为45%,在N2气氛下,升温至80℃,反应8h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为32600。

实施例6:

向装有搅拌器的烧瓶中加入RAFT试剂EMP2.33g、丙烯酸30g、V-50引发剂0.564g(原料摩尔比依次为5:200:1)和水76g充分混合,此时聚合浓度为30%,在N2气氛下,升温至80℃,反应3h后即得含RAFT功能末端的聚合物A-6溶液,HPLC测得单体转化率为98.9%;

向装有搅拌器的烧瓶中加入RAFT试剂CETPA3.96g、甲基丙烯酸聚乙二醇单甲醚酯大单体(Mw=2000)300g、V-501引发剂1.39g(原料摩尔比依次为3:30:1)和水305.4g充分混合,此时聚合浓度为50%,在N2气氛下,升温至80℃,反应1h后即得含RAFT功能末端的聚合物B-6溶液,HPLC测得单体转化率为99.5%;

将聚合物A-6和B-6溶液混合,再加入疏水单体苯乙烯15.8g+丙烯酸丁酯175.4g、过硫酸钾引发剂1.71g和水144.8g,在1000rpm速度下搅拌5min形成稳定乳液后,此时聚合物A、聚合物B、疏水单体和引发剂的摩尔比为1.64:2.36:240:1,聚合浓度为50%,在N2气氛下,升温至80℃,反应10h后,用35%氢氧化钠溶液中和反应液pH为6~8,即得两亲性聚羧酸水泥分散剂,分子量Mw为39600。

对比例1:

市售PCA-1型聚羧酸高性能减水剂,购于江苏苏博特新材料股份有限公司。

对比例2:

参照专利CN 201110199693.8实施例4所示的方法合成。

应用实施例:

应用实施例中,所采用的水泥为小野田PⅡ52.5,砂为细度模数M=2.6的中砂,石子为粒径5~20mm连续级配的碎石。

应用实施例1

本发明的两亲性聚羧酸水泥分散剂按照GB/T8077-2000《混凝土外加剂均质性试验方法》对净浆流动度进行测定,固定水灰比为0.29,调整聚羧酸粒子掺量,使初始流动度在200-250mm之间,结果如表1。

表1水泥净浆流动度测试结果

由表1的水泥净浆流动度测试结果可知,实施例1-6,在掺量较低的情况下,初始、45min和90min流动度都要略优于对比例1-2,这证明本发明的两亲性聚羧酸粒子具有高减水、高保坍的优异性能。

应用实施例2

接下来依照GB8076-2008规定的方法来检测本发明的两亲性聚羧酸粒子对混凝土的强度影响,采用ASTM C1202直流电量法测定混凝土的抗渗透性。固定水灰比0.40,调整聚羧酸粒子掺量,使混凝土初始坍落度在20±1cm之间,试验温度20℃,湿度80%,混凝土质量配合比:水泥267,矿粉53,粉煤灰60,砂767,大石800,小石260,混凝土实验结果见表2。

表2混凝土性能测试结果

由表2的混凝土测试结果可知,与对比例1-2相比,实施例1-6的抗折、抗压强度均要明显提高,电通量也明显降低,这表明本发明的蠕虫状聚羧酸粒子可以提高混凝土的抗折强度、抗压强度和抗渗性等力学性能。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1