用于分离多组分流体的装置的制作方法

文档序号:4916222阅读:202来源:国知局
专利名称:用于分离多组分流体的装置的制作方法
技术领域
本发明涉及用于分离多组分流体的装置,特别涉及用于分离和清除气体中的固体颗粒,如泥沙、尘埃、泡沫、烟雾及其它机械杂质等的装置。
现有技术中,各式各样的用于分离和清除气流中的固体颗粒(如灰尘)的装置已为人们所知。例如,沉降室,利用重力作用使最大的固体颗粒(泥沙)在其中沉降;旋风分离器和惯性集尘器,其利用改变气体流向而产生的离心和惯性效应;工业过滤器(也叫囊式收尘器),使带尘埃的气体通过其中的棉布、纸层、玻璃纤维、金属丝网等;静电沉淀器(电过滤器),先让颗粒在高压电场中带电,然后漂移并沉积到一个电极上。还有其它装置,如湿洗器,尘埃颗粒在其中先与液体接触,然后将其除去。
当某一特定系统不能提供所需的清除程度时,可采用多于一种以上的上述方法的设备操作(例如,旋风分离器可与纤维过滤器相结合)。
除尘器的主要特性之一是其重量清除效率η,通常定义为相同时间间隔情况下收集到的尘埃的重量与进入的尘埃的重量之比。清除率可用一个η≤1的数(在大多数下,下面将采用此法)来表示,或乘以100,以百分数表示。
分级效率表示重量效率随颗粒大小d的变化函数,提供了除尘器装置更详细的表征。分级效率可用一个表达式表达,或表示为粒度范围内一系列连续的狭窄粒度范围的重量效率曲线η(d)(W.Strauss,“Industrial Gas Cleaning”,Pergamon Press,1966)。
通常,颗粒越小,其分离越难。对应地,在粒度范围内的分级效率曲线η(d)就不是常数,而是倾向于随颗粒粒度的减小而迅速下降。当粒度趋于零时,清除效率也趋于零。因此,在表征各种除尘装置时,重要的问题是哪种粒度大小分级效率开始明显下降。例如,对于典型的重力沉降室,分级效率曲线在80~100μm范围内开始下降,在50μm粒度附近时效率可能达到η=0.8(80%)(Strauss,supra)。
如果把清除效率80%作为区分有用装置(η>80%)和非有用装置(η<80%)的合理标准(有点任意性),发现只有电过滤器、布过滤器、一些湿洗器及特殊的小径旋风分离器可以以≥80%的效率分离小于10μm大小的颗粒(Strauss,supra;“High-Efficiency Air Filtration”,edited by P.A.F.White and S.E.Smith,Butterworths,London,1964)。
另一个可影响装置清除效率的参数是装置入口处气体中的尘埃浓度或尘埃密度,以g/m3计。
再一个与除尘装置的操作有关的、并且对清除效率有重大影响的重要参数是通过装置的平均气体速度。现有的尘埃分离装置是依据其操作原理在不同的气体流速下操作的。例如,电过滤器在极少超过2m/s的相对较低的气体流速下操作,而惯性尘埃分离器却在速度在10至30m/s的范围内工作。较高的流速通常是所需求的,因为它隐示着较大的装置通量(气体流速和气体流过装置的截面积的积);对于一个给定的需求能量,允许通过的气速越高,其装置的尺寸就越小。
然而,当气体流速超过某种优化值时(根据所用装置的形式而定),清除效率开始下降,有时甚至很厉害。例如,惯性分离器中,当气体流速大于30m/s时,由于存在强涡流,就会发生这种清除效率下降现象。在实际应用的这种装置中,有用的气速范围通常很窄,例如,在η为最大值的优化速度值的±20%范围内。
当两种或多种(通常情况,n)、各自的清除效率分别为η1,η2,…,ηn的装置串联操作,上游装置净化过的气体进入邻接的下游装置时,n个装置的总清除效率可直接地表示为E=η1+(1-η1)η2+(1-η1)(1-η2)η3+…+(1-η1)(1-η2)…(1-ηn-1)ηn(1)η采用比单位1小的数,而不是采用百分数。例如,对于以串联形式相联的、各自效率分别为η1和η2的两个分离器,E=η1+(1-η1)η2(2)
对于所述的分级效率η(d)和尘埃密度的关系,很明显式(1)和式(2)必须慎重使用。实际上,串联的第一个装置趋向于主要分离较大的颗粒,给下级装置提供部分净化过的气体,这种气体具有(a)较小的尘埃密度和(b)平均粒度分布通常比进入第一个装置的平均粒度分布更小。粒度分布的这种变动是分级曲线η(d)非恒定的一种直接原因,它实际上限制了采用多级串联清除装置所能达到的除尘程度。因此,式(1)和(2)中的η值应当理解为进入各个除尘装置入口的载尘气体的相应特性。实际应用中,这些值通过实验而获得。
在η(d)变得不是太小的粒度范围内,串联连接多个装置是提高系统总清除效率的有效方法之一。例如,对式(2),如果η1=0.7,η2=0.6,则可求出E=0.88(88%)。
很明显,粒径很小时还具有几乎平坦的η(d)的装置对于以串联形式连接来高度纯化气流特别有用。
正如那些在多组分流体(即气/固)分离领域内的普通技术人员所知道的那样,其优选的技术包括上述已为众人所知的惯性分离器或动量分离器装置类,它们通过利用迅速改变气体的流动方向和降低其速度除去气体中的固体颗粒。固体颗粒因其惯性将继续沿起始气流相同的方向运动,最终沉积入一个收集漏斗。较重(大)的颗粒具有较大的惯性,因此比倾向于清洁过的气流一道逃逸的较轻(小)的颗粒更易清除。
这些装置中的一些建造为能提供一定量的、与气流方向成锐角的固体(通常为金属)表面的那种形式。提供表面的目的是使原先与主气流同向运动的固体颗粒发生偏移,因此有助于在致偏的那边浓缩固体颗粒,而净化过的气体则通过致偏体之间的间隙而逃逸。
这样的装置为百叶窗形集收器(Strauss,Supra;C.J.Stairmand,Trans.Inst.Chem.Eng.(London),29,356(1951)),它有时用于旋风分离器或滤袋前的预清除。更有效的一种为锥形窗板集收器及其变化形式(Strauss,Supra;K.Kansen,Fifth World Power Conference,vienna,16,5829(1956);E.Haber,美国专利2,034,467和英国专利388,637;H.Van Der Kolk,美国专利2,874,800和英国专利766,279;I.R.W.Johnston,美国专利4,340,474;H.Keller,美国专利3,958,966和4,198,220;K.H.Maden,美国专利4,123,241)。在通用的形式中(比如见Haber专利),它由一系列以锥形形式装配的、直径递减、表面平坦的锥形环构成。表面平坦的锥形环装配于筒形或锥形外壳内,其在轴向上彼此重叠,在相邻的环表面间留有狭窄的间隔。这些环形间隔与气体流向成锐角,气体从具有最大直径的环的部位与其相邻的那端通入外壳并从上到下通过锥形构件。含有较轻颗粒的气体的大部分急速地改变其运动方向,并通过内环间隔而向上逃逸通入到其另一个目的地,而较大的颗粒则继续通过锥形构件而向下移动。与此同时,颗粒不断撞击环表面(在一定时间内导致磨损)并偏移锥形构件的轴向,它们因此也被浓缩并与一部分气体(典型情况为5~7%)通过最小直径的环而除去。
在这种装置的一种变形中(参见Van Der Kolk的专利),一个锥形的单件构件由螺旋状环绕的长方形成平行四边形截面的线构成,内线表面整齐地与锥体轴成倾斜,起到与先前所述装置中平板锥形环相同的作用。
上述已知的锥形惯性集尘器的优点在于其设计的简单性和紧凑性,没有运动部件、相对较低的气流阻力,和相对较高的装置气体通过速度(即高通量)以及其清除效率随输入尘埃密度的变化不是很大。(Strauss,Supra;Hasen,Supra)。这些装置的缺点是他们不能有效地除去粒径小于20~30μm的颗粒和相对较大量的没有与固体颗粒分离的气体,它必须再通过下游旋风除尘器除去(Strauss,Supra)。那就是为什么锥形惯性集尘主要用作预清除装置除去较粗颗粒的原因。
锥形惯性集尘器的另一缺点是固体颗粒不断地碰击锥形环,在某些情况下导致相对较快的磨蚀和磨损,需要经常维修,包括换坏,进而必须导致系统停工。
具有更复杂、曲线颗粒偏移元件的惯性分离器也已为人们所知。例如Johnson专利描述了一个具有轴向非重叠环的一种更复杂形状的锥形装置。这种装置其内部向内弯曲,具有一个直切面和为使固体颗粒偏向于锥形体的轴的凸出部分。据称,其对平均粒度为20~30μ的颗粒的清除率大约为80%。然而,未提供详细的分级效率。
在另一种装置中(见Keller专利),气流直接与锥形分离器的尖端相反,即到从最窄端到最宽端(因此与上述锥形惯性分离器倒置),各个分离器元件或环彼此重叠,其切面为锐角三角形。其想法是如前那样为固体颗粒提供偏移面,只是在倒立的几何构件中,浓缩的颗粒从锥形构件的外部移向锥形体的较宽的底面,而净化过的气体逃逸到锥形体的内部空间。
采用复合环形状,在环间形成曲线状的槽道,槽道用作提供部分净化过的气流的逃逸通道。由此形成的通道通向锥形构件的内部。这种特征旨在帮助防止装置阻塞。然而,也没有提供实验数据。此外,还应注意,此装置主要意在从蒸汽中分离固体颗粒,这可能是特别强调阻塞问题的理由。
与其有点相似的装置在Maden的专利中也有描述。其中,一套或两套颗粒偏移器或“叶片”位于从与流动方向正交的切面看去成环形、长方形、或细长形的中空体中。正如Keller专利中所述的那样,从横截面看,叶片具有复合的、曲线的、细长的三角形。它们在构件中的位置,使得其能为进来的固体颗粒提供偏移面(优选的颗粒偏移角为相对于装置的轴34°),也保护他们之间的通道免遭进入颗粒的直接的打击。由于其惯性作用,固体颗粒(至少较大的颗粒)不能通过叶片,而是继续移向逐渐变窄的装置,而净化过的气体则在叶片之间通过,穿过由上游叶片的重叠后缘面的每种情况所确定的弯曲通道和下一个相连接的下游叶片的长背面。由于每个叶片的后缘面的凹形形状,也正如Keller专利中的情形那样,通道开向叶片系统和装置体之间的外部空间。此外,相邻叶片之间的通道具有可变动的形状。在装置的出口端,通道变得越来越弯曲。据称这种装置可达到高至89.7%的清除效率,只不过在专利中未指出试验采用了何种尘埃,甚至未提供平均粒度,且约10%的气体通过装置出口与浓缩的尘埃一道损失掉。
本发明的主要目的是提供一种从多组分流体中以比已知这类装置高得多的清除效率分离包括颗粒粒径小于1μm的固体颗粒的装置。
本发明的一个重要目的是提供一种分级效率不是主要依赖于流体中粒度及其分布的那种装置。
本发明的另一重要目的是提供一种可在高清除效率情况下能在10-100m/s及更高的气体流速范围内操作的装置。
本发明的其他的目的包括提供一种使用寿命长及尺寸小、重量轻的装置,可使用各种构件材料的及减少操中的维修量。
本发明涉及一种用于分离多组分流体、优选用于清除气体中的固体颗粒的装置,所述的装置包括一个截锥体构件,该构件具有一与被分离流体的流向同向延伸的轴,包括一个由多个同轴排列的、彼此轴向隔开的环所形成的锥形主体部分,从被分离的流体的流向看去,其内径逐渐变小,具有最大内径的环设在被分离流体进入所述的锥形构件的锥形主体部分的那一端,具有最小内径的环设在所述的锥形构件的锥形主体部分中被分出的固体颗粒排除的那一端,而且每个所述的环具有(a)一个最高区域;
(b)一个最低区域;
(c)一个内表面,该内表面;
(ⅰ)沿所述锥形构件的轴线的横断面在其径向方向是凸弧,(ⅱ)从此环的所述的最高区域的最高点延伸到其最低区域的最低点,并且(ⅲ)与流经所述的锥形构件的流体的流向部分相反,部分相交;
(d)一个底表面;
(e)一个外表面;
(f)所述的底表面(ⅰ)从所述的内表面的最底端延伸到所述的外表面,(ⅱ)通常是朝向流经所述的锥形构件的流体的流动方向,并且(ⅲ)与所述的内表面在其相交处形成了一锐边,该锐边沿所述的环环绕延伸,并限定了所述的环的内径,该锐边位于所述的锥形构件之内,使得有一条与所述的锥形构件的轴平行并且与一给定的环的锐边相交的线与其下游相邻环的内表面相交,该下游环的锐边的内表面径向朝外;
(g)所述的外表面从所述的底表面延伸到所述的内表面的最高端,以及(h)所述底表面的定向应使得其与所述的内表面的相交处的切线方向和所述的锥形构件的轴线方向的夹角小于90°。其中,所述的每一个环的内表面的弯曲度应使得同一环中的内表面与底表面的相交处的切线与所述的锥形构件的轴线平行。
按照如上所述的装置,其中,每一个所述的环有一个径向宽度,该径向宽度是沿与所述的锥形构件的轴线垂直的方向测量得到的,为该环的锐边到所述的外表面与所述的底表面的交界处之间的垂直距离;一个轴向厚度,该轴向厚度是沿与所述的锥形构件的轴线平行的方向测量得到的,为从所述的锐边所在平面和该环的最高区域所在平面之间的距离;
所述的锥形主体部分有一个轴向高度,该轴向高度是沿与所述的锥形构件的轴线平行的方向测量得到的,为所述的锥形主体部分的最小环的锐边所在平面与最大环所在平面之间的距离;以及所述的环的设置应使得所述的锥形主体部分的每一个上游环与其相邻的下游环之间形成一空隙,该空隙有一轴向高度,该轴向高度是沿与所述的锥形构件的轴平行的方向测量得到的,为该下游环的最高区域所在平面到该上游环的锐边所在平面之间的距离;
所述的环、空隙以及所述的锥形构件的锥形主体部分的尺寸满足下述关系0.5≤w/t≤20.7≤h/t≤310≤Dmax/Dmin≤1005≤H/Dmax≤200.02≤δ/w≤0.8此处,W为环的径向宽度,t为环的轴向厚度,h为间隙的轴向高度,H为锥形主体部分的轴向高度,δ为环的锐边和与其相邻的环的锐边之间的径向距离,Dmax是最大环的内径,Dmin是最小环的内径。
其中,一给定的上游环和与其相邻的下游环之间的间隙的轴向高度与该上游环的厚度相等;其中,所述的所有的环都是等轴向厚度的;其中,所述的所有的都是等径向宽度的;其中,所述的所有的都是等向厚度和等径向宽度的;其中,所述的所有的环的轴向厚度、径向厚度以及所述的相邻环之间的间隙的轴向高度都相互相等。
按照如上所述的装置,其中,在所述的锥形构件的最小环之下部设有一筒形辅助部件,该筒形辅助部件由至少两个附加环所构成,其内径与所述的锥形主体部分的最小环的内径相等。
其中,在所述的锥形主体部分的下部的最后一个附加环上设有一个直径与所述的筒形辅助部件的直径相等的倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环构成。
按照如上所述的装置,其中,在所述的锥形主体部分中,在所述的锥形构件的最小环之下部设有一倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环所构成。
按照如上所述的装置,其中,所述的锥形构件为一单元构件,其形状为具有多个内径逐渐减小的圈形成的螺旋条,该螺旋条的每一个圈形成了所述的锥形构件的一个相应的环,并且具有特定的表面和横截面形状特征。
按照如上所述的装置,进一步包括一个外壳,该外壳有一个入口端和一个出口端,所述的锥形构件被安装在该外壳内,该锥形构件的最大环的一端位于入口附近并环绕外壳的周边内表面被密封,通过最大环,所述的外壳的出口端与锥形构件的锥形主体部分之内部相连通,使得被分离的流体能进入到锥形主体部分中,而所述的外壳的出口端则提供了一排料通道,该通道环绕所述的锥形构件的内部空间部分,使得经过所述的环之间的空隙从所述的锥形构件出来的、已净化的那部分流体能够离开所述的外壳的环绕空间;
一个漏斗,该漏斗有一个延伸到所述的外壳之内、并通过所述的锥形构件的最后一个环与其内部相连通的入口通道,该入口通道也通过所述的最后一个环,该环远离所述的锥形构件的最大环相连通,所述的入口通道使得将经所述的锥形构件从净化的流体中分离出来并经其提浓的固体颗粒,与所有来自所述的锥形构件的未经净化的残余流体排到所述的漏斗中,并将固体收集在该漏斗中。
其中每一个所述的环有一个径向宽度,该径向宽度是沿所述的锥形构件的轴线垂直的方向测量得到的,为该环的锐边到所述的外表面与所述的底表面的交界处之间的垂直距离;一个轴向厚度,该轴向厚度是沿与所述的锥形构件的轴线平行的方向测量得到的,为从所述的锐边到在平面和该环的最高区域所在平面之间的距离;
所述的锥形主体部分有一个轴向高度,该轴向高度是沿与所述的锥形构件的轴线平行的方向测量得到的,为所述的锥形主体部分的最小环的锐边所在平面与最大环所在平面之间的距离;以及所述的环的设置应使得所述的锥形主体部分的每一个上游环与其相邻的下游环之间形成一空隙,该空隙有一轴向高度,该轴向高度是沿与所述的锥形构件的轴平行的方向测量得到的,为该下游环的最高区域所在平面到该上游环的锐边所在平面之间的距离;
所述的环、空隙以及所述的锥形构件的锥形主体部分的尺寸满足下述关系0.5≤w/t≤20.7≤h/t≤310≤Dmax/Dmin≤1005≤H/Dmax≤200.02≤δ/w≤0.8此处,W为环的径向宽度,t为环的轴向厚度,h为间隙的轴向高度,H为锥形主体部分的轴向高度,δ为环的锐边和与其相邻的环的锐边之间的径向距离,Dmax是最大环的内径,Dmin是最小环的内径;
其中,所述的锥形主体部分的最小环是指所述的锥形构件的最后一个环,而且所述的漏斗还具有将所述的漏斗内部排气的设施,使得在所述的漏斗中的、固体颗粒已被沉降析出的流体能排出所述的漏斗,并防止其中的背压的积累;其中所述的排气设施包括一延伸到所述的外壳内部并与环绕所述的锥形件的空间相连接的排气管;
其中,在所述的锥形构件的最小环之下部设有一筒形辅助部件,该环形辅助部件由至少两个附加环所构成,其内径与所述的锥形主体部分的最小环的内径相等,并且所述的漏斗的进口通道与所述的锥形构件上的筒形辅助部件的端部环相连通,该端部环远离所述的锥形主体部分的最小环;其中,在所述的锥形主体部分的下部的最后一个附加环上设有一个直径与所述的筒形辅助部件的直径相等的倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环构成,而且所述的漏斗的进口通道与所述的锥形构件上的倒锥形辅助部件的内径最大的环相连接;
其中,在所述的锥形主体部分的下部的最小环上设有一个倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增加的附加环所构成;所述的漏斗的进口通道与所述的锥形构件的倒锥形辅助部件上的内径最大的环相连接;
其中,所述的锥形构件为一单元构件,其形状为具有多个内径逐渐减小的圈形成的螺旋条,该螺旋条的每一个圈形成了所述的锥形构件的一个相应的环,并且具有特定的表面和横截面形状特征,所述的漏斗的进口通道与所述的锥形构件在其螺的最后一个旋条的最后一个处相连接;该最后一个圈远离该螺旋条的最大的圈。
本发明的目的可用一种分离多组分流体的装置而达到,这种装置优选用于分离气体中的颗粒。所述的装置包括一个中空的截锥形构件,它具有包括多个同轴排列的、内径逐渐变小的环构成的锥形体,安装的环通过其外周而将环垂直地彼此隔开并刚性固定在构件上,例如,将其外周与支柱、桁条、导架等进行多点固定,至少两点,但最好为三点或四点。使用中,锥形主体具有最大内径的环与管道相连,用于向锥形体的内部提供待净化的气流,具有最小内径的环与一个收集被分出的固体颗粒的容器相联。每个环有一个弯曲的内表面,其外形与非对称翼片或飞机机翼的前缘区的上表面相似,该内表面与通过锥形构件的气流方向部分反向、部分横向,还有一个外表面及底表面或后缘面,底表面从内表面延伸到外表面,并通常朝向气流方向。每个环的后缘面与内表面相交于一个锐边,该锐边限定了环的内径。后缘面是这样定向的,使得此处的切线(也可为此表面本身的平面)与气体流动方向形成一个最大不超过90°的角,内表面优选是这样的构型使其与后缘面交接处的切线实际上与锥形构件的轴线相平行。锥形构件的环彼此排成那样的位置,以致于在每个上游环的锐边平面和对应相邻的下游环的最高面或顶面之间形成了一个轴向空间或间隙。
锥形构件优选安装在外壳中,并起到促使紧靠环的气流中的固体颗粒气动地移向锥形构件的轴的作用,以便当气流通过锥形构件时,越来越多的颗粒逐渐浓缩于锥形构件的轴区,而允许净化过的气体通过环间间隙水平地逃逸到外壳内周围区域。被浓缩的颗粒流穿过锥形主体最小直径的环后离开锥形构件并经适当的管道或通路导入接收容器。外壳除了支承锥形构件以外,还起到传递净化过的气体到下一个所要求的地方的作用。外壳优选具有圆柱形或管形的形状,例如可由其内径比锥形构件最大的环的外直径稍大,有效长度与锥形构件相当的长形管件(当然也可选用其它截面形状)。为了方便地把净化过的气体传递到下一个所需要送去的地方,管道的一端可横向弯曲,比如,成90°角,弯曲半径等于或大于管径。
按照本发明,环的轴向高度或厚度及其径向宽度优选为相等,但也可彼此不同,例如,随其厚度下降而环的宽度下降。也可考虑使上游环的锐边面和对应下一个相邻的下游环的顶面之间的间隙保持环与环之间一定,并可使其等于上游环的厚度。
作为一个一般的建议,在一个依据本发明的装置中,可考虑最大环的内径和最小环的内径的比,即锥形构件的锥形主体的较大基面的直径和其较小基面的直径的比为10到100之间,锥形主体的轴长与其较大基面的直径的比为5到20,各环的径向宽度(外径减内径)与其厚度的比为0.5到2,两相邻环之间的高度与上游环的厚度之比为0.7到3;装入锥形构件内的环数可为成百上千,依其装置的大小和所打算的用途而定。只不过对于一些装置少至五个环已足够。
按照本发明的另一实施例,可考虑锥形构件可在锥形主体的最小直径环的下面安排多个附加环,所有的附加环都具有与锥形主体中最小直径的环相同的直径,并在此部位构成锥形构件的一个筒状辅助部分。作为另一种选择,也可在所说的锥形主体的最小环的下部提供几个直径逐渐变大的附加环,构成锥形构件的一个倒锥形辅助部分。作为再一个选择,那样的倒锥形辅助部分可安放在筒状辅助部分的下部,以相同直径环的最下面一个为准,安排几个直径逐渐变大的环,那样的锥形构件可使得把分离出来的颗粒以优化状态转移到漏斗内成为可能。
所有上述的实施例中的锥形构件也可作成螺旋状,使每一圈螺旋体实际上构成一个环,并且每两圈之间的距离对应于整环之间的距离。这使得锥形体的制造变得容易和可实现自动化。
依据本发明的装置构造可使得在包括粒度小于1μm的颗粒的较大粒度范围内以较大的装置气流速度(即高通量)和较低的气流阻力从气体中清除固体颗粒成为可能。同时还提供了一个几乎不依赖于气流中颗粒的粒度及其分布和进入装置端的尘埃的浓度的高清除率。此外,颗粒的分级组成实际上不受清除的影响,所以当净化过的气体进入与其相串联的第二个组件时,那种气体中的固体颗粒的分级组成几乎与原气流的分级组成相同。还有,装置的尺寸和重量也减小,即使在进入装置的尘埃浓度和固定颗粒的分级组成发生波动的情况下,仍可保证装置处于几乎无需维修的稳定操作状态。
本发明可用于清除工业和家用气流,如金属加工、化工、热能利用及其它工厂的气流,也可用于清洗空气供工业和家用,如用于电子和精密仪器工业,用于公共和住宅楼等等。它也可用于分离和回收颗粒分散于一团空气或一种气体或相似的流体中的有用物质,如从煤开采操作中分离回收煤尘,或从金属加工工艺中回收产生的金属粉末。
应该理解的是,在任何这样的装置中,相同的装置可能为一个现成的单元,包括所述的多环锥形构件和相应用于连接管线出口端的外壳,也可能包括一个相关的漏斗。然而,特别是当装置用于回收有用物质颗粒而不是用于清洗流体时,以及当在现有的管道或沟槽上加上一个复合锥形构件及外壳套不可能时,此装置可能仅包括一个分离锥形构件,那样的锥形构件可自身安装在沟槽或管道的一端,不必有任何外壳,以便只有从流体中分出来的颗粒能够被回收于漏斗中,而净化过的但不想要的气体将通过环间隙逃逸到周围大气中(假设对环境无害)。当然,作为一种选择,那种无外壳的锥形构件可安装在一个现有的通道或管道内,通过它,颗粒正常地从主要操作中排出,那种管道将构成并用作锥形构件的外壳并将拥有一个在此相连的合适的回收容器,例如,处于横向地偏移的位置,直接与锥形构件的出口端相连。
附图简要说明

图1为依据本发明的第一实施例的多组分流体分离装置的局部剖视示意图,其中,包含由多个直径连续变小的环构成的截锥形主体部分的锥形构件,其安装在一个管式外壳内。
图1A为图1中所示锥形构件中所圈部分的放大切面详细视图,并示意地表示了锥形环的内表面的形状及一种相互之间固定的、不同直径环的支承方式。
图1B为沿图1中1B-1B线的断面图。
图1C为与图1A相似的视图,图示了一种改进的环的锥形排列。
图1D为类似于图1A,但有点放大的单环的径向剖视图,图示了环构件在其后缘面或底面的改进。
图1E为与图1D类似的视图,图示了环构件在环内外面之间接合区顶部的改进。
图1F为根据本发明的一种锥形构件的示意图,在此表示了基本物理参数。
图2为与图1类似的视图,表示根据本发明的第二实施例的一种装置,其中锥形主体部分的较小端的锥形构件的下部设置了由一系列内径与锥形主体部分最小环的直径相同的一系列附加环构成的筒状辅助部分。
图2A为一与图1A类似的、图2中所示锥形构件的所圈部分的视图,示意地图示了一种相互之间固定的筒状辅助部分的环的支承方式。
图3为与图1类似的视图,表示根据本发明的第三实施例的一种装置。其中,锥形主体部分的较小端的锥形构件下部设置了一个直径递增的一系列环构成的倒锥形辅助部分。
图3A为类似于图1A和图2A的、图3所示的锥形构件中所圈部分的视图,图示了一种相互之间固定的、倒锥形辅助部分的环的支承方式,图4为类似于图1的视图,表示根据本发明的第四实施例的一种装置,其中,锥形主体部分的较小端的锥形构件下面设置了一个筒状辅助部分和一个倒锥形辅助部分,该两者分别由一系列附加的相同直径的环和一系列附加的直径逐渐增大的环构成。
图4A为与图1A、2A、3A相似的、图4所示锥形构件的所圈部分的视图,图示了一种相互固定的锥形构件的三个部分的环的支承方式。
图5为类似图1的视图,表示根据本发明的第五实施例的一种装置,其中,锥形构件(如简便起见表示为仅由一个锥形主体部分构成)具有连续的螺旋形状,该形状具有多个直径递减的环圈,其与其它实施例的整环相似。
图5A为类似于图1A、2A、3A、4A,图5中所示锥形构件中所圈部分的视图。
图6为不对称翼片的外形示意图,表示图1A和图1D中所示的环的形状的成因。
图7为类似于图6的视图,表示图1E中所示环的形状的成因。
本发明的上述和其它目的、特点、及优点结合附图和下面的各种实施例的详细解释将会更好地理解。
现在更详尽地谈及附图。根据本发明的第一实施例的装置表示为图1,1A和1B,用于分离两组分流体,特别设计成清除气体流中的固体颗粒,如尘埃、烟灰等等。此装置有一个诸如管状或筒状构件的外壳1(见图1B),它容纳中空截锥形构件2并为后者规定一个外围空间1a。然而,此外壳也可为其它形状。锥形构件2包括多个同轴排列、轴向隔开、直径逐渐减小的环3所构成和限定的锥形主体部分2a,其构型以后会更详细地描述。环优选由金属或金属合金所制成,如不锈钢等等。然而也可由包括增强塑料等在内的适当的硬材料制成。
锥形构件2的锥形主体部分的最大直径环3a和其外壳1的外界进口端通过周环密封,如焊接等,以液密封形式与管线(未画出)的连接端5的法兰盘4相连。用于以箭头6的方向向外壳内提供气流。具有最小直径的锥形构件的锥形主体部分2a的环3b以相同的形式与导向回收容器或漏斗8的排料管或管道7的法兰盘7a相连,稍后将更完全地描述,从气流中分出的颗粒离开锥形构件2,通过环3b进入管道7使其转移到漏斗,而净化过的气体离开锥形构件并通过环间的间隔进入周围空间1a。
漏斗8(在图1~5中未按比例画)设置有一个向下导向的出口管8a,此处装有截止阀9,使积累的颗粒能从漏斗中排出。虽然它不总是很重要,这一点将随进一步描述而变得更清楚,但在图1所示的本发明的实施例中,漏斗也设置了指向上方、导回到外壳1的排气管12,当原先夹带到此的颗粒在漏斗中沉降后,使通过管道7进入漏斗的载粒气体的至少一部分返回到外壳1的间隙1a中的被净化过的气流中。作为一种选择,从漏斗中抽出气体可以通过不是排气管的其它方法而达到,例如,借助于泵。净化过的气体可以以任何适当的方式排出壳外,例如以箭头10的方向经一个外壳弯角或横向弯折件而排出外壳。
正如图1A和图1B所清楚地显示的那样,锥形构件2的安装环3通过多个构件从最大直径的环3a直至最小直径3b,以桁条或支柱3c的形式而固定在他们的相对位置和定向上,在环的四周以任何适当的固定形式,如焊接、粘接等等,将环牢牢地以其外周边固定在框架构件上。如果环的大小许可,也可采用螺钉、螺栓等。在所述的实施例中,表示了所使用的4个桁条或支柱3c(图1为简化起见已省去),不过三个或五个或当锥形构件很大时,甚至更多也同样可以(只受其不可太多、太挤、太过分地妨碍环间所需求的空间或间隙的条件所限制),当锥形构件很小时,甚至两个也能令人满意。每一个框架构件还表明了在其朝内的面上具有(虽然并非必要)梯形构件3d,用于固定支承各种环于适当位置上。
现在特别地谈及图1A。从穿过锥形构件的轴的径向切面看去,每个环3都实际上具有三个面内表面13,从环的上部或顶部13a延伸至其底端。此底部至少在其轴向的最里部会暴露于进来的气流中;底表面14,当从气流方向看去,它也是环的后缘面,它与内表面13相交成一个锐边14a,并规定了环的内径;外表面或周边面15。内表面13为凸向弯曲的,带有一个外周边和曲度,稍后会更详细介绍。后缘面14优选水平面形状,如图1A所示,但它实际上几乎可有任何种所需的构型和形状,例如,它可以是倾斜的平面,如图1D中14’所示的实线,它也可以是内凹的或外凸弯曲的,如图1D的14”和14’’’中的虚线所示。它仅受锥形构件的轴(也是气体流的方向6)和后缘面在边缘面14a处的切线之间的角α不超过90°的必要条件限制。当然,很清楚,在如14和14’的平面型后缘面的情况下,此切线与其自身的表面一致。因此,角α为锥形体轴和后缘平面间的夹角。外表面15的形状优选垂直平面形,如图1A所示,但也可不考虑后缘面的构型,曲线地与环的顶部13a相汇合,正如图1E中的15a所示。
正如前面所提及的,环3的内表面13的外形或横断面特别是弧度(如图1A所示)来源于并相应于不对称翼片或机翼的前边缘或前导边(如图6和7中的标号P),这样的翼片的横断面的特征在于实际上是由一个钝角型的、通常朝向流来的气流的流向F的前缘面P-1,一个外凸弯曲的顶缘面P-2和一个平面型的底缘面P-3组成。在已定义的外形中,如图6所示,可规定一个阴影部记为P’,它的一边与曲线P-1和P-2的连接部分相连,从曲线P-1最前点P-4到线P-2的最高点P-5(即翼片厚度最大处),在另一边,它与相互垂直并相交的线S-1和S-2相连,其中S-1与外形P相垂直,从点P-4开始延伸,而线S-2横穿过外形P,从点P-5开始延伸。点P-5处线P-2的正切线T-1与进入气流的流向F相平行。作为一种选择,阴影部P’的横过界线可具有比线S-2有所不同的构型和(或)定向。例如,虽然在所有情况下起始于点P-5,但是它可以是倾斜的直线或内凹或外凸的曲线,如图6中虚线S-2’,S-2”,和S-2’’’分别所示。只要那样的线在点P-5处的切线与切线T-1的夹角不超过90°都行。
因此,不用说,图1A和图1D中所示的环3的外形基本上与图6中所示的虚线和实线边界限内的阴影部分P’的外形相同,每个环的内表面13对应于由点P-4和P-5之间的P-1/P-2线所代表的翼片表面的部分,底面和外表面14(或14’/14”/14’’’)和15对应于由边界线S-2(或S-2’/S-2”/S-2’’’)和S-1代表的区域。然而,关于这一点应当清楚,翼片的前表面很复杂,虽然这可能是环面13的一个理想构型,但工艺难度、加之环的加工或铸模因素可能会排除其实际生产,可能会需要对形状作一些简化。仅仅举个例,进行那样的简化,内环面13可能具有一个椭圆形的、双曲线形的或抛物线形的曲线,其底面14在边缘14a的切线指向于构成一个与面13在边缘14a的部分的切线T-2,因此与环的轴成小于90°的α角,并且其简单的平面型外表面15与内表面13相交于锐边13a。进一步优选,每环的内表面13的曲度应为那样的情况,切线T-2实际上与流动方向和锥形体的轴向平行,因为那样的表面定向倾向于实施例对在锐边14a处的气体的到来的干扰最小。
作为另一种选择,如图7所示,在外形P的前部可规定一个阴影部,记为P”,它一面与曲线P-1的最前面和顶线P-2及底线P-3相连接的对应部分相连接,另一面在线P-2的P-5点上开始对切线T-1以90°的角度延展到线P-3,与横过线S-3相连接。当然,正如前述,它受到同样的角度限制。横过边界线可以是倾斜的直线或内凹外凸的曲线,如图中的S-3’,S-3”的虚线所示。对应的环的外形表示在图1E中。由此可见,外表面15和内表面13经过一个弯曲的表面部分15a在环的顶端13a处相接。
现在描述图1F。锥形构件的锥形主体部分的每一个环都可看成被厚度或轴向高度t,横向宽度w(内外径之差)和轴向高度或宽度h所表征。各种环以那样的形式定位,以致任何给定的上部环的锐边面与沿锥形构件的轴向隔开,并且与相邻的下游环的最高面之间具有轴高或宽度h。为了装置的有效操作,其物理参数,主要是w,t,h,之间的关系对应锥形主体部分2a的最大和最小环的直径(在环的锐边14a处测量,记为Dmax和Dmin),锥形主体部分的轴向高度或长度H(从最大环的边缘14a,即从底部量至最小的边缘面14a,即底面)和一个环的锐边和另一个相邻环的锐边之间的横向距离,应当优选下面的关系0.5≤w/t≤2 (1)0.7≤h/t≤3 (2)10≤Dmax/Dmin≤100 (3)
5≤H/Dmax≤20 (4)0.02≤δ/w≤0.8 (5)环及安装的锥形构件的尺寸,当然在任何给定的情况下会随所需的装置大小和应用场合(比如流体的颗粒的性质、通量、粒度、流体中颗粒体的密度等)而定,受满足上面所述的关系的支配。然而,不用说,环的选择可能会受到出于工艺困难方面的考虑的限制,生产很大或很小的环时会碰到这种工艺难题。目前实际上可用的范围为如下(以mm计)10≤Dmax≤2,0001≤Dmin≤20050≤H≤20,0001≤t≤1001≤W≤1000.7≤h≤300装置以下面的方式起作用考虑从气流方向6看去的一个锥形构件2的锥形主体部分中的任意两个相邻的环3,很明显,下游或较低环的内径比上游环的内径小2δ(式中δ为上面所定义的横向距离),结果,一个平行于锥形构件的主轴并通过上游环的锐边14a的线与下游环的内表面13相交于一点,该点位于下游那个环的径向朝外的锐边14a上。这个条件保证了这两环之间存在重叠,因此保证了在他们之间没有平行于锥形构件的直线通道,并在此方向让流体通过。它隐含着,那些已自由地穿过上游环的气流的筒状外层将碰到较低环并被截住,这些“截留”气体必须通过两个环之间的间隙或通道16,因为,要不是这样,当气流沿锥形构件向下移动就会使压力在锥形构件的内部开始积累。所以,当锥形构件变窄时,每层次的气流的外面部分就通过相邻环之间的间隙16从锥形构件的内部逃逸到外壳1中的外部空间1a。
一旦气体逃到这个外部空间,它通常沿相同的方向继续运动,即沿锥形构件内的气体的方向,也就是朝外壳的出口部位11运动,并最终通过外壳的排出口排出到所需的地方。与空外壳施加于气流的曳力相比,由于环的锥形构件体现了对外壳内的气流的附加曳力,在锥形构件的内部(处于高压)和锥形构件的外围空间1a(处于低压)之间将存在压差。按照环间隙16的尺寸大小,由于锥形构件的环间的开口的总面积比外壳的横截面大很多,此压差相对不是很重要,但它并不是气体通过环3之间的间隙逃逸的原因。
虽然并不打算对锥形构件2内载粒气体通过锥形构件时会发生什么作用作特别的解释,但看上去,当气流作用于环3的弯曲内表面时,气流的筒状外表层沿此表面的曲度直至到达与此表面相连的锐边14a。如前所述,气流的外表层必须通过相邻的间隙16逃逸,为此,它必须沿锐边14a移动,由此急速地沿弯曲面13干扰其流动。筒状外表层的气体的运动方向也由此向下流动的方向6变为通过间隙16的横向流方向。这种沿锐边14a的气体的非线性流动产生了局部力或局部压差,作用于与气体同时运动的固体颗粒上。在每一个环平层,这些力导向锥形构件的轴的方向,由此将颗粒导向主气流的方向而不是让其通过空隙16的气体一道逃逸。
另一种观察锐边14a处气流的急速干扰后果的方法是设想这种干扰将会在气流中形成涡流,由于间隙16径向内界面处的这些涡流的作用,形成了一个沿环的曲面13的假想锥形曲线方向的连续弹性气流层,因此,锥形构件内的那样一层区域内的固体颗粒被环表面所缓冲并且,与此同时被迫进入气流的中部。所以,一方面在环的内表面上如此形成的气流保护环免遭磨损,另一方面固体颗粒在通过锥形构件时被集中浓缩,接着导向下部,通过管7排入漏斗。与此同时,已清除颗粒、并被迫进入锥形体中心且业已进入环间间隙或间隔16的那部分气流穿出锥形构件进入外壳的周围空间1a,并通过外壳的端部11从此处排出到接受部位。
此装置可在较大气体流速范围内对多组分流体进行高效率(>95%)清除成为可能。气速可高达100m/s,这使得有高物料通过量,并且对气流的阻力低,使得在实际使用中在粒度从1μm到1000μm的较大范围内不依赖于气流中颗粒的分级组成。此外,装置无任何运动件,长久使用看不出有多少磨损,因此维修量可减少到最小程度,与现有适用于相同气流通过量的集尘装置相比,相对较轻和紧凑。
采用本发明的装置,外壳1的进口端与出口端的气流速度V1和V2(见图1)基本上相同,而锥形构件2的出口端处的、带有气体的浓缩固体颗粒的流速V3可从与V1和V2几乎相同变到比V1和V2小很多。流速V3随装置的构造,包括漏斗的大小和构造在内的变化而变化。流入外壳的起始气体的一部分(实际上小于1%)与浓缩过的颗粒流一道进入漏斗,但此部分气体当颗粒沉到漏斗底部后即与颗粒分开,通过排气管12或一个适当的抽空泵等等从漏斗中排出。
为了进一步降低气体组分通过管7进入漏斗的量,依据本发明的第二种实施例,考虑使锥形构件的锥形主体部分的最小直径的环3的下部设置一个筒状辅助部分2b(图2),此筒状辅助部分由多个具有与环3b相同的内径、相同的表面以及相同的横截面的附加环组成,并被诸如支柱或桁条3e(图2A)那样的框架构件所固定定位。此支柱或桁条以成一个夹角的方向(没有特别指明)延伸到与锥形构件的锥形主体部分相连接的框架构件3c上。这些附加环17的目的是用于降低含浓缩的固体颗粒的那部分气体的速度(因在筒状辅助部分区域,锥形构件2不再向下变窄),因此,进一步提高进入漏斗8的气流中的固体颗粒的浓度。
如前所述,在锥形构件的内部和外部空间1a之间存在着一个压力差,此压力差也存在于辅助部分2a内的等径环17区域和外部空间1a之间,因此,从2b部的内部而来的气体将与上述锥形主体部分2a环的情形相同的方式通过等径环17之间的开口,逃逸到外壳1中的周围空间。然而由于存在等径环,当气体流经2b部时,气流的流量不会降低,因为可供气体流动的画积不变(与锥形主体部分2a不同)。它隐示着,当气流流过2b部时,气流速度必然下降。所以环17的数量应根据这样的方式选择筒状辅助部分2b的轴向高度不大于锥形主体的高度H ;等径环17区域的下端的流速V4大大低于锥形主体部分2a的末端的流速Va,或接近于零,而清除效率仍保持在可接受的较高值。它使得通过排气管从漏斗排气成为可能,并且也可使漏斗的尺寸变小。当然,清除效率将降低一定量,也许1~3%,这随锥形构件的筒形辅助部分的长度而定。清除效率的稍微下降与下面事实有关在较低的速度时,环的颗粒捕集作用被降低,因此使得一小部份浓缩过的固体颗粒与穿过环17之间的空隙16的流过气体一道逃逸出去。然而考虑到采用一个无排气管的较小的漏斗8的优点,这是一个合理的折哀。
相同的效果可以通过依据本发明的第三种实施例而实现。在这第三种实施例中,锥形主体部分2a的最小环3b的下部设置了由多个内径逐渐增大的附加环18构成的倒锥形辅助部分2c(图3),环18由类似于框架构件3c的框架构件3f所固定,但与锥形构件的轴线的夹角与框架构件3c的方向相反(图3A)。如果锥形主体部分和辅助部分具有相同的斜度,辅助部分的高度不比主体部分的高度更高,尘埃移入漏斗8的优化条件可在本装置的这个实施例中实现。
根据本发明的第四种实施例,装置设置了一个如第三个实施例那样由多个内径逐渐变大的环18所构成、与第二个实施例那样设置的筒形辅助部分2b相连接的倒锥形辅助部分2c;这里,内环变大的环设置在筒状辅助部分2b下部;筒状辅助部分2b由多个等径环17构成,环的内径与锥形主体部分2a(图4)的最小环3b相同。三组环3、17和18由相应的三组框架构件3c、3e和3f分别固定定位(图4A),两个辅助部分的总高度不比锥形主体部分的高度高。这种排列使得多环筒状体和倒锥形体的性能能最有效地利用。
根据本发明的第五种实施例,依据上述各种实施例的一种,可有锥形构件2(不论其是仅由主体部分2a或由该主体部分与2b和2c中的一个或两个构成)可制成螺旋体的形式(图5)。在那样的锥形构件中,螺旋体的间距将相对较小,螺旋条具有弓形构型的内表面13及每一圈有一个顶面13a,一个后缘面或底面14,一个内表面和底表面交接处的锐边14a和一个外表面15。螺旋锥形构件的每一单圈构成等同于其他实施例的锥形主体部分2a的环3(如果可行,也可构成环17和/或环18)。它使得锥形构件的制造变得容易,并使其自动化生产成为可能。如图5A所示,实际上为单件构件的螺旋锥形构件可以不配置框架构件。当然,如果很有必要,即使是采用了螺旋锥体构件,也可使用框架构件。例如,用于防止其移动或变形。然而,由于图5所示的锥形构件仅有一个锥形主体部分2a,可考虑为漏斗提供一个排气管12(或提供合适的抽泵等),其原因和理由如上面图1的实施例所描述。
为了提高物料通过能力,根据本发明两个或更多的装置可以组件的形式平行排列。对应地,为提高清除效率,两个或更多个装置可以以组件的形式串联起来。
从图1和1A可以明显看出,锥形构件的锥形主体部分为直线锥体,也就是说,各个环3的锐边14a的轨迹实际上是相对于锥形构件的轴倾斜延伸的直线环绕面。然而,下面也包括在本发明的范围内边缘14a的轨迹也可是绕锥体轴的曲线环绕面(图1c),此处所用的术语“锥形构件”意在表示,也应当理解为表示直线锥形排列和曲线的锥形结构。
应该理解的是,本发明的一个很重要的特征是从流体中分离颗粒实质上是受空气动力的影响,即通过向固体颗粒施加流体压力差,对环面破坏作用很小或无破坏作用,并减少任何倾向于损坏环表面的机械作用,如颗粒撞击环表面和颗粒在此偏移所造成的作用。
本发明及其性质、优点将通过下列实际试验规模进行的、非限定性的实施例更全面地进行解释和阐述。
实施例1图1中所示的装置的锥形构件的最大的环的内径为200mm,最小环的内径为20mm,所有环具有同样的厚度5mm,和径向宽度5mm,每一上部环的底面或后缘面为水平平面,与下一个相邻接的下部环的顶部相距5mm,该锥形构件的轴向高度为2000mm。供给装置的载尘气体流的流速V1在各种实验中不同,从15m/s到90m/s,尘埃浓度为1~10g/m3。尘埃具有下面的分级组成1000~50μm 50%50-1μm 45%<1μm 5%基于10次测量的平均统计重量清除效率为95%,所有实验的累积误差为±1%。此清除效率在所给定的流速和尘埃密度范围内几乎不变。此外,对收集在漏斗内的分级组成进行了分析,其结果表明,在分析方法的精度范围内,漏斗内的尘埃和分级组成实质上与进入装置的尘埃相同,这隐示着此装置实际上不影响净化过的那部分流体内的尘埃的分级组成。
实施例2将实施例1中的两个装置串联起来,各试验中载尘气流的起始速度、起始尘埃浓度及分级组成同实施例1。
基于10次测量的平均统计清除效率为99±1%。正如前面的实施例那样,发现集收到的尘埃的分级组成与进入串连组件的第一个和第二个的进口端的尘埃的分级组成基本相同。
应该理解的是,前述的对本发明的优选实施例的描述仅仅是为了说明本发明,对此处所披露的结构和操作特征,可以在不背离本发明的实质和权利要求所限定的保护范围内进行大量的改进和改变。
权利要求
1.一种用于分离多组分流体、优选用于清除气体中的固体颗粒的装置,所述的装置包括一个截锥体构件,该构件具有一与被分离流体的流向同向延伸的轴,包括一个由多个同轴排列的、彼此轴向隔开的环所形成的锥形主体部分,从被分离的流体的流向看去,其内径逐渐变小,具有最大内径的环设在被分离流体进入所述的锥形构件的锥形主体部分的那一端,具有最小内径的环设在所述的锥形构件的锥形主体部分中被分出的固体颗粒排除的那一端,而且每个所述的环具有(a)一个最高区域;(b)一个最低区域;(c)一个内表面,该内表面;(ⅰ)沿所述锥形构件的轴线的横断面在其径向方向是凸弧,(ⅱ)从此环的所述的最高区域的最高点延伸到其最低区域的最低点,并且(ⅲ)与流经所述的锥形构件的流体的流向部分相反,部分相交;(d)一个底表面;(e)一个外表面;(f)所述的底表面(ⅰ)从所述的内表面的最底端延伸到所述的外表面,(ⅱ)通常是朝向流经所述的锥形构件的流体的流动方向,并且(ⅲ)与所述的内表面在其相交处形成了一锐边,该锐边沿所述的环环绕延伸,并限定了所述的环的内径,该锐边位于所述的锥形构件之内,使得有一条与所述的锥形构件的轴平行并且与一给定的环的锐边相交的线与其下游相邻环的内表面相交,该下游环的锐边的内表面径向朝外;(g)所述的外表面从所述的底表面延伸到所述的内表面的最高端,以及(h)所述底表面的定向应使得其与所述的内表面的相交处的切线方向和所述锥形构件的轴线方向的夹角小于90°。
2.如权利要求1所述的装置,其中所述的每一个环的内表面的弯曲度应使得同一环中的内表面与底表面的相交处的切线与所述的锥形构件的轴线平行。
3.如权利要求1或2所述的装置,其中每一个所述的环有一个径向宽度,该径向宽度是沿与所述的锥形构件的轴线垂直的方向测量得到的,为该环的锐边到所述的外表面与所述的底表面的交界处之间的垂直距离;一个轴向厚度,该轴向厚度是沿与所述的锥形构件的轴线平行的方向测量得到的,为从所述的锐边所在平面和该环的最高区域所在平面之间的距离;所述的锥形主体部分有一个轴向高度,该轴向高度是沿与所述的锥形构件的轴线平行的方向测量得到的,为所述的锥形主体部分的最小环的锐边所在平面与最大环所在平面之间的距离;以及所述的环的设置应使得所述的锥形主体部分的每一个上游环与其相邻的下游环之间形成一空隙,该空隙有一轴向高度,该轴向高度是沿与所述的锥形构件的轴平行的方向测量得到的,为该下游环的最高区域所在平面到该上游环的锐边所在平面之间的距离;所述的环、空隙以及所述的锥形构件的锥形主体部分的尺寸满足下述关系0.5≤w/t≤20.7≤h/t≤310≤Dmax/Dmin≤1005≤H/Dmax≤200.02≤δ/w≤0.8此处,W为环的径向宽度,t为环的轴向厚度,h为间隙的轴向高度,H为锥形主体部分的轴向高度,δ为环的锐边和与其相邻的环的锐边之间的径向距离,Dmax是最大环的内径,Dmin是最小环的内径。
4.如权利要求3所述的装置,其中一给定的上游环和与其相邻的下游环之间的间隙的轴向高度与该上游环的厚度相等。
5.如权利要求3所述的装置,其中所述的所有的环都是等轴向厚度的。
6.如权利要求3所述的装置,其中所述的所有的都是等径向宽度的。
7.如权利要求3所述的装置,其中所述的所有的都是等向厚度和等径向宽度的。
8.如权利要求3所述的装置,其中所述的所有的环的轴向厚度、径向厚度以及所述的相邻环之间的间隙的轴向高度都相互相等。
9.如权利要求1或2所述的装置,其中,在所述的锥形构件的最小环之下部设有一筒形辅助部件,该筒形辅助部件由至少两个附加环所构成,其内径与所述的锥形主体部分的最小环的内径相等。
10.如权利要求9所述的装置,其中在所述的锥形主体部分的下部的最后一个附加环上设有一个直径与所述的筒形辅助部件的直径相等的倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环构成。
11.如权利要求1或2所述的装置,其中,在所述的锥形主体部分中,在所述的锥形构件的最小环之下部设有一倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环所构成。
12.如权利要求1或2所述的装置,其中,所述的锥形构件为一单元构件,其形状为具有多个内径逐渐减小的圈形成的螺旋条,该螺旋条的每一个圈形成了所述的锥形构件的一个相应的环,并且具有特定的表面和横截面形状特征。
13.如权利要求1或2所述的装置,进一步包括一个外壳,该外壳有一个入口端和一个出口端,所述的锥形构件被安装在该外壳内,该锥形构件的最大环的一端位于入口附近并环绕外壳的周边内表面被密封,通过最大环,所述的外壳的出口端与锥形构件的锥形主体部分之内部相连通,使得被分离的流体能进入到锥形主体部分中,而所述的外壳的出口端则提供了一排料通道,该通道环绕所述的锥形构件的内部空间部分,使得经过所述的环之间的空隙从所述的锥形构件出来的、已净化的那部分流体能够离开所述的外壳的环绕空间;一个漏斗,该漏斗有一个延伸到所述的外壳之内、并通过所述的锥形构件的最后一个环与其内部相连通的入口通道,该入口通道也通过所述的最后一个环,该环远离所述的锥形构件的最大环相连通,所述的入口通道使得将经所述的锥形构件从净化的流体中分离出来并经其提浓的固体颗粒,与所有来自所述的锥形构件的未经净化的残余流体排到所述的漏斗中,并将固体收集在该漏斗中。
14.如权利要求13所述的装置,其中每一个所述的环有一个径向宽度,该径向宽度是沿所述的锥形构件的轴线垂直的方向测量得到的,为该环的锐边到所述的外表面与所述的底表面的交界处之间的垂直距离;一个轴向厚度,该轴向厚度是沿与所述的锥形构件的轴线平行的方向测量得到的,为从所述的锐边到在平面和该环的最高区域所在平面之间的距离;所述的锥形主体部分有一个轴向高度,该轴向高度是沿与所述的锥形构件的轴线平行的方向测量得到的,为所述的锥形主体部分的最小环的锐边所在平面与最大环所在平面之间的距离;以及所述的环的设置应使得所述的锥形主体部分的每一个上游环与其相邻的下游环之间形成一空隙,该空隙有一轴向高度,该轴向高度是沿与所述的锥形构件的轴平行的方向测量得到的,为该下游环的最高区域所在平面到该上游环的锐边所在平面之间的距离;所述的环、空隙以及所述的锥形构件的锥形主体部分的尺寸满足下述关系0.5≤w/t≤20.7≤h/t≤310≤Dmax/Dmin≤1005≤H/Dmax≤200.02≤δ/w≤0.8此处,W为环的径向宽度,t为环的轴向厚度,h为间隙的轴向高度,H为锥形主体部分的轴向高度,δ为环的锐边和与其相邻的环的锐边之间的径向距离,Dmax是最大环的内径,Dmin是最小环的内径。
15.如权利要求13所述的装置,其中所述的锥形主体部分的最小环是指所述的锥形构件的最后一个环,而且所述的漏斗还具有将所述的漏斗内部排气的设施,使得在所述的漏斗中的、固体颗粒已被沉降析出的流体能排出所述的漏斗,并防止其中的背压的积累。
16.如权利要求15所述的装置,其中所述的排气设施包括一延伸到所述的外壳内部并与环绕所述的锥形构件的空间相连接的排气管。
17.如权利要求13所述的装置,其中,在所述的锥形构件的最小环之下部设有一筒形辅助部件,该环形辅助部件由至少两个附加环所构成,其内径与所述的锥形主体部分的最小环的内径相等,并且所述的漏斗的进口通道与所述的锥形构件上的筒形辅助部件的端部环相连通,该端部环远离所述的锥形主体部分的最小环。
18.如权利要求17所述的装置,其中,在所述的锥形主体部分的下部的最后一个附加环上设有一个直径与所述的筒形辅助部件的直径相等的倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增大的附加环构成,而且所述的漏斗的进口通道与所述的锥形构件上的倒锥形辅助部件的内径最大的环相连接。
19.如权利要求13所述的装置,其中,在所述的锥形主体部分的下部的最小环上设有一个倒锥形辅助部件,该倒锥形辅助部件由至少两个直径逐渐增加的附加环所构成;所述的漏斗的进口通道与所述的锥形构件的倒锥形辅助部件上的内径最大的环相连接。
20.如权利要求13所述的装置,其中,所述的锥形构件为一单元构件,其形状为具有多个内径逐渐减小的圈形成的螺旋条,该螺旋条的每一个圈形成了所述的锥形构件的一个相应的环,并且具有特定的表面和横截面形状特征,所述的漏斗的进口通道与所述的锥形构件在其螺的最后一个旋条的最后一个处相连接;该最后一个圈远离该螺旋条的最大的圈。
全文摘要
用于分离多组分流体、特别是用于清除气体中的固体颗粒的装置,包括一截锥体构件,该构件有一个锥形主体部分,该主体部分由多个同轴排列的、彼此轴向分隔开的环所构成,从被分离的流体的流向看去,这些环的内径逐渐减小,每个环具有一个最高区域、一个最低区域、一个内表面、一个底表面和一个外表面。
文档编号B01D45/04GK1074145SQ92114108
公开日1993年7月14日 申请日期1992年12月11日 优先权日1991年12月11日
发明者约里·巴哈列夫 申请人:环境保护有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1