一种kck多肽修饰的金纳米簇及其制备方法

文档序号:10644639阅读:503来源:国知局
一种kck多肽修饰的金纳米簇及其制备方法
【专利摘要】本发明属于功能性生物纳米材料技术领域,具体涉及一种KCK多肽修饰的金纳米簇及其制备方法,通过设计作为表面稳定剂的多肽序列,采用简单绿色的水热合成法制备对细胞核仁具有靶向标记作用的红色荧光金纳米簇,其粒径范围在1.8?2.8nm,金纳米簇在500nm附近有明显的吸收峰,当用480nm的激发光对金纳米簇进行照射时,在600?800nm区间有较强的荧光发射,发射峰为680nm,金纳米簇的荧光量子产率为12%,对细胞核仁具有靶向标记作用。该制备方法简单,操作性强,成本低,材料表面用多肽稳定,避免了纳米粒子的团聚,生物亲和性好,毒性低,稳定性好,发射波长,良好地荧光性,利于得到更好的核仁成像效果,对细胞核仁有特异性标记。
【专利说明】
一种KCK多肽修饰的金纳米簇及其制备方法
技术领域
:
[0001]本发明属于功能性生物纳米材料技术领域,具体涉及一种KCK多肽修饰的金纳米簇及其制备方法,通过设计作为表面稳定剂的多肽序列,采用简单绿色的水热合成法制备对细胞核仁具有靶向标记作用的红色荧光金纳米簇。
【背景技术】
:
[0002]细胞核仁是细胞核内的重要亚核结构,对于细胞的生长、增殖都有重要作用。除此之外,核仁还是细胞核内rRNA转录、翻译以及核糖体组装的场所,因此又被称为“核糖体工厂”,甚至有文献报道核仁也是某些病毒的靶向攻击位置。细胞核仁并不是一直存在的,它形成于细胞分裂间期,由熔融态的核仁物质聚集形成,目前对于细胞核仁的生物学作用的研究尚不成熟。研究核仁及其相关过程时,非常重要的步骤是将核仁可视化,然后才能更好的得到核仁结构数量等相关信息。目前,对于核仁的可视化方法,得到普遍认同的有①银染法一通过AgNO3与细胞核仁处的酸性蛋白反应,实现银的还原,生成黑色银颗粒,进而对核仁位置进行标记,缺点是在光学显微镜下呈黑色且无荧光信号,不利于进一步的研究使用;②商业化的STYO染料染色法在480nm激发下有500nm的荧光发射,并且染料分子与RNA结合后荧光强度会存在数量级的变化,但染料分子的结构没有公开报道。
[0003]近年来,随着研究的不断深入,对核仁特异性染色的其他材料也相应进入人们的视线,如以稀土元素铕为配位中心构成的稀土配合物;以吡啶,吡咯及苯等芳环结构构成的超低分子量的荧光探针;以及由过渡金属元素锇、铱组成的异核双配位化合物均可对细胞核仁进行特异性的标记。这类材料的共同特征就是表面含有大量的芳环结构,可能是对核仁进行靶向识别的作用基团。越来越多的荧光纳米材料应用于荧光标记领域,与传统的化学染料相比,荧光纳米材料的抗光漂白性更好,并且通过对纳米材料表面进行修饰,还会使得材料的生物亲和性大大提高。通过调节纳米材料的尺寸可以得到发射波长较长的材料,这对降低细胞成像的背景干扰,信噪比及细胞自荧光都是有利的。
[0004]基于以上论述,设计合理有效的途径,合成可对细胞核仁靶向标记的纳米材料是非常有必要的,它将为研究细胞核仁及其相关过程提供更好的帮助。

【发明内容】

:
[0005]本发明目的在于克服现有技术的不足,寻求一种KCK多肽修饰的靶向标记细胞核仁的金纳米簇及其制备方法,降低现有细胞核仁标记材料细胞成像的背景干扰以及解决现有细胞核仁标记材料制作成本高、毒性大、制作工艺复杂的问题。
[0006]为了实现上述目的,本发明涉及的KCK多肽修饰的金纳米簇的制备方法,具体工艺步骤如下:
[0007](I)用超纯水分别配置20mmol/L的HAuCU、1.5mol/L的Na0H、20mmol/L的三(2-甲基乙基)膦盐酸盐(TCEP)、0.1mmol/L的NaBH4和20mmol/L的KCK溶液,将玻璃瓶用王水浸泡处理,清洗干净后烘干备用;
[0008](2)分别取500yL的KCK溶液和TCEP溶液加入到处理好的玻璃瓶中,混合均匀后置于恒温水浴锅中加热I Omin,再向玻璃瓶中加入500yL的HAuCl4溶液,混合均匀后再次放入恒温水浴锅反应15min,然后向玻璃瓶中依次加入50yL的NaOH溶液和8yL的NaBH4溶液,搅拌均匀,可观察到玻璃瓶中溶液颜色迅速由淡黄色变为棕色,最后向玻璃瓶中加入超纯水使溶液中Au+的终浓度为2mmo I/L;
[0009](3)将加入反应物的玻璃瓶放置于恒温水浴锅内,70°080°(:恒温反应1211;
[0010](4)反应结束后,将样品转移到离心管中离心除去大分子颗粒物质,将离心上清液中剩余的未反应原料及小分子物质除去得到金纳米簇;
[0011]步骤(4)中离心上清液采用截留分子量为10000道尔顿的超滤膜过滤,或采用透析或外加甲醇、乙醇和丙酮任一种离心沉降处理得到金纳米簇;所述KCK多肽的中文全称为赖氨酸--半胱氨酸--赖氨酸。
[0012]本发明涉及的KCK多肽修饰的金纳米簇,粒径范围在1.8-2.8nm,金纳米簇在500nm附近有明显的吸收峰,当用480nm的激发光对金纳米簇进行照射时,在600_800nm区间有较强的荧光发射,发射峰为680nm,金纳米簇的荧光量子产率为12%,对细胞核仁具有靶向标记作用。
[0013]与现有技术相比,本发明涉及的KCK多肽修饰的金纳米簇的制备方法简单,操作性强,成本低,材料表面用多肽稳定,避免了纳米粒子的团聚,生物亲和性好,毒性低,稳定性好,发射波长,良好地荧光性,利于得到更好的核仁成像效果,此外,合成的纳米材料对细胞核仁有特异性标记,相对于比较常规的富芳环的荧光探针,这是一种全新的材料,为核仁的研究提供了新的思路与方法。
【附图说明】
:
[0014]图1为本发明涉及的KCK多肽的结构示意图。
[0015]图2为本发明涉及的KCK多肽修饰的金纳米簇的透射电子显微镜表征图。
[0016]图3为本发明涉及的KCK多肽修饰的金纳米簇的紫外可见吸收光谱图。
[0017]图4为本发明涉及的KCK多肽修饰的金纳米簇的荧光发射光谱。
[0018]图5为本发明涉及的KCK多肽修饰的金纳米簇(A)和商品化细胞核仁探针SYTORNA-SeIect(B)分别与细胞共育2小时的荧光成像效果图。
[0019]图6为本发明涉及的KCK多肽修饰的金纳米簇与商品化SYTORNA-Select分别与细胞共育之后在激光连续照射的条件下不同采集时间点成像效果图。
【具体实施方式】
:
[0020]下面结合附图和实施例对本发明做进一步说明:
[0021]实施例1:
[0022]本实施例涉及的KCK多肽修饰的金纳米簇的制备方法,具体工艺步骤如下:
[0023](I)用超纯水分别配置20mmol/L的HAuCl4、1.5mol/L的Na0H、20mmol/L的三(2-甲基乙基)膦盐酸盐(TCEP)、0.1mmol/L的NaBH4和20mmol/L的KCK溶液,将玻璃瓶用王水浸泡处理,清洗干净后烘干备用;
[0024](2)分别取500yL的KCK溶液和TCEP溶液加入到处理好的玻璃瓶中,混合均匀后置于70 °C恒温水浴锅中加热1min,再向玻璃瓶中加入500yL的HAuCl4溶液,混合均匀后再次放入70°C恒温水浴锅反应15min,然后将玻璃瓶从水浴中拿出,向瓶中加入磁子,在300rpm搅拌下依次加入NaOH溶液和NaBH4溶液,可观察到玻璃瓶中溶液颜色迅速由淡黄色变为棕色,最后向玻璃瓶中加入超纯水使溶液中Au+的终浓度为2mmo 1/L;
[0025](3)将加入反应物的玻璃瓶放置于恒温水浴锅内,70°C恒温反应12h;
[0026](4)反应结束后,将样品转移到离心管中,8000rpm离心5min后取上清液,将离心上清液采用截留分子量为10000道尔顿的超滤膜过滤得到金纳米簇;所述KCK多肽的中文全称为赖氨酸(Lysine,K)—半胱氨酸(Cysteine,C)—赖氨酸(Lysine,K),购买于上海强耀生物科技有限公司。
[0027]由图1-4可知,本实施例制备得到的金纳米簇颗粒分散均匀,而且粒径分布范围相对较窄,在1.8-2.8nm范围内,平均颗粒直径为2.1醒,金纳米簇在500nm附近有明显的吸收峰,当用480nm的激发光对金纳米簇进行照射时,在600-800nm区间有较强的荧光发射,发射峰为680nm,金纳米簇的荧光量子产率为12%,对细胞核仁具有靶向标记作用。
[0028]应用例1:
[0029]将实施例1制备的KCK修饰的金纳米簇(KCK-AuNCs,400yg/ml)与人纤维肉瘤细胞(HT1080)在37 °C,CO2含量5%的恒温培养箱内共同孵育2小时得到细胞爬片;将上述细胞爬片用4%多聚甲醛固定后,用共聚焦激光扫描系统成像,成像条件100X油镜在405nm的激光激发,信号收集通道662-737nm0
[0030]对比例1:
[0031]将商品化细胞核仁探针(SYTO RNA-Select,400yg/ml)与人纤维肉瘤细胞(HT1080)在37 °C,CO2含量5%的恒温培养箱内共同孵育2小时得到细胞爬片;将上述细胞爬片用4%多聚甲醛固定后,用共聚焦激光扫描系统成像,成像条件100X油镜在405nm的激光激发,信号收集通道662-737nm0
[0032]图5为金纳米簇KCK-AuNCs(A)和商品化SYTO RNA-Select(B)分别与细胞共育2小时的荧光成像效果图。图中金纳米簇与SYTO RNA-Select的细胞内定位相同,证明荧光金纳米簇KCK-AuNCs可以对细胞的核仁部位进行靶向标记。图6为金纳米簇与商品化SYTO RNA-Select分别与细胞共育之后在激光连续照射条件下不同时间点成像效果的比较。如图所示,在6分钟的连续照射的成像条件下,荧光金纳米簇能够较好地维持其荧光强度,而SYTORNA-Select的强度迅速下降,说明荧光金纳米簇对比SYTO RNA Select具有更好的光稳定性。
[0033]实施例2:
[0034]本实施例涉及的KCK多肽修饰的金纳米簇的制备方法,具体工艺步骤如下:
[0035](I)用超纯水分别配置20mmol/L的HAuCl4、1.5mol/L的Na0H、20mmol/L的三(2-甲基乙基)膦盐酸盐(TCEP)、0.1mmol/L的NaBH4和20mmol/L的KCK溶液,将玻璃瓶用王水浸泡处理,清洗干净后烘干备用;
[0036](2)分别取500yL的KCK溶液和TCEP溶液加入到处理好的玻璃瓶中,混合均匀后置于70 0C恒温水浴锅中加热1min,再向玻璃瓶中加入500yL的HAuCl4溶液,混合均匀后再次放入70°C恒温水浴锅反应15min,然后将玻璃瓶从水浴中拿出,向瓶中加入磁子,在300rpm搅拌下依次加入NaOH溶液和NaBH4溶液,可观察到玻璃瓶中溶液颜色迅速由淡黄色变为棕色,最后向玻璃瓶中加入超纯水使溶液中Au+的终浓度为2mmo 1/L;
[0037](3)将加入反应物的玻璃瓶放置于恒温水浴锅内,80°C恒温反应12h;
[0038](4)反应结束后,将样品转移到离心管中,8000rpm离心5min后取上清液,将离心上清液透析处理得到金纳米簇;所述KCK多肽的中文全称为赖氨酸(Lysine,K)—半胱氨酸(Cysteine,C)—赖氨酸(Lysine,K),购买于上海强耀生物科技有限公司。
[0039]进一步地,所述步骤(4)中离心上清液也可以外加甲醇、乙醇和丙酮任一种离心沉降处理得到金纳米簇。
【主权项】
1.一种KCK多肽修饰的金纳米簇的制备方法,其特征在于具体工艺步骤如下: (1)用超纯水分别配置20mmol/L的HAuCl4、1.5mol/L的Na0H、20mmol/L的三(2-甲基乙基)膦盐酸盐(1^?)、0.111111101/1的他8!14和2011111101/1的1(0(溶液,将玻璃瓶用王水浸泡处理,清洗干净后烘干备用; (2)分别取500yL的KCK溶液和TCEP溶液加入到处理好的玻璃瓶中,混合均匀后置于恒温水浴锅中加热I Omin,再向玻璃瓶中加入500yL的HAuCl4溶液,混合均匀后再次放入恒温水浴锅反应15min,然后向玻璃瓶中依次加入50yL的NaOH溶液和8yL的NaBH4溶液,搅拌均匀,可观察到玻璃瓶中溶液颜色迅速由淡黄色变为棕色,最后向玻璃瓶中加入超纯水使溶液中Au+的终浓度为2mmo 1/L; (3)将加入反应物的玻璃瓶放置于恒温水浴锅内,70°C-80°C恒温反应12h; (4)反应结束后,将样品转移到离心管中离心除去大分子颗粒物质,将离心上清液中剩余的未反应原料及小分子物质除去得到金纳米簇; 步骤(4)中离心上清液采用截留分子量为10000道尔顿的超滤膜过滤,或采用透析或外加甲醇、乙醇和丙酮任一种离心沉降处理得到金纳米簇;所述KCK多肽的中文全称为赖氨酸一半胱氨酸一赖氨酸。2.—种权利要求1所述的方法制备的金纳米簇,其特征在于金纳米簇粒径范围在1.8-2.8nm,金纳米簇在500nm附近有明显的吸收峰,当用480nm的激发光对金纳米簇进行照射时,在600-800nm区间有较强的荧光发射,发射峰为680nm,金纳米簇的荧光量子产率为12%,对细胞核仁具有靶向标记作用。
【文档编号】C12Q1/02GK106010513SQ201610387321
【公开日】2016年10月12日
【申请日】2016年6月2日
【发明人】王晓娟, 黄方, 王雅楠, 曲剑波, 何化, 王生杰
【申请人】中国石油大学(华东)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1