输送介质或通过介质驱动的装置的制作方法

文档序号:5237929阅读:161来源:国知局
专利名称:输送介质或通过介质驱动的装置的制作方法
技术领域
本发明涉及根据权利要求1所概述的输送液态或气态介质或通过介质驱动的装置。
这种类型的装置例如作为压缩机已有公开。公开的压缩机有一活塞/汽缸,在该汽缸中活塞借助活塞杆和曲轴传动上下运动。由两个附属于汽缸的逆止阀构成的阀门构件负责在活塞向下运动时将外界空气吸入汽缸室,并在活塞随后向上运动时将吸入的空气作为推进的空气排出。在吸入过程时一个阀开始工作,在排出过程时另一个阀开始工作。活塞的上下运动通过借助驱动装置的曲轴传动装置的传动,例如借助电机实现。已公开结构中的缺点是,为避免活塞卡住,汽缸内壁上的活塞滑动面必须附着润滑剂,例如一层薄油膜。这样做的后果是,推进的空气会受到油残渣的污染,这在使用空气压缩机产生压缩空气的食品加工业中是个严重问题。但是,即使是其它工业部门也需要使用不含润滑剂残渣的纯净空气。
本发明的目的在于,提供一种上述类型的没有上述缺陷的装置。
依据本发明,这一目的由此得以实现,即活塞借助一轴承进行运动,并且该轴承处于汽缸的外面。根据这种设计,可使活塞在轴承中得到最佳引导,以致于使它运行一确定的和准确的运动轨道。轴承可以任意布置。不存在轴承含有润滑剂,例如轴承润滑脂或这类润滑剂所带来的问题,因为它布置在汽缸的外面并因此不会有润滑剂的残渣或这类残渣进入汽缸并由此进入推进用介质里面。因为活塞由此有一分离的轴承,所以它-不同于现有技术-不必本身置于汽缸中,以致于完全避免了活塞在汽缸内壁上的摩擦。由于有轴承,活塞受到非常精确的引导,以致于活塞没有润滑剂在汽缸中运行并在这种情况下与汽缸的内壁保持一极小的间距,由于该间距如此之小,从而最大程度地避免了泄漏耗损。可以取消附加的密封件,例如已公开的输送装置中所使用的并布置在活塞和汽缸内壁之间的间隙中的那种金属垫圈。
根据本发明的其它结构设置为,活塞围绕一旋转中心进行分度运动。特别配置为活塞布置在一旋转部件上,以致于它可以进行前面所提到的分度运动。
所提到的旋转部件优选装有轴承,在此活塞向着旋转中心径向偏移。因此,旋转部件为活塞的来回运动提供一种往复运动,由此与旋转部件的旋转中心相对径向向外偏移的活塞完成一分度过程。由于旋转部件受到借助布置在汽缸外面的轴承的准确引导,所以活塞沿着一准确的确定的轨道运动,该轨道防止对汽缸的内壁产生不允许的摩擦力。
根据本发明的另一个结构设置为,对着第一个活塞端面的第一个汽缸壁由至少一个逆止阀穿过。也可选择第一个活塞端对面的第一个汽缸壁由至少两个具有彼此相反的导通方向的逆止阀穿过。在第一种情况下,逆止阀的作用是,它在打开时通过相应的活塞运动可以将介质吸入汽缸室。接着活塞返回,活塞最好至少由一个逆止阀穿过,以致于所输送的介质流过活塞,然后-在另一次活塞行程时-通过另一个逆止阀排出。该另一个逆止阀-在本发明的另一个结构中-穿过第二个活塞端面对面的第二个汽缸壁。
在前面所提到的第二种可能性中,即两个逆止阀穿过汽缸壁,在第一个活塞运动时,介质通过两个逆止阀之一吸入并在随后进行的活塞返回运动时,介质通过第二个逆止阀经过一输送管道输送。两个逆止阀因此的作用是,在第一个活塞行程中,通过一吸入管线完成吸入过程并通过一排出管线完成排出过程。
只要在活塞的两侧,也就是在其两个端面壁上,有相应的,各自带有两个逆止阀的汽缸壁,在活塞往复运动时,在一个活塞端面上就会完成吸入过程并在另一个活塞端面上完成排出过程。
为达到本发明的目的,还提供一种通过介质驱动的装置,特别是具有权利要求13所述特征的二冲程内燃机。这种装置的特征在于,活塞的运动借助一个轴承进行,而且该轴承布置在燃烧室的外面。根据这种设计,可使活塞在轴承中得到最佳引导,以致于它通过一精确确定的和准确的运动轨道。轴承可以具有任意结构形状。不存在轴承含有润滑剂,例如轴承润滑脂或这类润滑剂所带来的问题,因为它布置在燃烧室的外面并因此不会有润滑剂的残渣或这类残渣进入燃烧室并由此进入内燃机的废气里面。因为活塞由此有一独立的轴承,所以它不同于已公开的内燃机,不必本身在由槽、孔或这类构成的燃烧室中,以致于最好是完全,至少是最大程度地避免了活塞在燃烧室壁上的摩擦。基于轴承,活塞进行非常精确的运动,以致于活塞没有润滑剂在燃烧室中运行并在这种情况下与燃烧室壁保持一极小的间距,由于该间距如此之小,从而最大程度地避免了泄漏耗损。
特别优选的是内燃机的实施例,其特征在于,活塞对着燃烧室中的燃烧室壁无密封进行运动。不需要使用附加的密封件,例如密封圈,像已公开的内燃机中用于密封活塞和燃烧室壁之间的间隙所使用的那样。活塞面和燃烧室壁之间的间隙极小,以致于仅由此和/或者通过活塞具有相当大的侧面长度就可避免泄漏耗损。
下面借助实施例附图对本发明进行说明,附图中

图1 输送装置立体图(倾斜俯视),图2 倾斜俯视输送装置底部的立体图,图3 输送装置侧视图(局部剖视),
图4至图9 输送装置不同活塞位置上活塞/汽缸俯视图,图10 内燃机实施例侧视图(局部剖视),图11和12 布置在一燃烧室内的活塞结构部件不同活塞位置上的各俯视13 第一块压板实施例的俯视图和图14 一油路接板实施例的侧视图。
图1所示为输送装置1,根据这里介绍的实施例为空气压缩机。它有一外壳2和一活塞/汽缸3。在外壳2中可转动置放一驱动轴4,其上可连接一图中未标出的驱动装置,例如电机。在驱动轴4的自由端上固定布置一曲拐圆盘5,因此构成一偏心轮6(图2)。在一处于偏心位置的紧固槽7中置放一可回转的叉形件8,其叉臂9围绕-在图2中水平移动的-轴10与组合件11可回转连接。组合件11与活塞轴12非转动连接。
活塞/汽缸3有一缸体14,它有一空心圆柱形下缸体15以及一汽缸盖16。汽缸盖16为圆形板结构,与罐形下缸体15采用适当方式,例如机械式螺丝连接。在外壳2中布置一精密轴承17(图3),它引导活塞轴12准确转动,也可进行精确的轴向定位。
从图4至图6可以看出,在缸体14中,活塞/汽缸3的活塞结构部件18围绕活塞轴12进行分度旋转运动。在这种情况下活塞结构部件18具有第一个活塞19和第二个活塞20,这两个活塞相对于活塞结构部件18的旋转中心21径向向外倾斜。旋转中心21和活塞轴12的旋转中心同心。活塞结构部件18有一圆形中间件22,第一个和第二个活塞19,20从那里翼形径向向外伸展,各活塞19,20一直延伸到缸体14的内侧面23。因此活塞19,20各自的侧面24呈拱形与缸体内壁23的内曲面相对。缸体内侧面23以极小的间隙无接触式面对侧面24,因此这种结构在一定程度上起密封作用。正如从图4至图6中所看到的那样,在这一极小的间隙范围内没有安装单独的密封件,因为不需要它们。轴承19,20各自的侧面和缸体14内壁之间间隙的密封,仅借助于两个结构件和在本实施例中为环形截面的相当大的弧形侧面24之间的微小间隙完成。在活塞/汽缸3的内部,有固定布置的汽缸壁25,26,27和28。汽缸壁25至28与下缸体15的底座29压力密封连接,也与缸体内壁23密封连接。汽缸壁25至28的各自内侧面30以微小的间隙面对中间件22的外周表面31,虽然活塞结构部件18可以围绕旋转中心21运动,但是所提到的侧面之间仍形成一种密封。这里也可以不采用单独的密封件。通过相应的方式,每个活塞19,20以非常小的间隙面对底座29的内侧面和缸盖16的内侧面,以致于进行总体位置调整,两个活塞19,20根据活塞结构部件18的轴承结构,借助精密轴承17可以无接触式,但是密封地在各自的汽缸室32,33中运动。汽缸室32处于汽缸壁25和26之间;汽缸室33位于汽缸壁27和28之间。由于与各自的活塞19,20的侧面24和中间部件22的外周表面31之间以极小的间隙实现了密封,汽缸室32,33通过活塞19或20彼此分开。
此外从图4至6可以看出,汽缸壁25至28配有通孔34,孔内装有螺旋弹簧的逆止阀35,36,37和38。对此也可选择采用舌片阀或隔膜阀或类似阀。此外,两个活塞19,20配有通孔39,逆止阀40,41,42和43布置在孔内。根据图1,汽缸盖16配有一介质输入孔44和一介质排出孔45。清晰起见,这两个孔在图4至图6用虚线标出。它们这样布置,介质输入孔44处于两个汽缸壁25和27之间,介质排出孔45处于两个汽缸壁26和28之间以及各自又处于外周表面31和空心圆柱形下缸体15的内侧面23之间。因此在这些范围内构成空腔,属于介质输入孔44的空腔构成进气室46,属于介质排出孔45的空腔构成排气室47。
下面是其操作说明如果驱动轴4借助一适当的驱动装置(未标出)按箭头48(图4)转动,那么起偏心轮作用的曲拐圆盘5以相应的方式带动叉形件8,由此组合件11进入往复摆动运动,就是说,活塞结构部件18围绕活塞轴12,也就是围绕旋转中心21进行往复摆动。因此在这种运动时,活塞19或20分别移到汽缸室32或33的里面,从而从图4所示状态开始,例如活塞19先面对汽缸壁25,然后向汽缸壁26的方向运动(图5),最后以非常小的间距面对汽缸壁26(图6)。然后以反方向的方式完成下一步的运动,就是说,活塞19向汽缸壁25的方向返回。相应的还有活塞20,它在两个汽缸壁27和28之间来回运动。这种往复式运动的结果是,从图4所示状态开始,活塞19从汽缸壁25移开,由此它通过介质输入孔44和进气室46在逆止阀35打开时将空气吸入汽缸室32。如果活塞19到达图6所示的位置,那么吸入阶段结束,活塞19返回,以致于处于汽缸室32内的吸入的空气略微受到压缩,从而使活塞19中的两个逆止阀40和41通过惯性自动打开,由此气流在一定程度上运动到活塞的另一侧,就是说,它流过通孔39。如果现在活塞19在下一次活塞行程时重新向汽缸壁26方向运动,那么气流在逆止阀36打开时被输送到排气室47并从那里输送到介质排出孔45。在最后所说的输送运动时,同时在活塞19的另一侧上再次完成吸入过程。还可确定,活塞中的逆止阀40,41借助于惯性重又自动关闭。活塞20上也进行相应的过程,就是说,输送装置1根据两个活塞19和20可以提供很高的输送能力。
图7至图9所示为输送装置的另一个实施例,该装置只是在逆止阀的布置上与前述的实施例有所不同,因此下面只涉及这一变化。可以看出,汽缸壁25至28各自配有两个通孔34,逆止阀51,52,53,54,55,56,57和58布置在孔内。逆止阀51和52或53和54或55和56或57和58彼此处于相反的流动方向上,以致于各自的一个逆止阀构成一个进气阀,而各自的另一个逆止阀构成排气阀。此外,相同的部件如图1至图6所示标有相同的标号。就此而言可以参考其它说明。
图7至9所示实施例按下面所述方式动作。
如果活塞19逆时针运动,那么逆止阀51此时打开,以致于空气从进气室46被吸入到汽缸室32中。如果活塞19随后顺时针运动,那么吸入的空气通过逆止阀52输送到一排气管道59,该排气管道和逆止阀52相连接,在图中仅用虚线标注出,它又将空气输送到排气孔45。相应的也适用于其它几对逆止阀连同其所属的汽缸壁26,27和28,以致于总体一定程度上构成四个汽缸室。各自的吸入通过介质输入孔44完成,各自的排出由介质排出孔45完成,并使用相应的,图中未标出的吸入管线或排出管线。
最后还能看到,利用该输送装置1可以同时输送多种不同的介质。在这种情况下,每个活塞19和20连同其所属的汽缸室各自构成一单独的单元。各自的汽缸室32和33然后各自配有介质输入孔44和介质排出孔45。也可以轻而易举地配备两个以上的活塞。总之,可以根据活塞的数量输送相同种类的介质。在一种优选的实施例中,输送装置结构改变,配有多个活塞,通过各活塞的旋转动作输送的介质量同样大。因此该输送装置以优越的方式也可作为定量给料泵使用,例如用于灌装液态食品,例如牛奶。
此外还表明,通孔39还起到冷却活塞的作用。如果进气室46的介质流经通孔,那么各自的活塞19或20受到该吸入的介质的冷却。在图4和图6中还可看出,在活塞19或20和其所属的汽缸壁26至28之间,只要活塞19或20处于其终端位置,不存在所谓的不利空间。就是说,活塞在其终端位置上以非常小的间距面对各自的汽缸壁。这保证了所输送的介质完全从输送装置1中排出或者在吸入过程中所吸入的一种介质的体积与在活塞的一个面和相对的汽缸壁之间构成的空间容积相对应。这一方面提高输送装置的效率,另一方面可以产生足以让介质完全从汽缸室中排出的高压。
特别是活塞结构部件18的传动这样完成,使得在驱动轴旋转90°时活塞19和20各自行进半个行程。由于活塞19和20固定安装在中间件22上,所以在每次来回运动时,活塞19和20输送介质的量不变。因此这里采用一种正弦形传动,由此可以实现输送装置的谐波运行。
因为活塞19和20配合汽缸14不需要润滑,所以输送装置1用于无固有润滑性的液体特别有益,例如众所周知的基本上不具备润滑特性的汽油。
如果所输送的量大,活塞19和/或者20和所属的汽缸壁就可以形成倾斜移动。就是说,在活塞的俯视图中它有一平行四边形的或菱形的轮廓。因此,活塞的端面变大,以致于在横截面上存在一更大的通孔,从而可以使用更大的逆止阀。
有关图3还要提及的是,由曲拐圆盘5,叉形件8和组合件11组成的传动装置也可用众所周知的像在刮水器传动装置中所使用的曲轴传动装置代替,因此可以通过驱动轴4驱动数个输送装置1,那么因此应优先选择所有输送装置只安装一个曲轴传动装置,输送装置通过一根连杆相互连接。此外还可配备至少两个活塞/汽缸3重叠布置,其驱动通过驱动轴4共同完成。为此配备两个活塞/汽缸3的活塞轴12是一根通轴,这样配备的活塞轴12,其上重叠布置两个活塞结构部件。
最后还能看到,也可以轻而易举地将输送装置作为发动机。在这种情况下最好配置为,汽缸室32和33各自包括一个点火装置,以致于构成内燃机,其产生的驱动力汇集到驱动轴4上。
在一未做图示的输送装置实施例中,所要输送的介质在相应的活塞运动时通过各自至少一个介质输入孔吸入汽缸室32,33中。介质输入孔可以安装在缸体14的罐形下缸体15中或者是汽缸盖16上并通向各自的汽缸室。此外为每个汽缸室至少配备一个介质排出孔,介质排出孔同样安装在缸体14的下缸体15中或者汽缸盖16上。在使用泵或电机驱动输送装置的情况下,每个介质输入和排出孔均要各安装一个逆止阀,以便确定介质沿一个方向流动。介质输入和排出孔在汽缸侧壁中,也就是在底部和汽缸盖中的布置,在使用借助图1至图9所介绍的作为内燃机的变化形式的输送装置的情况下非常有益,因为这里活塞在其来回运动时汽缸盖中或汽缸下缸体中的输入和排出孔是开通的,可以不使用阀门。
在输送装置的所有实施例中,通过活塞的相应运动使介质从汽缸室排出流经的各自排出孔可以与一直接输送到用户的排出管连接。在该改进型实施例中,不采用图4至图9所介绍的布置在汽缸14内部的排气室47。
输送装置所有实施例的共同之处是,由于基于各自活塞的侧面和缸体内壁之间以及连接至少一个活塞的中间部件的外圆表面与各自汽缸壁25至28的内侧面30之间的极小间隙形成了一种密封,为此不必再使用单独的密封件。通过活塞借助于精密轴承17的精确运动,可以确保单个活塞或数个活塞在输送装置运行时不接触汽缸的内边和/或者各自汽缸壁的内侧面,以致于这一范围可以不使用润滑。
根据前面的附图所介绍的输送装置,特别有益的是,不存在滑动摩擦,因此为压缩介质几乎只需完成纯粹的压缩工作。由此消耗能源少,因此在输送装置运行期间产生的热和已公开的输送装置的技术状况相比也少一些。由于单个活塞或数个活塞不接触汽缸壁,也不产生所谓的始动转矩,因此输送装置从静止状态起动所需要的转矩与公开的输送装置相比也很小。此外的优点是,通过活塞与汽缸壁之间的间距,在输送装置较长时间停车后在活塞和汽缸壁之间没有接触腐蚀。此外的优点是,介质通过活塞输送,并且每个面只需安装一个阀门,以致于可以实现大的阀门面积,因而再次减少输送装置的流动损失。因为介质在各活塞运动的工作室中的流动方向不必逆反,所以这一点在共振送气时也非常有益。
图10所示为一通过介质驱动的装置的一实施例的侧视图,以下简称内燃机101,有一外壳102和一工作装置103。在外壳102中可转动置放一传动轴104,由工作装置103产生的转矩可传递其上。在传动轴104的自由端布置有与传动轴固定连接的曲拐圆盘105。在与曲拐圆盘105或传动轴104的纵向中间轴偏心的,图10中没有标出的紧固槽中,可转动置放有一叉形件107,其围绕图10中水平移动的轴110摆动的叉臂109与组合件111连接。组合件111与活塞轴112固定连接。
工作装置103包括罐形下缸体113以及圆形板构成的缸盖115,该缸盖与下缸体113利用适当的固定件连接在一起,例如利用机械螺丝。在外壳102中布置有精密轴承117,它引导活塞轴112准确转动并也可准确的轴向定位。在工作装置103的空心圆柱形下缸体113的内腔中布置有压板119,壳体121以及气道接板123,相互叠置,壳体121布置在罐形下缸体113底上的压板119和油路接板123之间。
图11所示为壳体121实施例原理草图的俯视图,壳体中铸有一个开口式凹槽125,其中活塞结构部件127围绕活塞轴112的纵向中间轴进行分度运动。与活塞轴112固定连接的活塞结构部件127有第一个活塞129和第二个活塞131,两个活塞相对于活塞结构部件127的旋转中心133径向向外偏移。旋转中心133处于活塞轴112的转动轴(纵向中间轴)上。活塞结构部件127有一圆形中间件135,第一个和第二个活塞129,131从中间件翼形径向向外伸展,各自的活塞129,131一直延伸到凹槽125的侧壁137。侧壁137构成弯曲形状,它以旋转中心133为圆心的圆周曲率和半径r相应。
活塞129,131各自的侧面139与侧壁137的内曲率相对应并因此呈凸拱形。凹槽125的侧壁137以极小的间隙无接触式面对活塞的侧面139,因此那里在一定程度上形成一种密封。由于活塞129,131的侧面124和凹槽125的侧壁137之间为非常薄的间隙以及在活塞的运动方向上所见侧面139的长度相当长,这里不需要单独的密封件,例如密封圈,密封环或这类密封件。以极小间隙面对活塞结构部件127的中间件135的凹槽125的侧壁141与中间部件135的外周表面143相配合,以致于虽然活塞结构部件127可以围绕旋转中心133运动,但是所提到的面之间仍形成一种密封。由于非常小的间隙高度,这里也可以不采用附加的密封或密封件。
从图11可以看出,活塞129和131可在其中来回运动的凹槽125的范围构成环形。这些环形的工作室,活塞129和131各自处于其中,通过活塞129,131分为各自的进气室144或146和燃烧室145或147。当活塞结构部件127环绕旋转中心133顺时针运动时,通过活塞129的移动,燃烧室145变小,同时进气室144变大,而此时燃烧室147通过活塞131的移动变大,而与燃烧室147共同作用的进气室146变小。
在凹槽125的底部149中,在活塞129,131的工作室范围内配有各自的进气通道151和用于排出的排气通道153。进气通道151在这里的接口处为圆形,排气通道153为四方形接口。不言而喻,其构造可以变化;例如排气通道153和燃烧室145,147的接口处可以为腰子形。
此外,内燃机101有一点火装置155,它包括每个燃烧室145,147各自的一个火花塞155。插入壳体121中的袋式孔159中的火花塞157拧入螺丝孔中并一直到各自的燃烧室145或147中露出来为止,以致于可将处于燃烧室145,147中受到压缩的燃料一空气混合体点燃。内燃机点火装置的构造和功能一般来说众所周知,因此不再对其构造作详细说明。
图14所示为按图10所介绍的气道接板123的侧视图,其中配有和用虚线表示的进气室161或排气室163接口的进气通道151′和排气通道153′。进气室161与一未标出的燃料或燃料-空气混合体输送管连接,排气室163与废气管(排出)连接。在工作装置103组装状态下,气道接板123接合面165靠在壳体121的后端面,也就是靠在壳体121不具有凹槽125的端面上,气道接板123中的进气通道151′之一分别与各自的进气室144或146中的进气通道151对正。在进气通道151和/或者进气通道151′中各有一图中未标出的逆止阀,该阀可使气体从进气室161进入进气室144或146,并阻止从进气室161吸入的燃料-空气混合体从进气室144或146回流进入进气室161。不言而喻,也可选择内燃机的构成,使其不需要阀门,特别是逆止阀。
图13所示为由一平面板构成的工作装置103的压板119实施例的俯视图。在压板的中心有一通孔167,活塞轴112从中穿过。在压板119的接合面168中配置两个相对于压板119的圆心径向向外偏移布置的排泄槽169或171,在工作装置103组装状态下,压板119的接合面168靠在壳体121带有凹槽125的端面上。对其功能下面还要做详细说明。
在该实施例中,长孔形的敞开式排泄槽169,171的布置和构造可以变化。在另一个未做图示的结构改变实施例中,排泄槽169,171由至少部分穿过压板119的通孔构成。在压板119安装状态下,必须封闭背对着壳体正面的压板端面上的通孔。为此可以将例如一块盖板安装到压板上,例如拧上。
图12所示为借助图11所介绍的实施例的外壳组件121的俯视图。活塞结构部件127在这里布置在通过围绕旋转中心133顺时针旋转进入的终端位置上。在图11所示的活塞结构部件127的定位中,该部件处于其通过逆时针旋转进入的另一个终端位置上。
借助图10至图14所介绍的内燃机101在这个实施例中是一台例如燃汽油和/或者燃柴油的二冲程内燃机。不言而喻,该内燃机101也可以使用其它燃料,例如甲烷。在内燃机101运行时,通过活塞部件127往复式的来回运动,活塞轴112连同固定安装在其上的组合部件111处于往复运动状态。由此叉形件107以相应的方式运动,因此推动曲拐圆盘105回转。此时所传递的转矩,如所说过的那样,可以在回转的传动轴104上减少。在内燃机101的另一个未做图示的实施例中规定,该内燃机为四冲程传动工作,因此采用相应的结构变化。
下面对二冲程内燃机的两个工作冲程作详细说明从图11所示的活塞结构部件127的位置出发,通过活塞结构部件127围绕旋转中心133顺时针转动,活塞129的第一个冲程开始。此时,来自进气室161中的燃料-空气混合气体经进气通道151,151′被吸入属于燃烧室145的进气室144。处于燃烧室145中的燃料-空气混合气体从此刻起受到压缩,此时活塞129经过排气通道153并由此将其覆盖,也就是关闭排气口。活塞129到达一如图12所示的确定位置后,借助点火装置155将燃烧室145中的燃料-空气混合气体点燃。活塞129继续进行的运动,也就是第二个冲程,然后以相反的方式完成,就是说,活塞129这时逆时针返回图11所示的位置。根据排气通道153的布置和压板119中图12虚线所示的排泄槽169的构造,在通过活塞129逆时针围绕旋转中心133的往复运动在进气室144中受到压缩的燃料-空气混合气体经过排泄槽169到达燃烧室145之前,排气通道153首先打开。在活塞129连同转向燃烧室145的侧面经过排泄槽169的右终端范围之后,在进气室144中预先受到压缩的混合气体通过排泄槽169流入燃烧室145,燃烧室由此受到吹扫,就是说,仍处于燃烧室145内的废气最好是完全,至少是最大程度地通过排气通道153排出。相应过程也出现在活塞131上,根据进气通道和排气通道在壳体121中的布置和构造,燃料-空气混合气体通过活塞运动被吸入进气室146而同时活塞131压缩处于燃烧室147中的燃料-空气混合气体。
这一切都表明,内燃机101也可仅包括一个活塞或两个以上的活塞,例如三个或四个活塞。还可确定,活塞129,131在其图11和图12所示的终端位置不与凹槽25的侧面接触,而是最好与其有一个非常小的间隙。
在借助这些图所介绍的内燃机101的实施例中,活塞结构部件127的传动这样设计,每当活塞129,131各自经过半个活塞行程时,传动轴104旋转90°。因此这里为正弦形传动,由此内燃机可实现平稳运行。
有关图10还要提及的是,由组合件111,叉形件107和曲拐圆盘105组成的从动装置也可用公开的像在刮水器传动装置中所使用的曲轴传动装置代替。此外可以配置,至少两个工作装置103重叠布置。其传动共同通过传动轴104完成。为此配置,两个工作装置103的活塞轴112为通轴结构。这样只配备一根活塞轴112,其上重叠布置两个,各自至少有一个活塞的活塞结构部件。
该内燃机以优越的方式可与液态或气态介质输送装置组合使用。在一结构变化的实施例中规定,该输送装置包括至少一个可围绕轴转动的,其上至少装有一个活塞的活塞结构部件,输送装置的活塞结构部件与内燃机的活塞轴112固定连接。由内燃机和输送装置构成的单元具有结构简单、紧凑以及成本低廉的特征。此外的优点是,由内燃机产生的活塞轴112的往复运动不必为传动输送装置转换为旋转运动,而是导入活塞轴112的传动转矩可以直接为我们所利用且无损耗。在该结构变化实施例中,图10所示的传动轴104最好只作为内燃机活塞结构部件和输送装置活塞结构部件的引导器或冲程限制器。通过内燃机和输送装置布置在组合件111和曲拐圆盘105的左侧和右侧,将两个装置所反射的热量对其它部件的影响减少到没有损害的程度。
总而言之可以确定,通过借助至少一个轴承在燃烧室外面对活塞运动的精确引导,内燃机至少一个活塞的运动轨道可以受到如此精确的引导,以致于可以使活塞不与燃烧室的侧壁接触。燃烧室,特别是活塞侧面139与各自燃烧室侧壁137(燃烧室壁)之间间隙的密封,仅根据这两个面之间的微小间距就可完成。就是说,不需要像现有技术中所公开的内燃机上所采用的那种单独的密封。此外,活塞可以取消润滑,因为活塞不在燃烧室壁上滑动。由此得出的另一个优点是,单个活塞/数个活塞不接触/接触燃烧室壁,泄气、进气和排气通道或槽的构造实践上可以任意采取。内燃机1此外还具有结构简单,成本低廉的特征。根据上面所介绍的构造,内燃机的单个活塞或数个活塞与燃烧室壁之间的滑动摩擦得以避免,以致于内燃机,最好是在冷态下,可以微小的力起动。
权利要求
1.输送液态或气态介质或通过介质进行驱动的装置,有一活塞/汽缸,其特征在于,活塞的运动借助一轴承(精密轴承)进行,并且该轴承(精密轴承)处于汽缸(汽缸室,燃烧室)的外面。
2.按权利要求1所述的装置,其特征在于,介质借助于活塞运动吸入并借助相反的活塞运动以及靠一阀装置的作用进行输送。
3.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)围绕一旋转中心(21)进行分度运动。
4.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)布置在一旋转部件(活塞结构部件18)上。
5.按前述权利要求之一所述的装置,其特征在于,旋转部件(活塞结构部件18)由轴承(精密轴承17)引导并且活塞(19,20)径向偏转中心(21)。
6.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)进行往复运动。
7.按前述权利要求之一所述的装置,其特征在于,和第一个活塞(19,20)端面面对的第一个汽缸壁(25至28)配有至少一个逆止阀(35至38,51至58)。
8.按前述权利要求之一所述的装置,其特征在于,和第一个活塞(19,20)端面面对的第一个汽缸壁(25至28)配有至少两个具有彼此相反的导通方向的逆止阀(35至38,51至58)。
9.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)具有至少一个逆止阀(40至43)。
10.按前述权利要求之一所述的装置,其特征在于,第二个活塞(19,20)端面对面的第二个汽缸壁(25至28)配有至少一个逆止阀(35至38,51至58)。
11.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)的侧面(24)和缸体(14)的内壁(内侧面(23))之间的间距,特别是在该装置运行时非常小。
12.按前述权利要求之一所述的装置,其特征在于,活塞(19,20)对着未设置密封件的缸体内壁在汽缸室(32,33)中运行。
13.特别是按前述权利要求之一所述的装置,特别是内燃机,带有至少一个燃烧室和至少一个活塞,通过活塞运动燃烧室变小并通过活塞的反向运动燃烧室变大。
14.按前述权利要求之一或多条所述的装置,其特征在于,活塞对着未设置密封的燃烧室壁(侧壁137)在燃烧室(145,147)中运行。
15.按前述权利要求之一或多条所述的装置,其特征在于,活塞(129,131)的侧面(139)和燃烧室壁(侧壁137)相对放置极小距离。
16.按前述权利要求之一所述的装置,其特征在于,活塞(129,131)围绕一旋转中心(133)进行分度运动。
17.按前述权利要求之一所述的装置,其特征在于,活塞(129,131)布置在一旋转部件(中间件135)上,最好是整体的。
18.按前述权利要求之一所述的装置,其特征在于,旋转部件(中间件135)受到轴承(精密轴承117)的引导,而且活塞(129,131)径向对着旋转中心(133)。
19.按前述权利要求之一所述的装置,其特征在于,活塞(129,131)进行往复运动。
全文摘要
本发明涉及介质,特别是气体或液体的带有一活塞/汽缸的输送装置,介质借助活塞运动吸入并借助活塞的反向运动以及靠一阀装置的作用输送。规定活塞的运动借助一轴承如精密轴承进行,并且该轴承如精密轴承处于汽缸如汽缸室,燃烧室的外面。
文档编号F01C9/00GK1276848SQ98810418
公开日2000年12月13日 申请日期1998年10月28日 优先权日1997年10月28日
发明者恩斯特·贝克 申请人:恩斯特·贝克
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1