电解铜箔以及其制造方法

文档序号:5280066阅读:265来源:国知局
专利名称:电解铜箔以及其制造方法
技术领域
本发明涉及电解铜箔以及该电解铜箔的制造方法。尤其涉及具有适用于锂离子二次电池用集电器的拉伸强度、延展率等的物理特性,且也能使用于印刷布线板制造用的覆铜层压板制造中的电解铜箔。
背景技术
近年来,由于环境保护意识的提高以及资源回收利用要求的提高,锂离子二次电池作为可重复使用的有用电源而得到普及,例如其被使用在携带至户外的笔记本电脑、手机、电视、摄像机等产品中。随着这些电器产品以及电子设备的小型化,对作为电源供给源的锂离子二次电池也提出了小型、高寿命、轻量,且发挥高能量密度的要求。 回顾锂离子二次电池的开发历史,在构成锂离子二次电池的负极的负极集电器中尝试使用了表面平滑性优异的压延铜箔。在现在的构成锂离子二次电池的负极的负极集电器中,使用的是压延铜箔或电解铜箔中的任意一者。在该锂离子二次电池的负极的制造过程中,如专利文献I或专利文献2所公开的那样,存在负载高温的工序。在该工序中,作为构成负极的负极集电器的铜箔中也被负载了高温。其结果,如果该铜箔发生软化,则会有容易受到锂离子二次电池重复充放电时的、负极活性材料的膨胀收缩带来的变形应力的影响的问题。针对该问题,当采用由较廉价的韧铜获得的压延铜箔时,由于容易发生加热导致的重结晶而发生软化,从而容易受到重复上述充放电时的膨胀收缩应力的影响,且锂离子二次电池的寿命的延长较为困难。另外,压延铜箔来源于其制造方法,因此昂贵,从而难以用比电解铜箔更低廉的价格进行提供。这一点对于经营者而言,成为了为了赢得世界性价格竞争的障碍。另外,由于压延铜箔难以展宽作为铜箔,因此难以提高电池制造中的生产效率,从而产品成本的削减有限,成为了不可回避的缺点。对此,一直以来认为,电解铜箔由于难以发生加热导致的重结晶且难以软化,从而对重复上述充放电时的膨胀收缩应力的抵抗力强。另外,由于电解铜箔比压延铜箔廉价,能提高市场中的锂离子二次电池在价格层面的收益性,从而作为压延铜箔的替代品,电解铜箔的使用一直被积极考虑。其结果,现在,两面都具有等同于压延铜箔的薄型表面的电解铜箔,被广泛使用于锂离子二次电池的负极集电器用途中。作为该两面都具有等同于压延铜箔的薄型表面的电解铜箔的相关技术,如专利文献3、专利文献4等所公开的那样,为了降低电解铜箔的析出面的表面粗糙度而进行了发明,在所述发明中控制了用于电解铜箔制造的铜电解液的电解液组成、电解液温度、电流密
/又寸。在专利文献3中,以制造在印刷电路基板制造中有用的、蚀刻性能和阻抗控制性能优秀的电沉积铜箔为目的,采用了 “包含(A)电解溶液在阳极和阴极之间流过,进而在该阳极和该阴极之间施加使得该阴极上析出铜的有效量的电压的工序;此处,该电解溶液含有铜离子、硫酸离子和至少一种有机添加物或者其衍生物,该溶液的氯离子浓度为约达Ippm ;电流密度为约O. I 约5A/cm2的范围;以及(B)从该阴极去除铜箔的工序。”的制造方法。即,采用了这样的电解条件使用控制了氯浓度的铜电解液。且,在专利文献4中,采用了这样的电解条件,其特征在于,使用了含有O. 05 2. O重量ppm的硫脲或其衍生物,O. 08 12重量ppm的高分子多糖类,以及分子量10000以下、O. 03 4. O重量ppm的胶作为添加剂的电解液。其结果,制造出了该电解铜箔的析出面的表面粗糙度接近压延铜箔表面粗糙度水平的电解铜箔。进而,在专利文献5中指出,结晶组织微细化、且减小了表面粗糙度的专利文献3、专利文献4等各公报所记载的电解铜箔存在无法充分满足市场对循环充放电寿命、过充电特性方面的需求的状况。根据该专利文献5可知,作为影响循环充放电寿命和过充电特性的铜箔特性无法用十点平均粗糙度Rz来表示的表面的平滑性、常温抗张强度、延展率、非重结晶性、高温环境中的延展率是重要的,且作为在二次电池特性中获得最好效果的铜箔的成功例子,专利文献5的实施例I中公开了这样一种电解铜箔。即“在含有五水硫酸铜280g/L、硫酸100g/L、氯离子35ppm的硫酸酸性硫酸铜电解液中添加平均分子量3000的低 分子量明胶7ppm、羟乙基纤维素3ppm、3-巯基-I-丙烷磺酸钠lppm,且电解液温度55°C、流速O. 3m/分钟、电流密度50A/dm2的条件”等来制造的电解铜箔,“其特征在于,电解铜箔析出面的表面粗糙度以十点平均粗糙度Rz表示,常温下的结晶组织是小于2. 5μπι的微细结晶,同时,山基础的最小峰间距离为5μπι以上,常温抗张强度为40kg/mm2以下,且在130°C、15小时的热处理后的常温抗张强度的降低为15%以内,不发生热软化。”现有技术文献专利文献专利文献I :日本特开2006-236684号公报专利文献2 :日本特开2008-282550号公报专利文献3 :日本特开平7-188969号公报专利文献4 :日本特开平8-53789号公报专利文献5 日本特开2004-79523号公报

发明内容
发明要解决的问题但是,在用于锂离子二次电池的负极集电器的电解铜箔中,如上述专利文献5所指出的那样,不仅总是要求改良影响循环充放电寿命和过量充电特性的铜箔的特性,而且还存在电解铜箔的延展率、拉伸强度等物理特性的偏差成为问题的情况。探究其原因,可以认为电解铜箔制造时所用的铜电解液包含的氯是原因。该氯,有时被有意地添加并加以控制,有时也通过氯乙烯配管等而作为不可避杂质混入。进而,基于电化学观点,电解液中的氯,即使只有微量的变动,也是容易对产品品质带来影响的成分。因此,本领域技术人员认为,虽然针对用电化学方法制造的电解铜箔,进行了以减少电解铜箔本身品质的偏差为目的的制造方法的改良,但氯浓度的变动是不可避的主要原因。另一方面,对用于锂离子二次电池用集电器中的电解铜箔提出了更高的品质稳定的要求,即,在接受现有的电解铜箔的基础上,要求具有即使加热也难以软化的耐热抗软化性、耐弯曲特性、在实际上固载了负极活性材料的“带有负极活性材料的集电器(负极)”的状态下的集电器弯曲性能等的高水准的品质的稳定。解决问题的方法因此,本发明人进行潜心研究的结果,作为充当锂离子二次电池用集电器的构成材料和印刷布线板制造用的覆铜层压板的适宜的电解铜箔,想到了如下所述的电解铜箔。另外,通过采用以下所述的制造方法,使得本发明的电解铜箔的高效生产成为可能。本发明的电解铜箔本发明的电解铜箔是通过电解铜电解液而获得的电解铜箔,其特征在于,电解铜箔中的碘含有量为O. 003质量%以上。本发明的表面处理铜箔本发明的表面处理铜箔,其特征在于,对上述含有碘的电解铜箔的表面实施了表面处理。 本发明的电解铜箔的制造方法本发明的电解铜箔的制造方法,其是上述含有碘的电解铜箔的制造方法,其特征在于,采用碘浓度为I. 5mg/L 15. Omg/L范围的硫酸酸性硫酸铜电解液作为铜电解液。且,该铜电解液进一步优选氯浓度为I. Omg/L以下。且,在本发明的电解铜箔的制造方法中,优选以铜电解液的温度为40°C 60°C、电流密度50A/dm2 85A/dm2的电解条件进行电解。用本发明的表面处理铜箔得到的锂离子二次电池用负极本发明的锂离子二次电池用的负极,其特征在于,将上述本发明的表面处理铜箔作为负极集电器而使用。发明的效果本发明的电解铜箔,如上所述的那样,是含有O. 003质量%以上碘的电解铜箔。由此,通过使电解铜箔的板材铜内含有碘,从而即使电解铜箔中的氯含有量变动,也能表示出稳定的物理特性。因此,通过将本发明的电解铜箔用于锂离子二次电池的负极中,从而能廉价地向市场提供对伴随充放电发生的膨胀收缩现象的抵抗力优异、且长寿命的锂离子二次电池。


图I是用于检验“电解铜箔物理性质”和“电解铜箔含有的碘含有量与氯含有量”关系的图。
具体实施例方式以下依次对本发明的电解铜箔、表面处理铜箔的制造方法、用该表面处理铜箔得到的锂离子二次电池用的负极作详细说明。本发明的电解铜箔的形态本发明的电解铜箔是通过电解铜电解液而得到的电解铜箔。该电解铜箔的特征在于,电解铜箔中的碘含有量在O. 003质量%以上的范围。如此地含有碘的电解铜箔适宜充当锂离子二次电池用集电器,且能同时提高耐热抗软化性、耐弯曲特性、以及在实际上固载了负极活性材料的“带有负极活性材料的集电器(负极)”的状态下的集电器弯曲性能。此处,电解铜箔中的碘含有量优选为O. 003质量%以上。当该碘含有量不足O. 003质量%时,任何特性都不稳定,产品品质的稳定变得困难。另一方面,如果电解铜箔中的碘含有量为O. 003质量%以上,则即使电解铜箔中的氯含有量变动,也能表现出稳定的物理特性,从而优选。但是,严格地说,如果该碘含有量超过O. 03质量%,则上述所有特性均无法得到进一步提高,反而会导致电解铜箔的脆化,弯曲特性变差,且肉眼观察下的外观品质的降低也有变严重的倾向,从而碘含有量优选为O. 03质量%以下。另外,在本申请的电解铜箔中,优选在控制上述碘的基础上,还控制电解铜箔中的氯含有量。即,本发明的电解铜箔中,通过化学分析法测定的氯含有量优选在0.0000质量% O. 0018质量%的范围。即,当电解铜箔含有的氯含有量在O. 0018质量%以下时,由于析出面的表面粗糙度变低,容易获得薄型化的析出面,从而优选作为锂离子二次电池用集电器的构成材料。进而,在实施例和比较例的对比处有详细的叙述,简言之即,为了提高接受高温加热时的耐热抗软化性,优选该氯含有量在O. 0006质量% O. 0018质量%。进而,在本发明的电解铜箔中,通过化学分析法测定的氯含有量和碘含有量优选满足以下式I的关系(适用于锂离子二次电池的负极集电器用途的、电解铜箔的氯含有量和碘含有量的关系)。通过满足这样的关系,从而即使在350°C左右的温度下接受加热,也能显示出极高的耐热抗软化性。关于这一点将在后述的实施例中进行详细说明。以下先对氯·含有量和碘含有量的分析方法进行阐述。[式I][碘含有量(质量%)]彡-30X [氯含有量(质量%) ] +0. 03按照以下方法测定氯含有量。在硝酸中加热铜箔并使其溶解后,加入一定量的硝酸银溶液。然后,加入一定量的KBr溶液,与溴化银一起使氯化物离子进行共沉淀。在暗处静置15分钟后,过滤出沉淀物并进行洗净。之后,将沉淀物转移到烧杯中,用硫脲溶液将沉淀物进行溶解,并在暗处放置一晚。稀释该溶液并定容,用离子色谱仪(Dionex公司制造的ICS-2000,电导率检测器,洗脱液为Κ0Η,柱为AS-20)测定氯化物离子浓度,算出氯含有量。按照以下的方法测定碘含有量。将铜箔在王水中加热使其酸化溶解,冷却后进行定容,借助ICP-AES (精工精密株式会社制造的SPS3000)测定I :178nm (Ar清洗)的强度,算出碘含有量。另外,用气体分析法对本发明的电解铜箔进行测定的结果本发明的电解铜箔具有这样的成分特征,即,碳、氧、硫、氮的各成分的总计的主要杂质含有量在0.01质量%以下。现阶段,在用于锂离子二次电池的负极集电器的电解铜箔中,这些主要杂质含有量有什么样的作用尚不明朗。但是,这里所说的主要杂质成分是容易在晶界偏析的元素,且如果主要杂质含有量为0.01质量%以下,则电解铜箔的韧性增强,延展率和拉伸强度表现出良好的平衡性。进而,本发明人用辉光放电质谱仪对本发明的电解铜箔进行了铜纯度的测定。其结果,用辉光放电质谱仪得到的铜纯度为99. 99质量%以上的高纯度的值。确实,如果考虑到用上述化学分析法测定的碘含有量和氯含有量,和用气体分析法而测定的碳、氧、硫、氮的各成分的总计的主要杂质含有量,则与用该辉光放电质谱仪而得到的铜纯度,并不能形成相互吻合的值,但可以认为这是由于分析方法不同而产生的误差。其次,对本发明的电解铜箔所具有的物理特征进行阐述。且,在说明该物理特征时,假定了电解铜箔的板材厚度为18 μ m± I. 8 μ m的情况来进行说明。对本发明的电解铜箔的析出面的表面粗糙度进行说明。可知,本发明的电解铜箔的析出面的表面粗糙度的Rzjis的值在O. 70 μ m 2. O μ m的范围,是薄型的析出面。此处,如果Rzjis的值超过2. O μ m,则在制造锂离子二次电池用负极时,均一地固载负极活性材料变得困难。另外,如果重复充放电,则集电器表面的凸部中,锂容易生长为枝蔓晶状的倾向变强,从而不优选。另一方面,当Rzjis的值不足O. 7μπι时,则表面状态过于平滑,充当锂离子二次电池的负极集电器来使用时,负极活性材料和负极集电器之间的粘附性变低,从而不优选。进而,为了使作为锂离子二次电池的特性稳定,优选电解铜箔两面的Rzjis值的差在O. 6μπι以内。且,这里所说的Rzjis (十点平均粗糙度)是基于JIS Β0601,并用探针式表面粗糙度测定仪(探针顶端的曲率半径O. 2 μ m)测定的值。对本发明的电解铜箔在常态下测定的物理特征进行阐述。本发明的电解铜箔的常态延展率(Etl)的值优选在2.0% 9.0%的范围。当常态延展率为2.0%以上时,适用于锂离子二次电池的负极集电器。另一方面,当常态延展率为9.0%以下时,用于锂离子二次电池的负极集电器中时的、伴随充放电时的膨胀收缩的变形阻力在适当的范围。且,在本申请中,该延展率的测定以及后述的拉伸强度的测定是,通过对IOmm宽的电解铜箔试样进行拉伸试验而测定的值。
进而,本发明的电解铜箔的常态拉伸强度(Ftl)的值表现为在48kgf/mm2 72kgf/mm2的范围。当常态拉伸强度(Ftl)的值为48kgf/mm2以上时,用于锂离子二次电池的负极集电器中时的、与充放电时的膨胀收缩对应的变形阻力有变良好的倾向。另一方面,当常态拉伸强度(Ftl)的值为72kgf/mm2以下时,其稳定地处于上述适宜的常态延展率的范围。下面,对本发明的电解铜箔在进行一定的加热处理后所测定的物理特征进行阐述(以下有简称为“热后”的情况。)。此处所说的加热处理指的是,在大气环境中对常态的电解铜箔实施180°C X60分钟的加热处理。本发明的电解铜箔的热后延展率(Ea)的值在4% 10%的范围。在印刷布线板的制造过程中以铜箔构成的电路、以及在锂离子二次电池的负极的制造过程中的以铜箔制造的负极集电器,被暴露于各种高温负荷环境中。因此,该电解铜箔的热后物理性质成为左右产品品质的非常重要的要素。如果热后延展率(Ea)的值为4%以上,则是在锂离子二次电池的负极集电器用途中的适宜的延展率。另一方面,当热后延展率为10%以下时,在用于锂离子二次电池的负极集电器中时的、伴随充放电时的膨胀收缩的变形阻力在适宜的范围。进而,本发明的电解铜箔在180°C X60分钟的加热处理后的热后拉伸强度(Fa)的值表现为在38kgf/mm2 72kgf/mm2的范围。当热后拉伸强度(Fa)的值为38kgf/mm2以上时,难以受到加工过程中的热履历的影响,且用于锂离子二次电池的负极集电器中时的、与充放电时的膨胀收缩对应的变形阻力也有变良好的倾向。另一方面,如果热后拉伸强度(Fa)的值为72kgf/mm2以下,则容易维持上述适宜的常态延展率的范围,因此优选。另外,在本发明的电解铜箔中,作为物理特征,上述常态拉伸强度(Ftl)的值、和上述180°C X60分钟的加热处理后的热后拉伸强度(Fa)的值优选满足以下式2的关系。[式2][常态拉伸强度(F。)]-[热后拉伸强度(Fa)] ( 10kgf/mm2该式2的含义为,“常态拉伸强度(匕)”和“热后拉伸强度(Fa)”的差小,即使受到一定的加热也难以软化。在锂离子二次电池的负极的制造加工过程中,铜箔受到各种热履历的影响。其结果,如果该铜箔软化,则作为锂离子二次电池的负极强度所要求的弯曲性能、用于负极集电器中时的与充放电时的膨胀收缩对应的变形阻力的所有的偏差将变大,无法确保作为锂离子二次电池的品质稳定性,因此不优选。从而,要求具有与这样程度的加热相对应的抗软化能力。进而,本发明的电解铜箔的物理特征优选表现出高弯曲性能,即在180°C X 60分钟的加热处理后的热后耐弯曲试验中的、到断裂为止的弯曲次数为3000次以上。如果热后耐弯曲试验中的弯曲次数为3000次以上,则用于锂离子二次电池的负极集电器中时的、与充放电时的膨胀收缩对应的变形阻力为飞跃性提高,使得产品寿命的延长成为可能。此处所说的热后耐弯曲试验,即使在印刷布线板用的电解铜箔的情况下,也是被要求的重要的特性。且,关于该弯曲次数,虽然没有明确地记载出 上限值,但根据经验而言为6500次左右。且,此处所说的热后耐弯曲试验是,基于JIS C 5016的测定方法、用TESTER产业株式会社制造的挠性弯曲试验机器(弯曲半径1mm,弯曲速度100cpm,行程20mm),对宽IOmmX长IOcm的短条状的电解铜箔,在180°C X60分钟的加热处理后,测定其到断裂为止的弯曲次数的试验。本发明的表面处理铜箔的形态本发明的表面处理铜箔,其特征在于,对上述的含有碘的电解铜箔的表面实施各种表面处理。该表面处理指的是,在上述的电解铜箔表面实施粗糙化处理、防锈处理、硅烷偶合剂处理中的一种或者两种以上的处理。该表面处理是,考虑了不同用途的要求特性,以付与粘合强度、耐化学药品性、耐热性等为目的,对电解铜箔表面实施的处理。另外,关于硅烷偶合剂处理,如果是用于锂离子二次电池的负极集电器中的电解铜箔时,则优选在电解铜箔的两面实施,如果是用于印刷布线板中的电解铜箔时,则优选在电解铜箔的一个面实施。本发明的电解铜箔的制造形态本发明的电解铜箔的制造方法是上述的含有碘的电解铜箔的制造方法,其特征在于,此处所用的硫酸类铜电解液的组成。且,此处所说的硫酸类铜电解液中的铜浓度采用50g/L 120g/L的范围,进一步优选采用50g/L 80g/L的范围。另外,游离硫酸浓度考虑以60g/L 250g/L的范围为基准,进一步优选考虑以80g/L 150g/L的范围为基准。该硫酸类铜电解液中的碘浓度优选在I. 5mg/L 15. Omg/L的范围。进一步优选在2. 5mg/L 7. Omg/L的范围。当硫酸类铜电解液中的碘浓度不足I. 5mg/L时,进入由电解析出的电解铜箔中的碘量不足,从而获得的电解铜箔无法获得上述适宜范围的表面粗糙度、延展率、拉伸强度等物理特性,各种物理性质也有随着时间的推移而变化加剧的倾向,因此不优选。另一方面,如果该碘浓度超过15. Omg/L,则电解铜箔中的碘含有量增加,将发生前述问题。另外,通过使该碘浓度在7. Omg/L以下,从而能兼顾电解铜箔析出面的平滑性和良好的机械强度。在此时的碘的添加中,优选使用NaI、KI等碘化物。另外,本发明使用的铜电解液的氯浓度优选I. Omg/L以下的浓度。如果该氯浓度超过I. 0mg/L,则获得的电解铜箔容易脆化,因此不优选。进而,为了进一步稳定本发明的电解铜箔含有的氯浓度的范围,优选在0. 4mg/L 0. 8mg/L的范围。通过采用该范围的氯浓度,从而平衡良好地含有上述各成分,且析出面薄型化,使得高强度的电解铜箔的稳定制造成为可能。当进行该硫酸类铜电解液中的氯浓度的调整时,优选用盐酸或氯化铜(II)进行调整。这是由于它们不会对硫酸类铜电解液的溶液性状带来不良影响。进而,在本发明的电解铜箔的制造方法中,优选在铜电解液的温度为40°C 60°C、电流密度50A/dm2 85A/dm2的范围下进行电解。当溶液温度不足40°C时,缺乏电解的稳定性,得到的电解铜箔的拉伸强度和延展率等物理强度的偏差有变大的倾向。另一方面,如果溶液温度超过60°C,则溶液中的水分蒸发加剧,溶液组成的稳定性不足,从而使工序管理变得繁杂,因此不优选。另外,如果此处所说的电解时的电流密度不足50A/dm2,则无法获得工业性所要求的生产效率,生产效率降低,从而不优选。另一方面,如果电解时的电流密度超过85A/dm2,则制造的电解铜箔析出面的表面粗糙度、拉伸强度等物理特性方面容易发生偏差,从而不优选。用本发明的表面处理铜箔而获得的锂离子二次电池用负极用本发明的表面处理铜箔而获得的锂离子二次电池用负极,其特征在于,采用了上述 的表面处理铜箔作为负极集电器。通常,锂离子二次电池用的负极是,在作为负极集电器的表面处理铜箔的表面进行负极活性材料的固载,从而得到带有负极活性材料的负极集电器状态的负极。在该制造工序中,通过采用用了本发明的电解铜箔的表面处理铜箔,从而能同时提高良好的耐热抗软化性、耐弯曲特性、以及在实际上固载了负极活性材料的“带有负极活性材料的集电器(负极)”状态下的集电器弯曲性能。本发明的电解铜箔的其他应用领域本发明的电解铜箔以及表面处理铜箔还可转用于印刷布线板制造用覆铜层压板(上下文中有简称为“覆铜层压板”的情况。)的制造中。例如,将上述的表面处理电解铜箔与绝缘层构成材料进行层叠,从而也能获得印刷布线板制造用覆铜层压板。且,为了慎重起见特在此指明,此处所说的覆铜层压板的概念中包含刚性覆铜层压板、和挠性覆铜层压板这两者。本发明的电解铜箔由于是薄型的,从而适用于含有TAB、COF等的挠性印刷布线板所要求水准的精细线路的形成。以下,为了容易理解本发明的电解铜箔等,从而展示实施例。实施例在该实施例中,作为硫酸类铜电解液采用了硫酸铜溶液中的铜浓度80g/L、游离硫酸浓度140g/L的基本溶液,并调整至表I所示的各添加剂浓度。此时的碘添加使用碘化钾(KI)来进行,且在氯浓度的调整中使用了盐酸。进而,用表I所示的具有不同的添加剂配合比例组成的硫酸类铜电解液,制造出试样I 试样8的八种含有碘的电解铜箔。且,该实施例是用于,通过与比较例进行对比从而使得作为铜箔的一般物理性质的差异明朗化的实施例。在电解铜箔的制造中,作为阴极采用通过2000 #的砂纸对表面进行了研磨的钛板电极,而阳极采用DSA,并在溶液温度50°C、电流密度75A/dm2的条件下进行电解,从而制造出厚度18ym的、含有碘的电解铜箔。这些电解铜箔的光泽面(析出面的反对侧的面)的表面粗糙度(Rzjis)为I. 4μπι。将此处得到的电解铜箔的各特性的评估结果总结于表2中,从而能与以下的比较例进行对比。这里对各种测定条件等进行说明。实施例试样的常态以及热后的拉伸强度、延展率的测定基于IPC-TM-650来进行。另外,表面粗糙度的测定基于JISB 0601-2001来进行。以下的比较例也相同。比较例该比较例的比较试样I和比较试样2采用了碘浓度O. 5mg/L以下的铜电解液,且该比较例是用于和上述实施例进行对比的比较例。进而,比较试样3和比较试样4采用了碘浓度O. Omg/L的铜电解液(不含有碘的铜电解液)。其它以与实施例相同的制造条件,制得了比较试样I 比较试样4。将上述电解液组成与实施例的电解液组成一并示于后面的表I中。 通过实施例和比较例的对比可明确的结果作为铜箔的基本物理性质的对比参照表I、表2和附图,进行实施例和比较例的对比。[表 I]
权利要求
1.电解铜箔,其是通过电解铜电解液而得到的电解铜箔,其特征在于, 电解铜箔中的碘含有量为O. 003质量%以上。
2.如权利要求I所述的电解铜箔,其特征在于,前述碘含有量为O.03质量%以下。
3.如权利要求I或2所述的电解铜箔,其特征在于,氯含有量在O.0018质量%以下的范围。
4.如权利要求I 3中任一项所述的电解铜箔,其特征在于,氯含有量和碘含有量满足以下式I的关系, [式I] [碘含有量(质量%) ] ^ -30X [氯含有量(质量%) ]+0· 03。
5.如权利要求I 4中任一项所述的电解铜箔,其特征在于,具有Rzjis的值在O. 70 μ m 2. O μ m范围的析出面。
6.如权利要求I 5中任一项所述的电解铜箔,其特征在于,常态拉伸强度(Ftl)的值在 48kgf/mm2 72kgf/mm2 的范围。
7.如权利要求I 6中任一项所述的电解铜箔,其特征在于,180°CX60分钟的加热处理后的热后拉伸强度(Fa)的值为38kgf/mm2 72kgf/mm2。
8.如权利要求I 7中任一项所述的电解铜箔,其特征在于,常态拉伸强度(Ftl)的值、与180°C X60分钟的加热处理后的热后拉伸强度(Fa)的值满足以下的式2的关系, [式2] [常态拉伸强度(F。)]-[热后拉伸强度(Fa) ] ( 10kgf/mm2。
9.如权利要求I 8中任一项所述的电解铜箔,其特征在于,350°CX60分钟的加热处理后的热后拉伸强度(Fb)的值为30kgf/mm2以上。
10.如权利要求I 9中任一项所述的电解铜箔,其特征在于,当板材厚度为18 μ m± I. 8 μ m时,180°C X 60分钟的加热处理后的、耐弯曲试验中的弯曲次数为3000次以上。
11.表面处理铜箔,其特征在于,对权利要求I 10中任一项所述的含有碘的电解铜箔的表面实施了表面处理。
12.电解铜箔的制造方法,其是权利要求I 11中所述的含有碘的电解铜箔的制造方法,其特征在于, 采用碘浓度在I. 5mg/L 15. Omg/L范围的硫酸酸性硫酸铜电解液作为铜电解液。
13.如权利要求12所述的电解铜箔的制造方法,其特征在于,采用氯浓度为I.Omg/L以下的硫酸酸性硫酸铜电解液。
14.锂离子二次电池用负极,其特征在于,权利要求11所述的表面处理铜箔中固载有负极活性材料。
全文摘要
本发明的目的在于,提供即使氯含有量发生变动也能表现出各种稳定的特性的电解铜箔。进而,为了实现该目的而采用一种电解铜箔,其是通过电解铜电解液而得到的电解铜箔,其特征在于,电解铜箔中的碘含有量为0.003质量%以上,该碘含有量进一步优选在0.003质量%~0.03质量%范围。进而,该电解铜箔的氯含有量优选在0.0018质量%以下的范围。
文档编号C25D1/04GK102959135SQ20118003238
公开日2013年3月6日 申请日期2011年7月1日 优先权日2010年7月1日
发明者朝长咲子, 稻场慎太郎, 吉冈淳志 申请人:三井金属矿业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1