芽孢杆菌M2降解农业废弃物的用途的制作方法

文档序号:17160660发布日期:2019-03-20 00:39阅读:448来源:国知局
芽孢杆菌M2降解农业废弃物的用途的制作方法

本发明涉及一株芽孢杆菌m2及其降解农业废弃物的用途。



背景技术:

我国是一个农业大国,农业废弃物产生量极其巨大,由于受经济效益和技术普及的限制,农业废弃物大都粗放低效利用且闲置状况严重,造成资源浪费和环境污染,废弃物已经成为中国最大的污染源。而农业废弃物存在着大量的木质纤维素,亟待人们去开发利用。

木质素是自然界中仅次于纤维素的第二丰富的有机可再生资源,也是微生物最难降解的成分之一。近年来,某些降解木质素的真菌已开始在实际中得以应用,但仍有待进一步开发。木质素微生物降解的应用主要有:造纸工业;饲料工业;发酵与食品工业;生物物肥料环境保护;木素酶的生物漂白技术,等等。

目前农业有机固体废弃通常通过能源化利用、有机肥料、禽畜饲料、可食用菌培养基料和工业原料进行利用。在利用农业废弃物的生产实践中,物理、化学和生物处理方法经常结合使用,而其中生物处理方法尤其是利用微生物处理代表了今后的发展趋势。生物处理方法就是指利用木质素降解酶去降解木质纤维材料中的木质素,从而使木质素-半纤维素-纤维素结构解体,纤维素得以暴露出来供后续步骤处理与传统的机械、物理化学类法相比,生物处理法的优点是能耗低,所需环境条件温和,避免了传统化学处理、机械处理技术等耗能较多、存在环境污染等缺点,从成本和设备角度考虑,生物脱木质素法占有独特的优势。但是,目前的生物处理法有一个很大的弱点限制了它的应用,这就是生物处理法中的关键角色-木质素降解酶的活性普遍不高,从而导致处理效率较低,如果能利用基因工程和传统的生物技术对菌种和酶进行改造,提高酶活力,降低酶成本,生物法脱木质素法则有望应用于大规模工业生产。

而目前应用最广泛的是微生物菌肥,微生物菌肥作为一种新的农业技术措施,在发展高产、优质、高效农业中的作用逐渐被人们所认识。传统的微生物肥料己经在大面积推广应用中,新型的微生物菌肥品种不断开发出来。微生物肥是由具有特殊效能的微生物经过发酵而制成的、含有大量有益微生物、对作物有特定肥效的特定微生物制品。微生物肥料利用微生物的生命活动,将作物不能吸收利用的物质转化为可被作物吸收利用的营养物,改善作物的营养条件,有些兼有刺激作物生长或增强抗病性的作用,以提高作物产量,改善农产品品质。它既能增加农产品的出日创汇,又具有工农业有机废物有效利用、防止环境污染、改进土壤结构、提高土壤肥力和保护生态良性循环的巨大社会效益和生态效益。

国内的研究大多数为真菌降解木质纤维素。但是,利用真菌降解木质纤维素普遍存在酶活力较低的问题。由于细菌繁殖较快,发酵周期短,可应用于工业生产,且细菌产生的纤维素酶一般作用条件为中性或偏碱性,这在制浆、造纸和洗涤剂工业等污染行业的废水治理上有着潜在的应用前景,因此从细菌中筛选出有效菌株应用于木质纤维素降解具有一定的实际意义及开发前景。



技术实现要素:

本发明的目的是提供一株木质素高效降解菌m2及其降解农业废弃物的用途。

本发明的一株木质素高效降解菌为芽孢杆菌(bacillussp.)m2,保藏在中国微生物菌种保藏管理委员会普通微生物中心,保藏地址是北京市朝阳区北辰西路1号院3号,保藏日期为2014年12月12日,保藏号cgmccno.10166。

本发明的芽孢杆菌m2用于降解农业废弃物,尤其是用于降解袋料木耳废料或玉米秸秆。

本发明的有益效果如下:

本发明的芽孢杆菌(bacillussp.)m2增值迅速,适应性强,应用广泛,耐盐性为nacl浓度10%,耐热性为70℃;连续传代培养10次,菌株生长情况、产酶情况以及酶活力稳定,无退化现象;对袋料木耳废料和玉米秸秆具有明显的降解效果,经芽孢杆菌(bacillussp.)m2发酵处理后的袋料木耳废料的失重率在35%以上,经芽孢杆菌(bacillussp.)m2发酵处理后的玉米秸秆的失重率在30%以上;具有木质素降解能力,可以高效降解木质素,经复合微生物菌剂发酵处理的玉米秸秆中木质素含量是经芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中木质素含量的2.8倍,作为单一菌株芽孢杆菌(bacillussp.)m2对木质素的降解能力强于复合微生物菌剂;在降解样品时,不影响样品中的主要元素含量,不会导致试样中的全氮、全磷、全钾、速效磷和速效钾含量变化,保存样品肥效。

本发明从袋料木耳废料、林间朽木和林间土壤中分离筛选出能够以木质素为唯一碳源生长的原始菌株,确定对木质素的降解能力以及种属关系,为将来复合微生物菌剂构建奠定基础。将为我国农业资源的有效化利用提供有力帮助。

附图说明

图1为本发明芽孢杆菌(bacillussp.)m2培养12h后的扫描电子显微镜图(×20,000);

图2为16srdna序列pcr扩增的琼脂糖凝胶电泳检测图;其中,1泳道为makerdl2000,2泳道为菌株m2;

图3为回收后的pcr产物琼脂糖凝胶电泳检测图;其中,1泳道为makerdl2000,2泳道为菌株m2;

图4为阳性克隆子筛选的琼脂糖凝胶电泳检测图;其中,1泳道为makerdl2000,2泳道为菌株m2;

图5为本发明芽孢杆菌(bacillussp.)m2的系统进化树;

图6为本发明芽孢杆菌(bacillussp.)m2对袋料木耳废料的失重率图;

图7为本发明芽孢杆菌(bacillussp.)m2对玉米秸秆的失重率图;

图8为本发明芽孢杆菌(bacillussp.)m2菌株降解后玉米秸秆中各组分含量柱状图;其中,1为木质素含量柱状图;2为纤维素含量柱状图;3为半纤维素含量柱状图;

图9为本发明芽孢杆菌(bacillussp.)m2菌株发酵处理后玉米秸秆中全氮全磷和全钾含量柱状图;其中,1为全氮含量柱状图;2为全磷含量柱状图;3为全钾含量柱状图;

图10为本发明芽孢杆菌(bacillussp.)m2菌株发酵处理后玉米秸秆中速效磷含量柱状图;

图11为本发明芽孢杆菌(bacillussp.)m2菌株发酵处理后玉米秸秆中速效钾含量柱状图。

具体实施方式

具体实施方式一:本实施方式的一株木质纤维素类物质高效降解菌m2,它为芽孢杆菌(bacillussp.)m2,保藏在中国微生物菌种保藏管理委员会普通微生物中心,保藏地址是北京市朝阳区北辰西路1号院3号,保藏日期为2014年12月12日,保藏号cgmccno.10166。

本实施方式的芽孢杆菌(bacillussp.)m2为革兰氏阳性菌,该菌株菌体形态为杆状,菌体大小为0.68~0.76×1.9~2.4μm,形成芽孢,有鞭毛,无荚膜;在lb培养基上形成圆形、透明、白色、扁平、表面粗糙、边缘锯齿状的菌落(如图1所示)。

该菌株的生理生化反应结果共20项、30个指标;结合形态与生理生化反应结果,比对《伯杰氏细菌鉴定手册》确定该菌株的种属,结果如表1所示。

根据《常见芽孢杆菌系统鉴定手册》和《伯杰芽孢杆菌手册》对分离出的芽孢杆菌(bacillussp.)m2进行革兰氏染色、氧化酶、接触酶、荧光色素、甲基红、七叶苷溶解、明胶液化、石蕊牛乳胨化及产酸、脂酶、淀粉水解、v.p.测定、柠檬酸盐利用、纤维素降解、3-酮基乳糖利用、苯丙氨酸脱氨酶、色氨酸脱氨酶、耐热热性、耐盐性生理生化实验的检测和鉴定。结果表明芽孢杆菌(bacillussp.)m2为革兰氏阳性菌,耐盐性为nacl浓度10%,耐热性为70℃,可产生接触酶和脲酶,但不能产生氧化酶、脂酶、苯丙氨酸脱氨酶、色氨酸脱氨酶和荧光色素,甲基红、柠檬酸盐利用、v.p.试验、糖醇发酵(甘露糖)、石蕊牛乳胨化、七叶苷溶解和石蕊牛乳产酸表现为阳性,淀粉水解、明胶液化、纤维素降解和3-酮基乳糖利用表现为阴性。

表1菌株m2的形态学特征与生理生化鉴定结果

本实施方式的木质素高效降解菌为芽孢杆菌(bacillussp.)m2的筛选方法如下:

1、筛选方法

取10g样品在无菌条件下充分研磨,加入装有90ml无菌水(带玻璃珠)的三角瓶中,振荡20min。取5ml样品悬液接入装有100ml液体lb培养基的三角瓶中,37℃,180r/min振荡培养8h;将菌液分别制成稀释度为10-1、10-2、10-3、10-4、10-5、10-6的样液,各取200μl涂于木质素筛选培养基平板,37℃恒温培养48h,根据菌落生长情况调整稀释梯度。保持培养条件不变,48h后挑取各平板上的单菌落在木质素筛选培养基平板上反复划线纯化。挑取纯化后的单菌落点接于木质素苯胺蓝培养基平板,37℃避光恒温培养48h,测量各菌株的透明圈直径h与菌落直径c,筛选出h/c值较大的菌株。对获得的菌株进行继代培养,连续传代10次,观察菌株的生长状况并且测定h/c值。根据菌株各代菌落形态、菌落直径、透明圈直径和h/c值大小,确定菌株生长状况和对木质素降解效果的稳定性采用-80℃甘油冷冻法进行保存,分离菌株保存3管,写明标签(菌株编号、分离地点、生境类型和保存时间)。

2、菌株h/c值测定

将菌株点接于木质素苯胺蓝培养基平板,37℃避光恒温培养48h,测量各菌株的透明圈直径h与菌落直径c。

3、结果分析:

3.1、菌株筛选

通过上述的分离筛选过程,共获得134株可在木质素筛选培养基上生长的菌株。将这134株菌株纯化后接种于木质素苯胺蓝培养基上进行筛选,根据透明圈产生时间、清晰度和h/c值大小筛选出木质素降解菌。菌株m2透明圈产生迅速并且清晰,h/c值较大的菌株,确定为高效木质素降解菌,根据筛选菌株的样品来源,分别编号。将上述菌株进行10次传代培养后,菌株菌落生长情况、外观形态以及菌株的h/c值均无明显变化,表明菌株生长情况、产酶情况以及酶活力稳定,无退化现象。

3.2、菌株h/c值测定

菌株m2透明圈产生清晰迅速,并且h/c值较大;经10次传代培养后,该菌株的生长情况、产酶情况以及酶活力稳定,无退化现象,对这株菌的透明圈直径h与菌落直径c进行测定以及数据分析。菌株m2的平均菌落直径为0.52±0.03cm,最大菌落直径可到达0.55cm;平均降解圈直径为1.33±0.03cm,最大降解圈直径能达到1.37cm。菌株m2的平均h/c值为2.59±0.19,最大h/c值能达到2.85。

表2m2菌株降解效果

4、基因组dna的提取

将上述筛选得到的菌株m2基因组dna采用热破壁法提取。取1ml接种于lb液体培养基37℃180r/min振荡培养24h的菌悬液,打入1.5ml离心管中,5000r/min离心5min,弃上清,加入1mlddh2o,吸打均匀,使菌体悬浮,5000r/min离心5min,弃上清,加入200μlddh2o,吸打均匀,使菌体悬浮;于沸水浴中8~10min,10000r/min离心10min。吸取上清液,转移至另一支1.5ml离心管中,取5μl点样,以λecot14为marker,1%琼脂糖凝胶电泳检测,其余-20℃保存。

5、16srdna的pcr扩增

采用16srdna通用引物,以所提取的菌株基因组dna为模板,按照如下反应体系和扩增条件进行扩增。引物序列反应体系及扩增条件分别如表3、表4所示。pcr产物用1%的琼脂糖电泳检测。

表316srdnapcr扩增的引物序列

表416srdna的pcr扩增的反应体系和反应程序

5.1pcr产物的回收纯化

将含有目标条带的pcr产物全部点样(80μl/孔,共两孔),1.5%的琼脂糖凝胶电泳,电泳条带用天根琼脂糖凝胶dna回收试剂盒回收,具体步骤如下:

(1)柱平衡步骤:向吸附柱ca2中(放入收集管中)加入500μl平衡液bl,12000r/min,离心1min,倒掉收集管中的废液,将吸附柱重新放回收集管中。

(2)将单一的目的dna条带从琼脂糖凝胶中切下(尽量切除多余部分)放入干净的离心管中,称取重量。公式:装胶后的重量-装胶前离心管的重量)×1000=“1000倍体积”μl。

(3)向胶块中加入“1000倍体积”溶胶液pn,50℃水浴放置10min,其间不断温和地上下翻转离心管,以确保胶块充分溶解,冷却,将胶溶液温度降至室温再上柱,上柱后停留2~5min。

(4)将上一步所得溶液加入一个吸附柱ca2中,将吸附柱放入收集管中,13000r/min离心1min,倒掉收集管中的废液,将吸附柱重新放入收集管中。

(5)向吸附柱中加入600μl漂洗液pw(使用前请先检查是否已加入无水乙醇),停留2min,13000r/min离心1min,倒掉废液,将吸附柱重新放入收集管中。

(6)向吸附柱中加入500μl漂洗液pw,13000r/min离心30秒,倒掉废液。将离心吸附柱ca2放入收集管中,13000r/min离心2min,尽量除去漂洗液。将吸附柱置于50℃烘箱中烘数分钟,彻底地晾干,以防止残留的漂洗液影响下一步的实验(影响回收效率和dna质量)。

(7)将吸附柱放到一个干净的离心管中(剪掉帽),向吸附膜中间位置悬空滴加30μl洗脱缓冲液eb,室温放置2min,13000r/min离心1min收集dna溶液。

(8)为了提高dna的回收量,可将离心得到的溶液重新加回离心吸附柱中,13000r/min离心1min收集dna溶液,重复3次洗脱。

(9)将dna溶液放置于有盖的离心管中(最后一次洗脱时),保存于-20℃,以防dna降解。取少量回收后的dna溶液用1%的琼脂糖电泳验证其纯度及含量。

5.2目的片段与克隆载体的连接

将上一步pcr回收纯化得到的dna片断与pmd18-t载体混合均匀,4℃反应过夜。连接体系如下:

将连接后的载体转入e.colidh5α感受态细胞中,摇培后,涂板,挑取白色菌落接种于含有amp的lb培养基中37℃、180r/min摇床培养10~12小时。

5.3阳性克隆子检测

以所得菌液为模板进行pcr扩增,引物序列(参见pmd18-tvector说明书)、反应体系及扩增条件分别如表5和表6所示,产物用1%的琼脂糖电泳检测。

表5重组子pcr检测所使用的引物序列

表6重组子pcr检测的反应体系和反应程序

5.416srdna序列分析

将得到的阳性克隆送往上海生工(sangonbiotech)生物工程股份有限公司进行测序,用bioedit7.09软件分析测序结果,截除引物序列,将获得的序列结果提交到genbank数据库获得登录号,通过blastn程序(http://www.ncbi.nlm.nih.gov/)进行在线分析,下载相似性大于90%的模式菌株的序列,并用clustalx软件进行多重序列比对,然后采用软件mega5.03中的neighbor-joining构建系统发育树,确定菌株的种属关系。

6、菌株16srdna序列鉴定结果

6.1、16srdna序列pcr扩增

16srdna序列pcr扩增产物以1%琼脂糖凝胶电泳检查,结果如图2所示。菌株m2的16srdna基因片段长度约为1500bp。

6.2、pcr产物回收

对6.1中的16srdna序列pcr扩增产物以1.5%琼脂糖凝胶进行电泳,电泳条带以dna胶回收试剂盒回收。pcr产物回收电泳图谱如图3所示,根据条带亮度可知,本实验已成功回收到足量的纯化pcr产物,可用于后续试验进行。

6.3、阳性克隆子筛选

将纯化后的16srdnapcr扩增产物与t载体连接,转化至大肠杆菌感受态细胞,以所得菌体为模板进行pcr扩增,结果如图4所示,已获得具有重组质粒的阳性克隆子。

6.4、16srdna核苷酸序列测定

各菌株的16srdna核苷酸序列测定结果见序列表1,各菌株的系统发育树如图5所示。结合形态学及生理生化鉴定结果,确定各菌株的种属,结果见表7。

表7菌株的种属

7、菌株的最佳培养条件

以ph、温度、氮源、培养时间、转速五个试验因素,按正交表l18(35)设计正交试验,以确定木质素降解菌的最佳培养条件如表8所示。

表8正交试验试验因素与水平

菌株m2正交试验结果,见表9。

表9菌株m2正交试验结果

通过形态学鉴定、生理生化鉴定和16srdna分子鉴定,确定上述筛选的菌株为芽孢杆菌(bacillussp.)芽孢杆菌m2。

通过正交实验表所得结果得出木质素降解菌株m2生长的最佳培养条件为ph4.5,温度30℃,氮源为酒石酸铵,时间为2d,转速为180r/min。

具体实施方式二:本实施方式的一株木质纤维素类物质高效降解菌m2的应用,它用于降解农业废弃物,尤其是用于降解袋料木耳肥料和玉米秸秆中的木质纤维素类物质。

对本发明的菌株进行以下功能检测:

将具体实施方式的芽孢杆菌(bacillussp.)m2,进行袋料木耳废料与玉米秸秆失重率和木质素、纤维素和半纤维素降解测定,以验证其特有的功能。具体如下:

1、袋料木耳废料与玉米秸秆失重率测定

1.1玉米秸秆粉

玉米秸秆于2012年10月取自黑龙江省哈尔滨市黑龙江大学呼兰校区本实验室试验田,烘干,粉碎过40目筛,备用。

1.2袋料木耳废料

袋料木耳废料由黑龙江省农科院牡丹江分院提供。

1.3对照菌剂

中农绿康(北京)生物技术有限公司于2011年10月27日生产的“有机物料腐熟剂(秸杆型)”。

1.4培养基

液体发酵培养基:葡萄糖5g,蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

摇瓶发酵基础培养基:蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02g,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

1.5试验方法

1.5.1袋料木耳废料失重率测定

将具体实施方式一筛选得到的芽孢杆菌(bacillussp.)m2接种到5ml液体发酵培养基中,37℃180r/min振荡培养12h,离心,弃上清获得菌体。取500μl摇瓶发酵基础培养基使菌体悬浮,将菌悬液接入含有5%袋料木耳废料的摇瓶发酵基础培养基中,其中袋料木耳废料使用间歇灭菌法灭菌,121℃湿热灭菌30min,37℃180r/min振荡培养30d后,离心,用去离子水洗涤沉淀,重复洗涤三次后,烘干称重,用减量法计算袋料木耳废料失重率,将所得数据通过spss19.0软件分析,利用duncan法进行多重比较,结果以标记字母法标明各菌株的显著差异性。设置五组空白对照组和五组阳性对照组,即空白对照组不接菌种,阳性对照组接入5%的对照菌剂,其他操作均与上述操作相同。

失重率计算公式如下:

1.5.2玉米秸秆失重率测定

将具体实施方式一筛选得到的芽孢杆菌(bacillussp.)m2接种到5ml液体发酵培养基中,37℃180r/min振荡培养12h,离心,弃上清获得菌体。取500μl摇瓶发酵基础培养基使菌体悬浮,将菌悬液接入含有5%玉米秸秆粉的摇瓶发酵基础培养基中,其中玉米秸秆粉使用间歇灭菌法灭菌,121℃湿热灭菌30min,37℃180r/min振荡培养30d后,离心,用去离子水洗涤沉淀,重复洗涤三次后,烘干称重,用减量法计算玉米秸秆失重率,将所得数据通过spss19.0软件分析,利用duncan法进行多重比较,结果以标记字母法标明各菌株的显著差异性。设置五组空白对照组和五组阳性对照组,即空白对照组不接菌种,阳性对照组接入5%复合微生物菌剂,其他操作均与上述操作相同。

失重率计算公式如下:

1.6结果与分析

1.6.1袋料木耳废料失重率测定

菌株m2降解袋料木耳废料后,失重率测定结果如表10和图6所示。

表10菌株m2的袋料木耳废料失重率

注:袋料木耳废料和玉米秸秆经30d液体发酵后的失重率。空白对照组不接入菌种,阳性对照组接入5%中农绿康(北京)生物技术有限公司生产的复合微生物菌剂。采用duncan法进行多重比较。显著性水平p=0.05以小写字母表示,n=3。

由表10和图6可知,培养30d后,经芽孢杆菌(bacillussp.)m2发酵后,袋料木耳废料的失重率为35.09±0.75%;空白对照组袋料木耳废料失重率为21.60%±0.82%;阳性对照组袋料木耳废料失重率为38.53±0.87%。经芽孢杆菌(bacillussp.)m2降解后袋料木耳废料的失重率大于空白对照组,小于阳性对照组。按照显著水平p=0.05分析,经芽孢杆菌(bacillussp.)m2发酵处理袋料木耳废料的失重率与空白对照组的袋料木耳废料失重率相比差异显著,与阳性对照组的袋料木耳废料失重率相比差异显著。芽孢杆菌(bacillussp.)m2对袋料木耳废料具有很强的降解能力。经芽孢杆菌(bacillussp.)m2发酵处理后的袋料木耳废料的失重率在35%以上。

1.6.2玉米秸秆失重率测定

菌株m2降解玉米秸秆后,失重率测定结果如表10和图7所示。

由表10和图7可知,培养30d后,经芽孢杆菌(bacillussp.)m2发酵后,玉米秸秆的失重率为30.84±0.54%;空白对照组玉米秸秆失重率为25.80%±0.63%;阳性对照组玉米秸秆失重率为44.81%±1.02%。经芽孢杆菌(bacillussp.)m2降解后玉米秸秆的失重率大于空白对照组,小于阳性对照组。按照显著水平p=0.05分析,经芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆失重率与空白对照组的玉米秸秆失重率相比差异不显著,与阳性对照组的玉米秸秆失重率相比差异显著。芽孢杆菌(bacillussp.)m2对玉米秸秆的具有较强的的降解能力。经芽孢杆菌(bacillussp.)m2发酵处理后的玉米秸秆的失重率在30%以上。

1.7结论

经具体实施方式一筛选出的芽孢杆菌(bacillussp.)m2对袋料木耳废料和玉米秸秆具有明显的降解效果。经芽孢杆菌(bacillussp.)m2发酵处理后的袋料木耳废料的失重率在35%以上;经芽孢杆菌(bacillussp.)m2发酵处理后的玉米秸秆的失重率在30%以上。芽孢杆菌(bacillussp.)m2对袋料木耳废料强于阳性对照组中复合微生物菌剂对袋料木耳废料的降解能力。经芽孢杆菌(bacillussp.)m2降解后袋料木耳废料和玉米秸秆的失重率均大于空白对照组的袋料木耳废料和玉米秸秆的失重率;其中,芽孢杆菌(bacillussp.)m2发酵处理的袋料木耳废料的失重率大于阳性对照组袋料木耳废料失重率。

芽孢杆菌(bacillussp.)m2对木质纤维素类物质的降解效果与菌株生长情况和样品成分有很大关系,袋料木耳废料和玉米秸秆采用范氏(vansoest)洗涤纤维分析法测定后,玉米秸秆和袋料木耳废料中的各组分含量见表11,袋料木耳废料和玉米秸秆中的木质素、纤维素和半纤维素的含量均明显不同。同一菌株对袋料木耳废料和玉米秸秆具有不同的降解效果,原因是由于袋料木耳废料和玉米秸秆中木质素和纤维素的含量不同影响菌株的生长和繁殖,导致菌株生长情况不同,酶的分泌能力存在差异,进而导致菌株对降解产物的利用能力不同,影响其降解能力。

表11袋料木耳废料和玉米秸秆各组分含量

2、木质素、纤维素和半纤维素降解情况测定

2.1培养基配制:

液体发酵培养基:葡萄糖5g,蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02g,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

摇瓶发酵基础培养基:蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

玉米秸秆于2012年10月取自黑龙江省哈尔滨市黑龙江大学呼兰校区本实验室试验田,烘干,粉碎过40目筛,备用。

2.2液体发酵

将具体实施方式一的芽孢杆菌(bacillussp.)m2接种到液体发酵培养基中制成od600=0.5的菌悬液,然后以5%(ml/ml)接种量将菌液接入含有7.5%玉米秸秆粉的摇瓶发酵基础培养基中,玉米秸秆粉使用间歇灭菌法灭菌,121℃湿热灭菌30min,设三次重复,37℃180r/min振荡培养30d,采用冷冻真空干燥法进行干燥。设置一组空白对照组和一组阳性对照组,即空白对照组不接菌种,阳性对照组接入5%(g/ml)菌剂,其他操作均与上述操作相同。

2.3木质素、纤维素和半纤维素降解情况测定

木质纤维素各组分含量采用范氏(vansoest)洗涤纤维分析法进行测定。详细过程如下:

2.3.1、中性洗涤纤维(ndf)测定

将fibercap样品杯于105℃烘箱干燥30min,取出转移到干燥器内,冷却至5min后,称重(即为w1)。准确称取2.000g(即为w2)液体发酵后的样品置于fibercap样品杯中,将样品杯放入浸提烧杯,加入400ml中性洗涤剂和1ml十氢化萘及2g无水亚硫酸钠。将烧杯套上冷凝装后置于加热板上,煮沸10min,持续微沸60min。煮沸完毕后,用新鲜的热水重复洗涤三次。将样品杯放入烘箱中130℃烘干2h后,在干燥器中冷却至室温,称重(即为w3)。

2.3.2、酸性洗涤纤维(adf)测定

将上述烘干称重后含有中性洗涤纤维的fibercap样品杯置于浸提烧杯中,加入100ml酸性洗涤剂和1ml十氢化萘及2g无水亚硫酸钠。将烧杯套上冷凝装后置于加热板上,煮沸10min,持续微沸60min。煮沸完毕后,用新鲜的热水重复洗涤三次。将样品杯放入烘箱中130℃烘干2h后,在干燥器中冷却至室温,称重(即为w4)。

2.3.3、酸性洗涤木质素(adl)测定

将上述烘干称重后含有中性洗涤纤维的fibercap样品杯置于浸提烧杯中,加入72%硫酸,20℃消化3h后过滤,用新鲜的热水重复洗涤三次。将样品杯放入烘箱中130℃烘干2h后,在干燥器中冷却至室温,称重(即为w5)。

2.3.4、酸不溶灰分(aia)测定

将样品杯置于预干燥并称重(w6)的灰化坩埚(45×60mm)中,在马弗炉中600℃灰化4h。待坩埚缓慢冷却至大约200℃时,取出放于干燥器;冷却至室温后称重(w6)。

将所得数据通过spss19.0软件分析,利用duncan法进行多重比较,结果以标记字母法标明各菌株的显著差异性。各计算公式如下:

中性洗涤纤维(ndf)含量:

ndf(%)=(w3-w1)/w2×100%;

酸性洗涤纤维(adf)含量:

adf(%)=(w4-w3)/w2×100%;

酸性洗涤木质素(adl)含量:

adl(%)=w5/w2×100%;

半纤维素(hemicellulose)含量:

hemicellulose(%)=ndf(%)-adf(%);

纤维素(cellulose)含量:

cellulose(%)=adf(%)-w5/w2×100%;

木质素(lignin)含量:

lignin(%)=w5/w2×100%-w6/w2×100%;

2.4结果与分析

2.4.1木质素、纤维素和半纤维素含量测定

玉米秸秆经菌株发酵处理30d后,纤维素、半纤维素和木质素含量测定结果如表12和图8所示。

表12菌株降解后玉米秸秆中各组分平均含量

注:空白对照组不接入菌种,阳性对照组接入5%中农绿康(北京)生物技术有限公司生产的复合微生物菌剂。采用duncan法进行多重比较。显著性水平p=0.01和p=0.05分别以大小写字母表示,n=3。

由表12和图8可知,玉米秸秆经芽孢杆菌(bacillussp.)m2发酵处理30d后,木质素含量为4.25±0.04%,均远远小于空白对照组和阳性对照组中玉米秸秆木质素含量;以显著水平p=0.05分析,克雷伯氏菌(bacillussp.)m1发酵处理的玉米秸秆中木质素含量与空白对照组玉米秸秆中木质素含量比较差异显著,与阳性对照组玉米秸秆中木质素含量比较差异显著;以显著水平p=0.01分析,克雷伯氏菌(bacillussp.)m1发酵处理的玉米秸秆中木质素含量与空白对照组玉米秸秆中木质素含量比较差异显著,与阳性对照玉米秸秆组中木质素含量比较差异显著;说明芽孢杆菌(bacillussp.)m2可以高效降解木质素。

玉米秸秆经液体发酵30d后,纤维素含量为30.25±0.72%,小于空白对照组中玉米秸秆纤维素含量,大于阳性对照组中玉米秸秆纤维素含量;以显著水平p=0.05分析,芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中纤维素含量与空白对照组玉米秸秆中纤维素含量比较差异不显著,与阳性对照组中玉米秸秆纤维素含量比较差异不显著;以显著水平p=0.01分析,芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中纤维素含量与空白对照组中玉米秸秆的纤维素含量比较差异不显著,与阳性对照组中玉米秸秆的纤维素含量比较差异不显著;说明芽孢杆菌(bacillussp.)m2不能降解纤维素。

玉米秸秆经液体发酵30d后,半纤维素含量为27.98±0.70%,大于空白对照组中玉米秸秆半纤维素含量和阳性对照组中玉米秸秆半纤维素含量;以显著水平p=0.05分析,芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中半纤维素含量与空白对照组玉米秸秆中半纤维素含量比较差异不显著,与阳性对照组玉米秸秆中半纤维素含量比较差异显著;以显著水平p=0.01分析,芽孢杆菌(bacillussp.)m2发酵处理玉米秸秆中的半纤维素含量与空白对照组玉米秸秆中半纤维素含量比较差异不显著,与阳性对照组玉米秸秆中半纤维素含量比较差异不显著;说明芽孢杆菌(bacillussp.)m2不能降解半纤维素。

芽孢杆菌(bacillussp.)m2具有木质素降解能力,可以高效降解木质素。作为单一菌株芽孢杆菌(bacillussp.)m2对木质素的降解能力强于复合微生物菌剂,经复合微生物菌剂发酵处理的玉米秸秆中木质素含量是经芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中木质素含量的2.8倍。

2.5结论

经具体实施方式一筛选出的芽孢杆菌(bacillussp.)m2具有木质素降解能力,可以高效降解木质素。经复合微生物菌剂发酵处理的玉米秸秆中木质素含量是经芽孢杆菌(bacillussp.)m2发酵处理的玉米秸秆中木质素含量的2.8倍,作为单一菌株芽孢杆菌(bacillussp.)m2对木质素的降解能力强于复合微生物菌剂。

3、全氮、全磷、全钾、速效磷和速效钾测定

3.1、材料与试剂

3.1.1、培养基

液体发酵培养基:葡萄糖5g,蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02g,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

摇瓶发酵基础培养基:蛋白胨2g,nh4no31.0g,cacl20.2g,k2hpo40.5g,fecl30.02,mgso4·7h2o0.5g,nacl1.0g,蒸馏水1000ml,ph7.0。

3.1.2、玉米秸秆粉

玉米秸秆于2012年10月取自黑龙江省哈尔滨市黑龙江大学呼兰校区本实验室试验田,烘干,粉碎过40目筛,备用。

3.2、试验方法

3.2.1、液体发酵

将具体实施方式一筛选出的芽孢杆菌(bacillussp.)m2接种到液体发酵培养基中制成od600=0.5的菌悬液,然后以5%(ml/ml)接种量将菌液接入含有7.5%玉米秸秆粉的摇瓶发酵基础培养基中,玉米秸秆粉使用间歇灭菌法灭菌,121℃湿热灭菌30min,每个菌株设三次重复,37℃180r/min振荡培养30d,采用冷冻真空干燥法进行干燥。设置一组空白对照组和一组阳性对照组,即空白对照组不接菌种,阳性对照组接入5%(g/ml)菌剂,其他操作均与上述操作相同。

3.2.2、试样溶液制备

试样溶液参照中华人民共和国农业行业标准ny525-2012进行,但有所改进。

精确称取3.2.1中冷冻干燥后的试样0.5g(精确至0.001g),置于凯氏烧瓶底部,用少量水冲洗沾附在瓶壁上的试样,加5ml硫酸和1.5ml过氧化氢,小心摇匀,瓶口放以弯颈小漏斗,放置过夜,在可调电炉上缓慢升温至硫酸冒烟,取下,少冷加15滴过氧化氢,轻轻摇动凯氏烧瓶,加热10min,取下,稍冷后在家5滴~10滴过氧化氢并分次消煮,直至溶液呈无色或淡黄色清液后,继续加热10min,除尽剩余的过氧化氢。取下稍冷,小心加水至30ml,加热至沸腾。取下冷却,用少量水冲洗弯颈小漏斗,洗液放入原凯氏烧瓶中,将消煮液移入100ml容量瓶中,加水定容,用无磷滤纸过滤到干燥的蓝盖试剂瓶中,备用。设置三组空白对照组,除不加试样外,其他操作与上述操作相同。

3.2.3、全氮测定

全氮测定方法参照中华人民共和国农业行业标准ny525-2012和ny/t297-1995进行,但有所改进。

吸取3.2.2中制备的消煮清液10ml于50ml容量瓶中,加入2ml硼酸和200μl混合指示剂混合液,加水定容至50ml。利用凯氏定氮仪进行蒸馏,用硫酸标准溶液滴定馏出液,由蓝色变至紫红色为终点,记录消耗硫酸标准液体积(ml)。空白测定所消耗硫酸标准液体积不得超过0.1ml,否则重新测定。全氮(n)含量以g/kg表示,按下述公式计算:

式中:

v——试液滴定消耗硫酸标准溶液的体积,ml;

v0——空白滴定消耗硫酸标准溶液的体积,ml;

c——硫酸标准溶液的浓度,mol/l;

0.014——与1.00ml硫酸(1/2h2so4)标准溶液相当的以克表示的氮的质量;

d——分取倍数,定容体积/分取体积,100/10;

m——称取试样质量,g;

1000——换算成每千克试样的含量。

3.2.4、全磷测定

全磷测定方法参照中华人民共和国农业行业标准ny525-2012和ny/t298-1995进行,但有所改进。

吸取磷标准溶液0、1.00、2.00、3.00、4.00、5.00、6.00ml分别置于7个50ml容量瓶中,加入与吸取试样溶液等体积的空白溶液,加水至30ml,加400μl2,6-二硝基酚指示剂溶液,用氢氧化钠溶液和硫酸溶液调节溶液刚呈微黄色,加10.0ml钒钼酸铵试剂,摇匀,用水定容至50ml。此溶液为1ml含磷(p)0、1.00、2.00、3.00、4.00、5.00、6.00μg的标准溶液系列。在室温15℃以上条件下放置20min后,在分光光度计波长440nm处用2cm光径比色皿,以空白溶液调节仪器零点,进行比色,读取吸光度,根据磷浓度和吸光度绘制标准曲线,求出直线回归方程。吸取3.2.2中制备的消煮清液10ml于50ml容量瓶中,加水至30ml,与标准溶液系列同条件显色、比色,读取吸光度。全磷含量以g/kg表示,按下述公式计算:

式中:

c——由回归方程求得显色液磷浓度,μg/ml;

v——显色体积,50ml;

d——分取倍数,定容体积/分取体积,100/10;

m——称取试样质量,g;

10-3——将μg/g换算成g/kg的因数。

3.2.5、全钾测定

全钾测定方法参照中华人民共和国农业行业标准ny525-2012和ny/t299-1995进行,但有所改进。

吸取钾标准溶液0、2.50、5.00、7.50、10.00ml分别置于5个50ml容量瓶中,加入与吸取试样溶液等体积的空白对照溶液,用水定容,此溶液为1ml含钾(k)0、5.00、10.00、15.00、20.00μg的标准溶液系列。在火焰光度计上,以空白溶液调节仪器零点,以标准溶液系列中最高浓度的标准溶液调节满值至80分度出。再依次由低浓度至高浓度测量其他标准溶液,记录仪器示值。根据钾浓度和仪器示值绘制校准曲线或求出直线回归方程。吸取3.2.2中制备的消煮清液5.00ml于50ml容量瓶中,用水定容。与标准溶液系列同条件在火焰光度计上侧定,记录仪器示值。每测量5个样品后需用钾标准溶液校正仪器。全钾含量以g/kg表示,按下述公式计算:

式中:

c——由回归方程求得测定液浓度,μg/ml;

v——测定体积,本操作为50ml;

d——分取倍数,定容体积/分取体积,100/5;

m——称取试样质量,g;

10-3——由μg/g换算为g/kg的因数。

3.2.6、速效磷测定

全钾测定方法参照中华人民共和国农业行业标准ny/t300-1995进行,但有所改进。

精确称取3.2.1中冷冻干燥后的试样1.00g置于50ml三角瓶内,加入20ml25℃的柠檬酸溶液,加塞,在25℃下振荡30min,用无磷滤纸过滤至干燥的蓝盖试剂瓶中,备用。设置三组空白对照组,除不加试样外,其他操作与上述操作相同。测定方法与3.2.4相同。速效磷含量以mg/kg表示,按下述公式计算:

式中:

c——由回归方程求得显色液磷浓度,μg/ml;

v——显色体积,50ml;

d——分取倍数,试样提取液体积/分取体积,20/5;

m——称取试样质量,g。

3.2.7、速效钾测定

精确称取3.2.1中冷冻干燥后的试样1.00g置于50ml三角瓶内,加入10ml硝酸溶液,插上小漏斗,在电炉上微沸10min,趁热过滤于50ml容量瓶中,用热水洗涤5次,冷却后定容。设置三组空白对照组,除不加试样外,其他操作与上述操作相同。测定方法与3.2.5中相同。速效钾含量以mg/kg表示,按下述公式计算:

式中:

c——由回归方程求得测定液钾浓度,μg/ml;

v——测定体积,50ml;

m——称取试样质量,g。

3.3、结果与分析

3.3.1、全氮、全磷、全钾、速效磷和速效钾含量测定

玉米秸秆经菌株液体发酵处理30d后,进行全氮、全磷、全钾、速效磷和速效钾测定,结果如表13和图9~图11所示。玉米秸秆经过液体发酵后,按照差异显著性水平p=0.05和p=0.01分析,芽孢杆菌(bacillussp.)m2发酵处理组的全氮、全磷、全钾、速效磷和速效钾含量与空白对照组相比均差异不显著。因此,菌株对玉米秸秆进行降解时不会影响其中的主要元素含量,试样依旧保存原有肥效。

表13发酵处理后玉米秸秆中主要元素含量

注:空白对照组不接入菌种。采用duncan法进行多重比较。显著性水平p=0.01和p=0.05分别以大小写字母表示,n=3。

3.4结论

芽孢杆菌(bacillussp.)m2对玉米秸秆液体发酵处理30d后,试样中的全氮、全磷、全钾、速效磷和速效钾含量均无明显变化。芽孢杆菌(bacillussp.)m2在降解样品时,不会引起样品中的主要元素含量,不会导致试样中的全氮、全磷、全钾、速效磷和速效钾含量变化,样品依旧保存原有肥效。

序列表

<110>北京德瑞丰农业科技有限责任公司

<120>芽孢杆菌m2降解农业废弃物的用途

<141>2018-11-16

<160>3

<170>siposequencelisting1.0

<210>1

<211>1509

<212>dna

<213>芽孢杆菌(bacillussp.)

<400>1

agagtttgatcctggctcaggatgaacgctggcggcgtgcctaatacatgcaagtcgagc60

gaatggattaagagcttgctcttatgaagttagcggcggacgggtgagtaacacgtgggt120

aacctgcccataagactgggataactccgggaaaccggggctaataccggataacatttt180

gaaccgcatggttcgaaattgaaaggcggcttcggctgtcacttatggatggacccgcgt240

cgcattagctagttggtgaggtaacggctcaccaaggcaacgatgcgtagccgacctgag300

agggtgatcggccacactgggactgagacacggcccagactcctacgggaggcagcagta360

gggaatcttccgcaatggacgaaagtctgacggagcaacgccgcgtgagtgatgaaggct420

ttcgggtcgtaaaactctgttgttagggaagaacaagtgctagttgaataagctggcacc480

ttgacggtacctaaccagaaagccacggctaactacgtgccagcagccgcggtaatacgt540

aggtggcaagcgttatccggaattattgggcgtaaagcgcgcgcaggtggtttcttaagt600

ctgatgtgaaagcccacggctcaaccgtggagggtcattggaaactgggagacttgagtg660

cagaagaggaaagtggaattccatgtgtagcggtgaaatgcgtagagatatggaggaaca720

ccagtggcgaaggcgactttctggtctgtaactgacactgaggcgcgaaagcgtggggag780

caaacaggattagataccctggtagtccacgccgtaaacgatgagtgctaagtgttagag840

ggtttccgccctttagtgctgaagttaacgcattaagcactccgcctggggagtacggcc900

gcaaggctgaaactcaaaggaattgacgggggcccgcacaagcggtggagcatgtggttt960

aattcgaagcaacgcgaagaaccttaccaggtcttgacatcctctgacaaccctagagat1020

agggcttctccttcgggagcagagtgacaggtggtgcatggttgtcgtcagctcgtgtcg1080

tgagatgttgggttaagtcccgcaacgagcgcaacccttgatcttagttgccatcattta1140

gttgggcactctaaggtgactgccggtgacaaaccggaggaaggtggggatgacgtcaaa1200

tcatcatgccccttatgacctgggctacacacgtgctacaatggacggtacaaagagctg1260

caagaccgcgaggtggagctaatctcataaaaccgttctcagttcggattgtaggctgca1320

actcgcctacatgaagctggaatcgctagtaatcgcggatcagcatgccgcggtgaatac1380

gttcccgggccttgtacacaccgcccgtcacaccacgagagtttgtaacacccgaagtcg1440

gtggggtaacctttttggagccagccgcctaaggtgggacagatgattggggtgaagtcg1500

taaaaggta1509

<210>2

<211>24

<212>dna

<213>人工序列()

<220>

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1