一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法与流程

文档序号:12402980阅读:501来源:国知局

本发明涉及一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法,属于自润滑复合材料领域。



背景技术:

聚醚醚酮基复合材料是一种具有高强度、高模量、耐热性以及较高化学稳定性和自润滑性能的热塑性工程塑料,广泛应用于干摩擦条件下运行的滑动轴承。然而,由于纯的聚醚醚酮树脂材料通常表现出较高的摩擦系数和磨损率,在实际应用中,需要对其进行增强和自润滑改性来改善其摩擦学性能。

将增强填料、固体润滑剂以及无机纳米陶瓷颗粒加入到聚醚醚酮树脂中,不仅可以提高复合材料的力学性能,同时也可以改善其耐磨减摩性能。研究表明,在金属对偶表面形成的具有润滑特性的转移膜是使聚合物复合材料具有良好的摩擦学性能的主要因素之一。

在聚合物基材料中添加纳米尺度陶瓷颗粒被证明能够提高材料的摩擦学性能。然而,文献报导的自润滑复合材料中仅包含单一种类的纳米陶瓷颗粒,至今尚没有关于不同物理、化学性质的纳米氧化物颗粒的耦合对聚合物复合材料摩擦学性能影响的研究报导。耦合不同功能的纳米氧化物颗粒,发挥不同种类纳米颗粒间的协同作用,是设计制备高性能纳米自润滑材料的新思路。



技术实现要素:

本发明的目的在于提供一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法。

本发明所述材料在摩擦过程中,两种具有不同熔点的纳米颗粒被释放到摩擦界面上,通过界面闪温作用在材料表面烧结形成自润滑性能优异的摩擦膜。高熔点纳米颗粒提高转移膜的承载能力,而低熔点纳米颗粒促进摩擦烧结的发生,从而显著缩短材料的“跑合阶段”,通过不同熔点纳米颗粒的协同降低材料的摩擦与磨损。

本发明将两种不同熔点的纳米氧化物颗粒同时加入到聚醚醚酮基复合材料中,通过研究其摩擦学性能发现:与两种纳米颗粒中的单一组分添加的聚合物基复合材料相比,两种纳米颗粒耦合对材料的摩擦学性能的提高具有协同效应。即:在更短的时间经过“跑合阶段”达到平衡,从而使聚醚醚酮基纳米复合材料具有较小的摩擦系数和磨损率。

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂 55~94.4%、增强纤维 5~30%、高熔点纳米颗粒 0.5~10%、低熔点纳米颗粒 0.1~5%;所述高熔点纳米颗粒为纳米SiO2或纳米TiO2;所述低熔点纳米颗粒为纳米Bi2O3或纳米CuO。

所述聚醚醚酮树脂为粉料或粒料。

所述增强纤维为短碳纤维或短玻璃纤维,单丝直径为5~30μm,长度为20~500μm。

所述高熔点纳米颗粒和低熔点纳米颗粒的粒度均为10~100nm。

如上所述多元氧化物填充聚醚醚酮基自润滑纳米复合材料的制备方法,其特征在于具体步骤为:

A) 将高熔点纳米颗粒和低熔点纳米颗粒进行机械混合,然后加入聚醚醚酮树脂和增强纤维进一步混合;

B) 将A)中混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出,将熔融混炼的挤出料经注塑机注塑成型。

所述增强纤维经超声清洗处理后干燥使用,清洗增强纤维的溶剂为无水乙醇或丙酮。

所述双螺杆挤出机的一区加热温度为370~375℃,二区加热温度为380~385℃,三区加热温度为390~395℃,四区加热温度为400~405℃,螺杆转速为100~900rpm。

所述注塑机的注射模具温度为170~200℃,注射筒温度375~385℃,注射背压2~4MPa,注射压力170~180MPa。

附图说明

图1 为本发明所述自润滑纳米复合材料的摩擦系数随时间的变化图(图中PEEK:聚醚醚酮、SCF:短碳纤维)。

具体实施方式

下面通过具体实施例进一步说明本发明,但本实施例并不用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。所述试剂和原料,如无特殊说明,均从商业途径获得。

实施例1

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:0.3%,纳米SiO2颗粒:1%,聚醚醚酮粉料:88.7%,短碳纤维:10%。首先,将纳米CuO和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为400rpm;注射机的注射模具温度为180℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。

实施例2

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:3%,纳米TiO2颗粒:7%,聚醚醚酮粒料:75%,短玻璃纤维:15%。首先,将纳米CuO和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粒料和短玻璃纤维进一步混合。将上述机械混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为200rpm;注射机的注射模具温度为190℃,注射筒温度385℃,注射背压4MPa,注射压力180MPa。

实施例3

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:4%,纳米SiO2颗粒:9%,聚醚醚酮粉料:67%,短碳纤维:20%。首先,将纳米Bi2O3和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为300rpm;注射机的注射模具温度为200℃,注射筒温度375℃,注射背压4MPa,注射压力170MPa。

实施例4

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:1%,纳米TiO2颗粒:5%,聚醚醚酮粉料:84%,短玻璃纤维:10%。首先,将纳米Bi2O3和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短玻璃纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为350rpm;注射机的注射模具温度为175℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。

对比例1:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米SiO2颗粒。

对比例2:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米CuO颗粒。

其中实施例1及对比例1和对比例2的体积组分详见下表:

将实施例1、对比例1和对比例2中试样加工成12mm×12mm×19mm的试样块。在高速环-块摩擦试验机上,对实施例1、对比例1及对比例2的试样块分别进行至少重复三次的摩擦磨损性能分析。测试条件为:对偶钢环为GCr15,初始表面粗糙度Ra=0.27,钢环的直径为49.22mm,试验载荷为300N,滑动速度为1m/s,摩擦磨损试验时间为5h。

实施例1、对比例1和对比例2在干摩擦条件下高速环-块摩擦磨损试验数据结果如下表所示:

其中,实施例1的摩擦系数与磨损率较对比例1、对比例2都有明显降低。此外,由实施例和对比例的摩擦系数随时间的变化曲线(见附图)可以看出,两种不同熔点的纳米颗粒通过协同作用大幅度缩短了摩擦过程中的“跑合阶段”。

本发明在材料组成与性能设计上综合考虑不同熔点的纳米氧化物颗粒之间的协同效应。通过材料配方的优化设计,使摩擦界面上释放出的纳米颗粒在对偶表面迅速形成优良润滑特性的转移膜,不仅提高了聚醚醚酮复合材料的耐磨减摩性,还大大缩短了复合材料在摩擦过程中的“跑合阶段”,从而使聚醚醚酮基纳米复合材料在摩擦过程中能够更快地达到平衡,表现出更好的使用稳定性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1