缓冲器的制作方法

文档序号:5759521阅读:150来源:国知局
专利名称:缓冲器的制作方法
技术领域
本发明涉及适合于缓冲例如汽车等的振动的缓冲器。
背景技术
通常,二轮或四轮汽车等车辆构成为,在车轮侧和车身侧之间设置液压缓冲器来缓冲行驶时产生的上下方向的振动等。该液压缓冲器通过使用致动器使工作流体所通过的阻尼孔面积发生变化,能够将所产生的衰减力从低衰减力适当地调节到高衰减力。并且,还附加有频率感应机构(衰减力根据输入振动频率降低的机构),通过双方的组合实现乘坐舒适度的提高(例如,参照专利文献1)。例如,如专利文献1的图2所示,即使在将衰减力特性设定为硬特性的情况下,该频率感应机构也能够将衰减力相对于高频输入设定为低衰减力。专利文献1 (日本)特开平6-94065号公报然而,在上述现有技术的缓冲器中,决定频率感应机构的衰减力可变幅度的阻尼孔面积为恒定。因此,在将由衰减力调节式液压缓冲器产生的衰减力变更为硬特性、中等特性或软特性时,不能根据各特性自由地变更频率感应机构的衰减力可变幅度。例如,在为了抑制汽车转向时的侧倾而设定为硬特性的状态下,如果为了降低来自路面的高频振动而加大衰减力可变幅度,并且为了提高在良好路面上行驶时的乘坐舒适度而设定为软特性,则不能得到为了抑制弹簧下共振频率的振动而减小衰减力可变幅度的特性。

发明内容
本发明是鉴于上述现有技术问题而提出的,其目的在于,提供一种在变更了衰减力特性的情况下也能够根据各特性任意地变更频率感应机构的衰减力可变幅度的缓冲器。为了解决上述的课题,第一方面的发明采用的构成为,具备缸部件,封有工作流体;活塞,能够移动地嵌装于该缸部件内,将该缸部件内部分割成两个室;活塞杆,一端侧固定于该活塞,另一端侧向所述缸部件的外部突出;主通路,通过所述活塞的移动,使工作流体在所述缸部件内的两个室之间进行流动;第一通路及第二通路,与该主通路并列设置, 通过所述活塞的移动,使工作流体在所述缸部件内的两个室中从任一室向另一室流动;主衰减阀,设置于所述主通路,对通过所述活塞的移动而产生的所述工作流体的流动进行限制以产生衰减力;衰减力产生机构,设置于所述第一通路,通过所述活塞的移动而产生的所述工作流体的流动进行限制以产生衰减力;自由活塞,设置于所述第二通路中,将该第二通路分隔为上游侧和下游侧;在所述第一通路及第二通路的中途,设有能够调节各自的通路面积的通路面积可变机构。根据本发明,通过通路面积可变机构,能够分别独立的调节第一通路的面积和第二通路的面积。因此,在将由缓冲器产生的衰减力变更为硬特性、中等特性及软特性中的任一特性时,也能够根据各特性自由地改变由自由活塞构成的频率感应机构的衰减力可变幅度。


图1是表示本发明第一实施方式的液压缓冲器的纵剖面图;图2是放大表示图1中的构成缩短侧控制阀的主阀和圆盘阀的纵剖面图;图3是将图2中的主阀作为单体而从下侧看到的仰视图;图4是将图2中的圆盘阀作为单体而从下侧看到的仰视图;图5是放大表示图1中的活塞杆和闸门的局部剖面图;图6是从图5中的VI-VI向视方向看闸门的横剖面图;图7是从图5中的VII-VII向视方向看闸门的横剖面图;图8是表示第一实施方式的闸门位置和开口面积之间关系的特性图;图9是表示第一实施方式的频率和衰减力之间关系的特性线图;图10是表示第二实施方式的液压缓冲器的纵剖面图;图11是表示第三实施方式的液压缓冲器的纵剖面图;图12是表示第一、二实施方式的液压缓冲器整体的纵剖面图;附图标记说明1 内筒2、71 活塞2A、2B、71A、71B 油路(主通路)3、72、81 活塞杆3C、72C、85C 油孔(第二通路)3D 3G、72D、72E、85D 85G 油孔(第一通路)4缩短侧衰减机构(缩短侧衰减力产生机构)5上侧壳体6、15 主阀7、I6主盘(主衰减阀)7B、16B圆弧状孔(第一通路)8、17弹性密封部件9、18外侧单向阀10、19内侧单向阀11、20 圆盘阀11B、20B 切口孔(第一通路)13伸长侧衰减机构(伸长侧衰减力产生机构)14下侧壳体22、23、24、75、76、77 孔口部件25频率感应机构26 壳体27盖形螺母28有底筒状体
28D倾斜圆弧面(壳体接触面、倾斜的面)29自由活塞29B.29C倾斜圆弧面(自由活塞接触面、倾斜的面)30、310型密封圈(弹性体、阻力构件)32、86通路面积可变机构33、78闸门(开口面积可变部件)33A、78A、88A 内孔(第二通路)33B.78B.88B 阻尼孔(开口、第二通路)33C、33D、88C油槽(缩短侧第一通路)33E.33F.88D油槽(伸长侧第一通路)73、74圆盘阀(主衰减阀)78C、78D、78E油槽(第一通路、衰减力产生机构)84筒形壳体85阶梯杆87电磁比例阀用螺线管(致动器)
88滑阀(开口面积可变部件)90复位弹簧A杆侧油室B底侧油室C、D压力室E上侧室F下侧室
具体实施例方式以下说明的实施方式不局限于上述“发明内容”部分所记载的内容,其他还解决了各种课题,并且取得了效果。下面,列举实施方式要解决的课题所对应的主要内容,其中也包含上述“发明内容”部分所记载的内容。〔特性改善〕在根据振动状态变更衰减力特性(对活塞速度的衰减力)时,要求设定更平滑地变更等的特性。这是因为,当突然切换产生小衰减力的特性和产生大衰减力的特性时,实际产生的衰减力也唐突地切换,因此车辆的乘坐舒适度下降,而且,如果在车辆的转向中发生衰减力切换,则车辆的动作不稳定,有可能招致驾驶员对转向产生不适感。因此,如所述专利文献1所示,对更平滑地变更的特性设定进行了探讨,希望实现进一步的特性改善。〔大型化的抑制〕频率感应机构由于需要自由活塞上下移动的区域,因此,若增大该区域,就会存在使轴向长度变长之类的问题。如果液压缸装置的尺寸变大,则液压缸装置在车身上的安装自由度就会降低,因此液压缸装置的轴向长度增加就成了重要课题。如果从外部附带调节衰减力的机构,则相应地增加尺寸,因此强烈要求实现频率感应部的小型化。〔零件数的降低〕除活塞以外,频率感应机构还具备壳体、自由活塞等构成零件,因此零件数增加。如果零件数增加,会影响到生产率、耐久性、可靠性等,因此,不仅期待得到所希望的特性即与宽的振动频率区域对应的衰减力特性,而且期待实现零件数降低。下面,以将本发明实施方式的缓冲器应用于车辆用的液压缓冲器的情况为例,参照附图进行详细的说明。在此,图1 图9及图12表示本发明的第一实施方式。图12表示第一实施方式的缓冲器整体的结构,在内筒1的外周设有外筒100,在内筒1和外筒100之间设有封入油和气体的储油室R。储油室R和底侧油室B通过底阀101连接。底阀机构设有使油液几乎无阻力地从储油室R流向底侧油室B的逆止阀102和产生较大衰减力的衰减阀103。与后述的活塞2连接的活塞杆3将导杆104和密封件105贯通而从外筒100突出。 另外,后述的操纵杆34从活塞杆3的突出端突出。活塞杆3的前端通过安装架(未图示) 安装于汽车。在安装于汽车的状态下,直动式致动器106从汽车的发动机室及行李箱侧安装。107是用于安装在车轮侧的环。如图1所示,在内筒1内封有作为工作流体的油液,在所述外筒100和所述内筒1 之间形成有环状的储油室R。2是可滑动地插嵌于内筒1内的活塞,该活塞2将内筒1内分隔为杆侧油室A和底侧油室B这两个油室。在活塞2上沿周向有间隔地形成有多个可将杆侧油室A和底侧油室 B连通的油路2A、2B,这些油路2A、2B由相对于活塞2的轴线倾斜的油孔构成。油路2A、2B 构成使油液在杆侧油室A和底侧油室B之间流通的主通路。在成为活塞2的一侧的下侧端面,设有以包围油路2A的一侧开口的方式形成的环状凹部2C,和位于该环状凹部2C的径向外侧且使后述的主盘16落座或离座的环状阀座 2D。在成为活塞2的另一侧的上侧端面,设有以包围油路2B的另一侧开口的方式形成的环状凹部2E,和位于该环状凹部2E的径向外侧且使后述的主盘7落座或离座的环状阀座 2F。3是在内筒1内沿轴向延伸的活塞杆,该活塞杆3被设置为作为一端侧的下端侧插入内筒1内,通过后述的壳体沈的盖形螺母27等固定安装于活塞2。另外,活塞杆3的作为另一端侧的上端侧经由所述导杆等向所述外筒及所述内筒1的外部突出。在活塞杆3的内周侧,沿轴向贯通而设有朝其下端侧开口形成且使后述的闸门33可转动地插嵌的闸门装入孔3A,和从该闸门装入孔3A的上端侧向上延伸的小径的杆插入孔:3B。另外,在活塞杆3上设有从闸门装入孔3A向径向外方延伸的多个油孔3C、3D、3E、 3F、3G,这些油孔3C、3D、3E、3F、3G分别沿轴向和周向分开。在这些油孔3C 3G中,各油孔 3C 3E配置在由活塞2分隔的内筒1内的杆侧油室A的位置,其余各油孔3F、3G配置在内筒1内的底侧油室B的位置。其中,位于最上侧的各油孔3C通过径向的阻尼孔3 与后述的闸门33的内孔33A 连通或断开。另外,各油孔3D、3E通过后述的闸门33的油槽33C、33D相互连通或断开。各油孔3F、3G通过后述的闸门33的油槽33E、33F相互连通或断开。此外,在活塞杆3的外周侧形成有使后述的孔口部件22在轴向上定位的环状的台阶部3H。4是本实施方式采用的缩短侧衰减力产生机构(以下称为缩短侧衰减机构4),如图1所示,该缩短侧衰减机构4位于内筒1的杆侧油室A内,并以固定状态安装于活塞2的上侧。在活塞杆3的缩短行程中,当活塞2在内筒1内向下滑移时,缩短侧衰减机构4对从底侧油室B经由活塞2的各油路2B、后述的压力室C、活塞杆3的油孔3E、3D、后述的闸门 33的油槽33C、33D等向杆侧油室A流通的油液产生阻力,从而产生规定的衰减力。缩短侧衰减机构4包括有盖筒状的上侧壳体5、主阀6、后述的外侧单向阀9、内侧单向阀10及圆盘阀11,所述有盖筒状的上侧壳体5位于后述的孔口部件23和活塞2之间,固定于活塞杆3的外周侧。所述主阀6具有与该上侧壳体5的下面侧带有过盈量地嵌合的后述的弹性密封部件8,并在其与上侧壳体5之间形成有环状的压力室C。在缩短侧衰减机构4的上侧壳体5上,设有形成于该上侧壳体5的上侧端面且使外侧单向阀9落座或离座的环状阀座5A、位于比该环状阀座5A靠近径向内侧的位置而使压力室C与环状阀座5A的内侧部位连通的作为轴向油路的油孔5B、使压力室C与活塞杆3 的油孔3E总是连通的作为径向油路的油槽5C。外侧单向阀9是构成安全阀的阀,当压力室 C内的压力上升到预定的安全设定压力时开阀,除此以外,落座于环状阀座5A,保持闭阀状态。主阀6包括落座或离座于活塞2的环状阀座2F的主盘7,和通过加硫、烧结等方法固定设置于该主盘7的上面外周侧的环状弹性密封部件8。该弹性密封部件8用橡胶等弹性材料形成为厚壁的环状,相对于外侧的杆侧油室A液密地密封内侧的压力室C。另外,主阀6的主盘7构成为兼作本发明的构成要件即主衰减阀。在活塞杆3的缩短行程中,当油室A、B间的压力差增大到预定的设定值时,主阀6通过使主盘7离开环状阀座2F而发生规定的缩短侧衰减力。当主阀6 (主盘7)开阀时,油室A、B之间经由活塞2 的油路2B连通,由此形成本发明的构成要件即主通路。如图2和图3所示,主阀6的主盘7设有圆形孔7A和多个圆弧状孔7B,多个圆弧状孔7B位于该圆形孔7A的径向外侧,并且沿周向分开而形成。主盘7通过圆形孔7A安装于活塞杆3的外周侧。圆弧状孔7B通过后述的圆盘阀11的切口孔IlB使活塞2的环状凹部2E和所述压力室C总是连通。10是设置在活塞2的环状凹部2E内的内侧单向阀,该内侧单向阀10落座或离座于环状凹部2E的底面侧,连通或断开活塞2的油路2B与环状凹部2E内之间。而且,内侧单向阀10允许底侧油室B内的油液从活塞2的油路2B侧向环状凹部2E侧流通,反之,阻止从环状凹部2E侧向油路2B侧流通。11是隔着垫圈等设置于内侧单向阀10的上侧的圆盘阀,如图2和图4所示,该圆盘阀11设有圆形孔IlA和多个切口孔11B、多个切口孔IlB位于该圆形孔IlA的径向外侧, 并且沿周向分开而形成。圆盘阀11通过圆形孔IlA安装于活塞杆3的外周侧。各切口孔 IlB作为油孔形成为大致呈T形,通过主盘7的各圆弧状孔7B,使活塞2的环状凹部2E和所述压力室C总是连通。在这种情况下,切口孔IlB与主盘7的圆弧状孔7B相比,通路面积充分小,对流通的油液产生阻尼(较D )作用而产生衰减力。12是将圆盘阀11夹在其与主盘7之间的支承盘,该支承盘12通过圆形孔12A安装于活塞杆3的外周侧。支承盘12用其上侧面从下侧加强圆盘阀11和主盘7。另外,支承盘12配置于活塞2的环状凹部2E内,也作为限制内侧单向阀10的最大开度的护圈发挥功能。13是本实施方式采用的伸长侧衰减力产生机构(以下称为伸长侧衰减机构13), 如图1所示,该伸长侧衰减机构13位于内筒1的底侧油室B内,以固定状态安装于活塞2的下侧。在活塞杆3的伸长行程中,当活塞2在内筒1内向上滑移时,伸长侧衰减机构13 对从杆侧油室A经由活塞2的各油路2A、下侧壳体14的压力室D、活塞杆3的油孔3F、3G、 后述的闸门33的油槽33E、33F等向底侧油室B流通的油液产生阻力,从而产生规定的衰减力。伸长侧衰减机构13包括有底筒状的下侧壳体14、主阀15、后述的外侧单向阀18、 内侧单向阀19及圆盘阀20,所述有底筒状的下侧壳体14位于后述的孔口部件M和活塞2 之间,固定于活塞杆3的外周侧。所述主阀15具有与该下侧壳体14的上面侧带有过盈量地嵌合的后述的弹性密封部件17,在其与下侧壳体14之间形成环状的压力室D。伸长侧衰减机构13的下侧壳体14与缩短侧衰减机构4的上侧壳体5的构成大致相同,具有环状阀座14A、作为轴向油路的油孔14B、作为径向油路的油槽14C。外侧单向阀 18是构成安全阀的阀,当压力室D内的压力上升到预定的安全设定压力时开阀,除此以外, 落座于环状阀座14A,保持闭阀状态。主阀15与缩短侧衰减机构4的主阀6的构成相同,包括落座或离座于活塞2的环状阀座2D的主盘16,和固定设置于该主盘16的下面外周侧的环状的弹性密封部件17。 主阀15也构成为兼作本发明的构成要件即主衰减阀。在活塞杆3的伸长行程中,当油室A、B间的压力差增大到预定的设定值时,主阀 15通过使主盘16离开环状阀座2D而产生规定的伸长侧衰减力。当主阀15 (主盘16)开阀时,油室A、B之间通过活塞2的油路2A连通,由此形成本发明的构成要件即主通路。如图 2和图3所示,主阀15的主盘16也设有圆形孔16A和多个圆弧状孔16B。19是设置于活塞2的环状凹部2C内的内侧单向阀,该内侧单向阀19落座或离座于环状凹部2C的底面侧,连通或断开活塞2的油路2A与环状凹部2C内。内侧单向阀19 允许杆侧油室A内的油液从活塞2的油路2A侧向环状凹部2C侧流通,反之,阻止从环状凹部2C侧向油路2A侧流通。20是通过垫圈等设置于内侧单向阀19的下侧的圆盘阀,该圆盘阀20与缩短侧衰减机构4的圆盘阀11的构成相同,如图2和图4所示,具有圆形孔20A和多个切口孔20B。 圆盘阀20的各切口孔20B通过主盘16的各圆弧状孔16A使活塞2的环状凹部2C和所述压力室D总是连通。在这种情况下,切口孔20B与主盘16的圆弧状孔16A相比,通路面积充分小,对流通的油液产生阻尼效果。21是将圆盘阀20夹在其与主盘16之间的支承盘,该支承盘21通过圆形孔21A安装于活塞杆3的外周侧。支承盘21用其下侧面从上侧加强圆盘阀20和主盘16。另外,支承盘21配置于活塞2的环状凹部2C内,也作为限制内侧单向阀19的最大开度的护圈发挥功能。22,23是设置于活塞杆3的台阶部3H和上侧壳体5之间的孔口部件,该孔口部件 22,23由嵌合设置于活塞杆3的外周侧的环状的圈等构成。孔口部件22使油液在杆侧油室 A和活塞杆3的油孔3C之间流入流出。另外,孔口部件23使油液在杆侧油室A和活塞杆3 的油孔3D之间流入流出。24是设置于伸长侧衰减机构13的下侧壳体14和盖形螺母27之间的另一孔口部件,该孔口部件M也由嵌合设置于活塞杆3的外周侧的环状的圈等构成。孔口部件M使油液在底侧油室B和活塞杆3的油孔3G之间流入流出。
9
25是设置于活塞杆3的下端侧的频率感应机构,如图1所示,该频率感应机构25 包括与活塞杆3 —体地在内筒1内位移的筒状壳体沈、可相对位移地设置于该壳体沈内的后述的自由活塞四、0型密封圈30、31。壳体沈包括通过螺纹接合设置于活塞杆3的下端侧的作为盖部件的盖形螺母27和有底筒状体观。
盖形螺母27包括与活塞杆3的下端侧外周螺纹接合的内侧螺母部27A、从该内侧螺母部27A的上端侧向径向外方延伸的环状盖部27B、从该环状盖部27B的外周侧向下下垂且内周面成为自由活塞四的导向面的外侧筒状下垂部27C。筒状下垂部27C的下端面构成后述的0型密封圈30接触的壳体接触面。
有底筒状体观包括上端侧通过铆接等方法从外侧固定于盖形螺母27的环状盖部27B且在内筒1内向下延伸的筒状部^A,和封闭该筒状部2名k的下端侧的环状底板部 28B.在底板部^B的中心侧形成有将后述的下侧室F和底侧油室B连通的连通孔^C。
在筒状部28A的内周侧形成有后述的0型密封圈31接触的作为壳体接触面的倾斜圆弧面^D,该倾斜圆弧面28D是相对于后述的自由活塞四的移动方向(即,轴向)倾斜的面,并且构成具有曲面的面。在此,倾斜圆弧面28D具有如下功能当自由活塞四向下位移时,使0型密封圈31在其与后述的环状凸部29A之间弹性地压缩变形,通过此时的阻力来抑制自由活塞四朝向行程末端的位移。
29是可滑动地设置于壳体沈内的自由活塞,如图1所示,该自由活塞四形成为有底筒状的活塞,在其外周侧设有从轴向的中间位置向径向外方突出的环状凸部^^。自由活塞四的成为轴向的一侧的下端侧可位移地插嵌于有底筒状体观的筒状部28k内,而成为轴向的另一侧的上端侧可位移地插嵌于盖形螺母27的筒状下垂部27C内。
在壳体沈内沿轴向相对位移的自由活塞四通过与盖形螺母27的环状盖部27B 和有底筒状体观的底板部28B抵接,规定上下方向的行程末端。自由活塞四将壳体沈内 (即,第二通路)分隔为上游侧和下游侧这两个室即上侧室E和下侧室F。在此,第二通路被自由活塞四分隔,不会产生油液在杆侧油室A和底侧油室B之间进行置换的液流,但是, 在自由活塞四相对于壳体26移动的期间,杆侧油室A的油液流入上侧室E,同量的油液从下侧室F被挤压到底侧室B侧,因此实质上产生了液流。
设置于自由活塞四的外周的环状凸部29A其上面侧和下面侧形成为倾斜圆弧面 29B.29C,这些倾斜圆弧面^B、29C成为后述的0型密封圈30、31接触的自由活塞接触面。 倾斜圆弧面^B、29C构成具有相对于自由活塞四的轴向倾斜的曲面的面。在此,自由活塞 29的倾斜圆弧面29B与筒状下垂部27C的下端面在轴向上隔着0型密封圈30相对,倾斜圆弧面29C与有底筒状体28的倾斜圆弧面28D在轴向上隔着0型密封圈31相对。
30,31是构成频率感应机构25的阻力构件的作为弹性体的0型密封圈,该0型密封圈30、31配置于壳体沈的筒状部28A和自由活塞四的外周面之间,液密地密封两者之间。壳体沈内的上侧室E和下侧室F通过0型密封圈30、31保持为相互密封的状态。
当自由活塞四在壳体沈内向上位移时,0型密封圈30在筒状下垂部27C的下端面和自由活塞四的环状凸部^A(倾斜圆弧面^B)之间弹性地压缩变形。此时,0型密封圈30对自由活塞四朝向行程末端的向上位移产生阻力。另外,当自由活塞四在壳体沈内向下位移时,0型密封圈31在筒状部28A侧的倾斜圆弧面28D和自由活塞四的环状凸部^A (倾斜圆弧面^C)之间弹性地压缩变形。此时,0型密封圈31对自由活塞四朝向行程末端的向下位移产生阻力。
32是本实施方式采用的通路面积可变机构,该通路面积可变机构32包括后述的闸门33、操纵杆34及步进电机等致动器(未图示)。通路面积可变机构32的致动器设置于例如活塞杆3的突出端侧,通过操纵杆34对闸门33进行转动操作。
33是设置于活塞杆3的闸门装入孔3A内的闸门,该闸门33构成通路面积可变机构32的开口面积可变部件。闸门33以一体旋转的方式设置于操纵杆34的下端侧,在活塞杆3的间门装入孔3A内与操纵杆34 —起转动。操纵杆34插通设置于活塞杆3的杆插入孔3B内,其上端侧与所述述致动器的输出轴(未图示)连接。
闸门33的内周侧为沿轴向延伸的内孔33A,其下端侧与壳体沈内的上侧室E总是连通。另外,闸门33设有从内孔33A向径向外方穿设的作为开口的阻尼孔33B、在闸门33 的轴向上离开该阻尼孔3 且形成于闸门33的外周面的油槽33C、33D、在轴向上离开该油槽33C、33D且形成于闸门33的外周面的其他油槽33E、33F。
如图5所示,阻尼孔3 配置于在轴向和径向上都与活塞杆3的油孔3C相对的位置,根据闸门33的转动位置,连通或断开油孔3C与内孔33A。在此,本发明的构成要件即第二通路由与杆侧油室A连通的孔口部件22、活塞杆3的油孔3C、闸门33的阻尼孔33B、内孔 33A及壳体沈构成。该第二通路为相对于所述主通路并列的通路。而且,构成第二通路的一部分的壳体26内被由自由活塞四分隔为上侧室E和下侧室F。
闸门33的油槽33C、33D根据闸门33的转动位置将活塞杆3的油孔3D、3E之间连通或断开。在此,如图5所示,油槽33C沿闸门33的轴向在尺寸α的范围内延伸,油槽33D 在比尺寸α短的尺寸β (β < α)的范围内形成。如图6所示,油槽33C由形成于闸门33 的外周面的圆弧状槽构成,其槽宽在闸门33的周向上大致相等。另一方面,如图7所示,油槽33D是圆弧状地切去闸门33的外周面而形成的,其槽宽在闸门33的周向上逐渐减小。
在此,闸门33的油槽33C、33D与活塞杆3的油孔3D、3E、缩短侧衰减机构4的压力室C、主盘7的圆弧状孔7B、圆盘阀11的切口孔IlB(参照图2 图4)及活塞2的油路2B 等一同构成本发明的构成要件即缩短侧第一通路,该第一通路为相对于所述主通路并列的通路。
闸门33的油槽33E、33F根据闸门33的转动位置,将活塞杆3的油孔3F、3G之间连通或断开。在此,油槽33E与所述的油槽33D大致同样,沿闸门33的轴向在尺寸β的范围内形成,如图7所示,其槽宽在闸门33的周向上逐渐减小。另外,油槽33F与所述的油槽 33C大致同样,沿闸门33的轴向在尺寸α的范围内形成,如图6所示,其槽宽在闸门33的周向上大致相等。
另外,闸门33的油槽33E、33F与活塞杆3的油孔3F、3G、伸长侧衰减机构13的压力室D、主盘16的圆弧状孔16B、圆盘阀20的切口孔20B(参照图2 图4)及活塞2的油路 2A等一同构成本发明的构成要件即伸长侧第一通路,该第一通路为相对于所述主通路并列的通路。
在活塞杆3的闸门装入孔3A内设有筒体35,筒体35位于闸门33的下侧(轴向的一侧),在闸门33的上侧(轴向的另一侧)设有筒状的导向部件36和密封部件37。密封部件37是阻止油液从间门装入孔3A和操纵杆34之间泄漏到外部的部件。所述筒体35构成防止闸门33从闸门装入孔3A脱落到下方的防脱落部件。筒体35的内周侧为内孔35A,该内孔35A也构成所述第二通路的一部分。
第一实施方式的液压缓冲器具有如上所述的结构,接着,对其工作进行说明。
首先,在将液压缓冲器安装于车辆时,活塞杆3的上端侧安装于车辆的车身侧,所述外筒的底侧安装于车轮侧。当车辆行驶时,因路面的凹凸不平等而产生上下方向的振动, 此时活塞杆3从内筒1伸长或缩短而发生位移,通过缩短侧衰减机构4和伸长侧衰减机构 13等能够产生衰减力,从而能够缓冲车辆的振动。
S卩,在活塞杆3的缩短行程中,活塞杆3进入内筒1内,底侧油室B内的压力比杆侧油室A高,因此底侧油室B内的油液从活塞2的油路2B经由内侧单向阀10流入环状凹部2E内,该流入油经由圆盘阀11的切口孔11B、主盘7的圆弧状孔7B (参照图2 图4)流到缩短侧衰减机构4的压力室C内。
然后,压力室C内的油液从上侧壳体5的油槽5C经由活塞杆3的油孔3E、闸门33 的油槽33D、33C、活塞杆3的油孔3D及孔口部件23流到杆侧油室A内,例如,通过圆盘阀 11的切口孔11B、闸门33的油槽33D、33C等,能够产生缩短侧的衰减力。
在该状态下,活塞杆3的缩短速度加快,当油室A、B间的压力差超过所述设定值时,构成主衰减阀的主阀6的主盘7离开环状阀座2F而开阀,能够产生规定的缩短侧衰减力。需要说明的是,缩短侧衰减机构4的外侧单向阀9作为安全阀发挥如下功能压力室C 内的压力上升到安全设定压力时开阀,抑制压力室C内的压力上升。
另一方面,在活塞杆3的伸长行程中,由于杆侧油室A内的压力比底侧油室B高, 因此杆侧油室A内的油液从活塞2的油路2A经由单向阀19流入环状凹部2C内,该流入油经由圆盘阀20的切口孔20B、主盘16的圆弧状孔16B流到伸长侧衰减机构13的压力室D 内。
然后,压力室D内的油液从下侧壳体14的油槽14C经由活塞杆3的油孔3F、闸门 33的油槽33E、33F、活塞杆3的油孔3G及孔口部件M流到底侧油室B内,例如,通过圆盘阀20的切口孔20B、闸门33的油槽33E、33F等,能够产生伸长侧的衰减力。
在这种状态下,活塞杆3的伸长速度加快,当油室A、B间的压力差超过所述设定值时,构成主衰减阀的主阀15的主盘16离开环状阀座2D而开阀,能够产生规定的伸长侧衰减力。另外,伸长侧衰减机构13的外侧单向阀18作为安全阀发挥如下功能压力室D内的压力上升到安全设定压力时开阀,抑制压力室D内的压力上升。
接着,说明通过由通路面积可变机构32的间门33分别改变第一通路和第二通路的通路面积而可变地调节衰减力的情况。
在第一实施方式中,如图8中的斜线部38所示,在将闸门33配置于位置a时,闸门33的油槽33C、33D处于与活塞杆3的油孔3D、3E正对的状态,两者间的开口面积(即, 衰减力调节侧的第一通路的通路面积)成为最大的开口面积。另外,在将闸门33从位置a 转动到位置b时,其开口面积也保持为最大面积。但是,在将闸门33从位置b转动到位置 c、d时,例如,所述开口面积因油槽33D而逐渐减小,在位置d时开口面积成为零,油孔3D、 3E之间被闸门33的外周面封闭而断开。另外,在将闸门33从位置d转动到位置e时,其开口面积也保持为零。
另一方面,如图8中的斜线部39所示,活塞杆3的油孔3C和阻尼孔3 之间的开口面积(即,频率感应侧的第二通路的通路面积)在将闸门33设为位置a时,其开口面积为零。但是,在将闸门33从位置a转动到位置b时,阻尼孔3 与油孔3C正对而成为最大的开口面积。另外,在将闸门33从位置b转动到位置d时,其开口面积保持为最大的面积。 另外,在转动到位置e时,开口面积成为零。
这样,在第一实施方式中采用如下所述的构成当衰减力调节侧的开口面积在位置a b间为恒定(最大的开口面积)时,控制成使频率感应侧的开口面积从零开始(直到变成最大的开口面积)增大,当衰减力调节侧的开口面积在位置b d间逐渐减小到零时,使频率感应侧的开口面积为恒定(最大的开口面积),当衰减力调节侧的开口面积在位置d e间为零时,使频率感应侧的开口面积逐渐减小,在位置e变为零。
此时,在假定活塞杆3的缩短速度(或伸长速度)为恒定的情况下,活塞杆3的衰减力对应于伸缩频率的特性可通过图9所示的特性线40 43来表示。S卩,当闸门33的转动位置为位置a时,衰减力调节侧的开口面积大,频率感应侧的开口面积为零,因此,位置a 的衰减力特性能够设定成相对于频率不发生变化的如图9的特性线40所示的软的衰减力。
另外,如果将闸门33的转动位置从位置a切换到位置b,则衰减力调节侧的开口面积保持为恒定,但是,由于频率感应侧的开口面积增大到最大面积,因此,位置b的衰减力特性能够设定成如图9的特性线41所示,在低频带中为软的衰减力,而在高频带中为进一步软的衰减力。
另外,如果将闸门33的转动位置从位置b切换到位置d,则衰减力调节侧的开口面积逐渐减小,频率感应侧的开口面积为最大面积且保持为恒定,因此,位置d的衰减力特性能够设定成如图9的特性线42所示,在低频带中为硬的衰减力,而在高频带中为软的衰减力。
另外,如果将闸门33的转动位置从位置d切换到位置e,则衰减力调节侧的开口面积保持为零,频率感应侧的开口面积逐渐减小到零,因此,位置e的衰减力特性能够设定成如图9的特性线43所示,在低频带中为硬的衰减力,而在高频带中也维持硬的衰减力且相对于频率不发生变化。
因此,根据第一实施方式,如图9的特性线40 43所示,除低频带的衰减力以外, 都可调节各转动位置的高频带的衰减力可变幅度(降低率),因此,例如在将间门33的转动位置设为位置b时,如特性线41所示,在低速行驶时,在低频带中设定为软的衰减力,进而发挥频率感应的功能以在高频带中设定更软的衰减力,从而能够控制为重视乘坐舒适度的舒适模式。
另外,在将闸门33切换到位置a而设定为特性线40时,频率感应的功能处于OFF, 即使在弹簧下共振频率附近也能够维持较高的衰减力,因此能够抑制越过突起物(突起乗 0越)后的弹簧下振动等。另外,在高速行驶时,能够控制为重视操纵稳定性的运动模式。在将间门33切换到位置d而设定为特性线42时,设为弹簧上减振等乘坐舒适度控制所使用的硬的衰减力的基础上,能够发挥频率感应的功能而抑制高频振动,与不具备频率感应功能的缓冲器相比,能够实现高维的乘坐舒适度控制,或者,能够以更简单的控制来实现同等水平的乘坐舒适度控制。在将闸门33切换到位置e而设定为特性线43时,设为转向操纵时的侧倾抑制等所使用的硬的衰减力的基础上,频率感应的功能处于OFF,能够最大程度地发挥操纵稳定性的控制性能。
因而,根据本实施方式,能够由活塞杆3的油孔3D、3E、闸门33的油槽33C、33D、缩短侧衰减机构4的压力室C、主盘7的圆弧状孔7B、圆盘阀11的切口孔IlB及活塞2的油路 2B等构成缩短侧第一通路。另外,能够由活塞杆3的油孔3F、3G、闸门33的油槽33E、33F、 伸长侧衰减机构13的压力室D、主盘16的圆弧状孔16B、圆盘阀20的切口孔20B及活塞2 的油路2A等构成伸长侧第一通路。而且,能够由孔口部件22、活塞杆3的油孔3C、闸门33 的阻尼孔33B、内孔33A及壳体沈等构成第二通路。
由于能够由通路面积可变机构32的闸门33分别调节如上所述构成的第一通路的面积和第二通路的面积,因此,即使在将缓冲器所产生的衰减力变更为硬特性、中等特性和软特性中的任一特性时,也能够根据各种特性自由地改变由自由活塞四等构成的频率感应机构25的衰减力可变幅度,能够适当实现重视车辆的乘坐舒适度的控制和重视操纵稳定性的控制。
在这种情况下,根据车辆固有的特性及目标(重视乘坐舒适度/重视操纵稳定性等),能够分别独立地调节缩短侧、伸长侧衰减机构4、13的阻尼面积和确定频率感应机构 25的衰减力可变幅度的阻尼面积。另外,即使在难以控制衰减力的高频带中,也能够通过频率感应机构25,仅在高频带使衰减力下降,因此不需要进行复杂的控制。因而,通过使控制 CPU的规格下降、卞 、y >7歹勺 >),构成廉价的结构,而且,由于控制频度少,因此在耐久性方面也有利。
另外,由于采用在频率感应机构25的壳体沈和自由活塞四之间设置成为阻力构件的0型密封圈30、31的结构,因此0型密封圈30、31在当自由活塞四在壳体沈内沿轴向位移时能够产生阻力,从而能够以平滑的特性变更频率感应机构25的衰减力。
另外,将自由活塞四的与0型密封圈30、31接触的自由活塞接触面设为形成于环状凸部29A的上下面侧的倾斜圆弧面^BJ9C,将壳体沈的与0型密封圈31接触的壳体接触面设为形成于筒状部28A的内周面的倾斜圆弧面^D,这些倾斜圆弧面在自由活塞四的移动方向上相互相对,并且相对于自由活塞四的移动方向倾斜,且具有曲面。
因此,例如在将0型密封圈31夹在倾斜圆弧面^D、29C之间而使其弹性变形时, 能够抑制0型密封圈31急剧地变形,能够使其变形平滑。并且,通过使倾斜圆弧面^D J9B、 29C的曲率比0型密封圈30、31的弹性变形前的曲率大,能够使伴随自由活塞四的位移的 0型密封圈30、31的变形平滑,结果能够圆滑地控制衰减力。
接着,图10表示本发明的第二实施方式,第二实施方式的特征在于,采用了将缩短侧第一通路和伸长侧第一通路形成为共用的同一通路的结构。需要说明的是,在第二实施方式中,对于与上述第一实施方式相同的结构要素赋予相同的附图标记,省略其说明。
图中,71是第二实施方式所采用的活塞,该活塞71与第一实施方式中所述的活塞 2的构成大致相同,将内筒1内分隔为杆侧油室A和底侧油室B这两个室。在活塞71上形成有多个可将杆侧油室A和底侧油室B连通的油路71A、71B,这些油路71A、71B在活塞71 的周向上分别分开。这些油路71A、71B构成使油液在杆侧油室A和底侧油室B之间流通的主通路。
另外,活塞71设有以包围油路7IA的一侧开口的方式形成于成为活塞71的一侧的下侧端面的环状凹部71C、位于该环状凹部71C的径向外侧且供后述的伸长侧的圆盘阀 73落座或离座的环状阀座71D、以包围油路71B的另一侧开口的方式形成于成为活塞71的另一侧的上侧端面的环状凹部71E、位于该环状凹部71E的径向外侧且供后述的缩短侧的CN 102537177 A圆盘阀74落座或离座的环状阀座71F。
72是第二实施方式所采用的活塞杆,该活塞杆72与第一实施方式中所述的活塞杆3的构成大致相同,作为一端侧的下端侧通过壳体沈的盖形螺母27等固定于活塞71。 另外,在活塞杆72的内周侧,沿轴向贯通而设有朝其下端侧开口形成且使后述的闸门78 可转动地插嵌的闸门装入孔72A,和从该闸门装入孔72A的上端侧向上延伸的小径的杆插入孔7邪。
另外,在活塞杆72上设有从闸门装入孔72A向径向外方延伸的多个油孔72C、72D、 72E,这些多个油孔72C、72D、72E分别在轴向和周向上分开。在这些油孔72C 72E中,各油孔72C、72D以向杆侧油室A开口的方式配置,其余的各油孔72E以向内筒1内的底侧油室B开口的方式配置。
其中,位于最上侧的各油孔72C通过径向的阻尼孔78B与后述的闸门78的内孔 78A连通或断开。另外,各油孔72D、72E通过后述的闸门78的油槽78C、78D相互连通或断开。另外,在活塞杆72的外周侧形成有在轴向上定位后述的孔口部件75的环状的台阶部 72F。
73、74表示本实施方式采用的作为主衰减阀的圆盘阀,该圆盘阀73、74中在成为活塞71的一侧的下端面设置的伸长侧的圆盘阀73在活塞杆72的伸长行程中当活塞71向上滑移时,对在各油路71A内流通的油液产生阻力,从而产生规定的衰减力。另外,在成为活塞71的另一侧的上端面设置的缩短侧的圆盘阀74在活塞杆72的缩短行程中当活塞71 向下滑移时,对在各油路71B内流通的油液产生阻力,从而产生规定的衰减力。
75,76是设置于活塞杆72的台阶部72F和活塞71之间的孔口部件,该孔口部件 75,76由嵌合设置于活塞杆72的外周侧的环状的圈等构成。孔口部件75使油液在杆侧油室A和活塞杆72的油孔72C之间流入流出。另外,孔口部件76使油液在杆侧油室A和活塞杆72的油孔72D之间流入流出。
77是设置于活塞71和盖形螺母27之间的另一孔口部件,该孔口部件77也由嵌合设置于活塞杆72的外周侧的环状的圈等构成。孔口部件77使油液在底侧油室B和活塞杆 72的油孔72E之间流入流出。
78是本实施方式采用的闸门,该闸门78与第一实施方式中所述的闸门33大致相同,构成通路面积可变机构32的开口面积可变部件。闸门78设有沿轴向延伸的内孔78A、 从该内孔78A向径向外方穿设的作为开口的阻尼孔78B、沿闸门78的轴向离开该阻尼孔 78B且形成于闸门78的外周面的油槽78C、78D、78E。油槽78C、78D、78E与活塞杆72的油孔72D、72E —同构成衰减力产生机构。
闸门78的油槽78C、78D、78E由相互连通的槽形成,根据闸门78的转动位置,将活塞杆72的油孔72D、72E之间连通或断开。在此,油槽78C、78E具有与第一实施方式中所述的油槽33D(参照图7)相同的形状,油槽78D具有与第一实施方式中所述的油槽33C(参照图6)相同的形状。闸门78的油槽78C 78E与活塞杆72的油孔72D、72E及孔口部件 76,77等一同构成本发明的构成要件即第一通路,该第一通路为相对于所述主通路并列的通路。
阻尼孔78B配置于在轴向和径向上都与活塞杆72的油孔72C相对的位置,根据闸门78的转动位置,连通或断开油孔72C与内孔78A。在此,本发明的构成要件即第二通路由与杆侧油室A连通的孔口部件75、活塞杆72的油孔72C、闸门78的阻尼孔78B、内孔78A 及壳体沈构成。该第二通路为相对于所述主通路并列的通路。
因此,在这样构成的第二实施方式中,也能够得到与上述第一实施方式大致同样的作用效果。特别是,在第二实施方式中,能够将由活塞杆72的油孔72D、72E及闸门78的油槽78C 78E等构成的第一通路形成为缩短侧和伸长侧共用的同一通路,从而能够简化了整体结构使其变得简单。而且,能够更廉价地实现与上述第一实施方式和第一、第二变形例所述的效果大致同样的效果。
接着,图11表示本发明的第三实施方式,第三实施方式的特征在于,由电磁比例阀用螺线管构成通路面积可变机构的致动器,使通路面积可变部件沿活塞杆的轴向位移。 需要说明的是,在第三实施方式中,对于与上述第一实施方式相同的结构要素赋予相同的附图标记,省略其说明。
图中,81是第三实施方式所采用的活塞杆,如图11所示,该活塞杆81包括在内筒1内沿轴向延伸的筒状杆82、经由连接部件83与该筒状杆82的一侧(下端侧)连接且内部收纳配置有后述的比例螺线管87的筒形壳体84、可装卸地固定设置于该筒形壳体84 的下端侧的阶梯杆85。筒状杆82的另一侧(上端侧)为向内筒1的外部突出的突出端。
阶梯杆85与第一实施方式中所述的活塞杆3的下部侧的构成大致相同,通过壳体 26的盖形螺母27等固定于活塞2。在此,阶梯杆85的上端侧为以嵌合状态安装于筒形壳体84的下端侧的大径的安装凸台部85A。阶梯杆85除该安装凸台部85A以外,其余构成与第一实施方式的活塞杆3 (参照图1)的下部侧大致相同。
即,在阶梯杆85的内周侧,沿轴向设有朝其下端侧开口形成且使后述的滑阀88可滑动地插嵌的滑阀滑动孔85B。另外,阶梯杆85设有从滑阀滑动孔85B向径向外方延伸的多个油孔85C、85D、85E、85F、85G,这些多个油孔85C、85D、85E、85F、85G分别在轴向和周向上分开。这些油孔85C 85G中,各油孔85C 85E配置于由活塞2在内筒1内分隔而成的杆侧油室A的位置,其余各油孔85F、85G配置于内筒1内的底侧油室B的位置。
其中,位于最上侧的各油孔85C通过径向的阻尼孔88B与后述的滑阀88的内孔 88A连通或断开。另外,各油孔85D、85E通过后述的滑阀88的油槽88C相互连通或断开。 各油孔85F、85G通过后述的滑阀88的油槽88D相互连通或断开。另外,在阶梯杆85的安装凸台部85A形成有在轴向上定位孔口部件22的环状的台阶部85H。
86是本实施方式采用的通路面积可变机构,87是构成该通路面积可变机构86的致动器的电磁比例阀用螺线管(以下称为比例螺线管(比例〃 > 7 4 K )87),该比例螺线管87包括收纳设置于活塞杆81的筒形壳体84内的筒状线圈部87A、固定设置于该线圈部87A的内周侧的固定托部87B、在轴向上与该固定托部87B相对且可位移地设置于线圈部87A的内周侧的可动铁芯87C、固定设置于该可动铁芯87C的中心侧的输出杆87D、配置于固定托部87B和可动铁芯87C之间且沿轴向向上对该输出杆87D与可动铁芯87C —起施力的弹簧87E。
比例螺线管87通过从外部经由引线87F等对线圈部87A进行供电,使可动铁芯 87C和输出杆87D —起抵抗弹簧87E而沿轴向位移。此时,被控制成输出杆87D的轴向的位移量与流过线圈部87A的电流值成比例。由此,如第一实施方式的图8所示,后述的滑阀 88在阶梯杆85的滑阀滑动孔85B内沿轴向滑移。
88是本实施方式采用的作为开口面积可变部件的滑阀,该滑阀88代替第一实施方式中所述的闸门33,可滑动地设置于活塞杆81 (阶梯杆85)的滑阀滑动孔85B内。滑阀 88通过比例螺线管87的输出杆87D,在滑阀滑动孔85B内沿轴向进行直线运动。滑阀88 设有沿轴向延伸的内孔88A、从该内孔88A向径向外方穿设的作为开口的阻尼孔88B、沿滑阀88的轴向离开该阻尼孔88B形成于滑阀88的外周面的环状的油槽88C、88D。
如图11所示,阻尼孔88B配置于在轴向和径向上都与阶梯杆85的油孔85C相对的位置,根据滑阀88的滑移,连通或断开油孔85C与内孔88A。在此,滑阀88的阻尼孔88B 和内孔88A,和与杆侧油室A连通的孔口部件22、阶梯杆85的油孔85C及壳体沈等一同构成本发明的构成要件即第二通路。
滑阀88的油槽88C根据滑阀88的滑移,连通或断开阶梯杆85的油孔85D、85E之间。在此,油槽88C与阶梯杆85的油孔85D、85E、缩短侧衰减机构4的压力室C、主盘7的圆弧状孔7B、圆盘阀11的切口孔IlB(参照图2 图4)及活塞2的油路2B等一同构成本发明的构成要件即缩短侧第一通路。
滑阀88的油槽88D根据滑阀88的滑移,连通或断开阶梯杆85的油孔85F、85G之间。在此,油槽88E与阶梯杆85的油孔85F、85G、伸长侧衰减机构13的压力室D、主盘16 的圆弧状孔16B、圆盘阀20的切口孔20B及活塞2的油路2A等一同构成本发明的构成要件即伸长侧第一通路。
在阶梯杆85的滑阀滑动孔85B内设有筒体89,该筒体89位于滑阀88的下侧(轴向的一侧),该筒体89的内周侧为构成所述第二通路的一部分的内孔89A。在滑阀88的下端和筒体89之间设有复位弹簧90,该复位弹簧90总是对滑阀88向比例螺线管87的输出杆87D侧施力。
因此,在如上所述构成的第三实施方式中,通过由比例螺线管87的输出杆87D使滑阀88沿轴向滑移(直动),如第一实施方式的图8的斜线部38、39所示,能够个别地调节所述第一通路(衰减力调节侧的开口面积)和第二通路(频率感应侧的开口面积),能够得到与上述第一实施方式大致同样的作用效果。
特别是,根据第三实施方式,由于作为通路面积可变机构86的致动器使用比例螺线管87,因此能够连续地进行衰减力调节,能够实现精度更高的衰减力调节,因此可得到较高的控制效果。另外,由于将作为致动器的比例螺线管87内装在内筒1的内部(即,活塞杆81的筒形壳体84),因此能够提高该缓冲器相对于车辆的搭载性,致动器不会突出安装于发动机室内,节省空间且安全。
需要说明的是,在上述第一、第三实施方式中,以上述的缩短侧第一通路和伸长侧第一通路形成为相同形状的情况为例进行了说明。但是,本发明不局限于此,例如,通过将缩短侧的油槽33C、33D(油槽88C)和伸长侧的油槽33E、33F(油槽88D)制成不同的形状, 也能够得到缩短侧和伸长侧互不相同的衰减力特性,例如在将伸长侧设为硬的衰减力特性时,将缩短侧设为软的衰减力特性,或者在将伸长侧设为软的衰减力特性时,将缩短侧设为硬的衰减力特性等。
另一方面,在上述第一实施方式中,以用一个闸门33可变地调节第一通路和第二通路各自的通路面积的情况为例进行了说明。但是,本发明不局限于此,例如,可以将第一通路和第二通路构成为用各自的闸门个别地调节各自的通路面积,也可以构成为将各自的致动器由各自的间门进行转动操作。另外,通路面积可变机构构成为不是致动器而是手动地转动操作闸门。这一点对于第二、第三实施方式同样适用。
另外,在上述第一实施方式中,以在壳体沈和自由活塞四之间设置作为阻力构件的0型密封圈30、31的情况为例进行了说明。但是,本发明不局限于此,例如,如特开平 7-19642号公报、上述专利文献1记载的缓冲器那样,作为阻力构件,也可以采用例如螺旋弹簧、板弹簧等弹簧。另外,作为阻力构件的弹性体不局限于0型密封圈,也可以使用截面为四边形、非圆形的弹性密封圈等。这一点对于第二、第三实施方式也同样适用。
另外,在上述各实施方式中,作为设置于汽车等车辆的缓冲器,以液压缓冲器为例进行了说明。但是,本发明不局限于此,例如,也可应用于例如成为振动源的各种机械、建筑物等所使用的衰减力调节式的缓冲器。
如以上实施方式所述,由于在难以控制衰减力的高频带中能够利用频率感应机构的效果来降低衰减力,因此无需进行复杂的控制。因而,通过控制CPU的规格下降,构成廉价的结构,另外,由于控制频度少,因此在耐久性方面也有利。另一方面,由于能够将致动器设置于液压缸内部,因此不需要在行李箱内安装致动器,从而在车辆搭载性及安全方面有利。
另外,根据本发明,自由活塞可移动地设置于内部形成有第二通路的至少一部分流路的壳体内,并且在所述壳体和所述自由活塞之间配置有对该自由活塞的位移产生阻力的阻力构件。由此,在壳体内,当自由活塞沿轴向位移时能够产生阻力,能够以平滑的特性变更频率感应机构的衰减力。
另外,根据本发明,由弹簧构成所述阻力构件。在这种情况下,如上述专利文献1 记载的缓冲器那样,可通过例如板弹簧等弹簧(阻力构件),对自由活塞的位移产生阻力。
另外,根据本发明,在自由活塞和壳体之间设有一个或多个弹性体,所述自由活塞的与所述弹性体接触的所述自由活塞接触面,或者所述壳体的与所述弹性体接触的所述壳体接触面至少任一个面具有相对于所述述自由活塞的移动方向倾斜的面,该倾斜的面由曲面形成。由此,在倾斜的曲面使弹性体(例如,0型密封圈)弹性变形时,能够抑制急剧的变形,并且平滑地进行其变形,结果能够圆滑地变更频率感应机构的衰减力。
另外,根据本发明,在自由活塞和壳体之间设有多个弹性体,所述自由活塞的与所述弹性体接触的所述自由活塞接触面,和所述壳体的与所述弹性体接触的所述壳体接触面具有在所述自由活塞的移动方向上相对的部分。由此,在将弹性体(例如,0型密封圈)夹在两接触面之间而使其弹性变形时,能够抑制弹性体急剧地变形,并且平滑地进行其变形。
另外,根据本发明,所述弹性体具有所述自由活塞向一方向移动时发生压缩变形的一弹性体,和所述自由活塞向另一方向移动时发生压缩变形的另一弹性体。由此,能够圆滑地变更频率感应机构的衰减力。
此外,根据本发明,衰减力产生机构具有伸长侧衰减力产生机构和缩短侧衰减力产生机构,第一通路具有在所述伸长侧衰减力产生机构内流通的伸长侧第一通路,和在所述缩短侧衰减力产生机构内流通的缩短侧第一通路,通路面积可变机构能够调节所述伸长侧第一通路和所述缩短侧第一通路各自的通路面积。由此,所述通路面积可变机构能够调节所述伸长侧第一通路的通路面积,并且也能够调节所述缩短侧第一通路的通路面积。18
权利要求
1.一种缓冲器,其特征在于,包括 缸部件,封有工作流体;活塞,能够移动地嵌装于该缸部件内,将该缸部件内部分隔成两个室; 活塞杆,一端侧固定于该活塞,另一端侧向所述缸部件的外部突出; 主通路,通过所述活塞的移动,使工作流体在所述缸部件内的两个室之间流动; 第一通路及第二通路,与该主通路并列设置,通过所述活塞的移动,使工作流体从所述缸部件内的两个室中的任一室向另一室流动;主衰减阀,设置于所述主通路,对通过所述活塞的移动而产生的所述工作流体的流动进行限制以产生衰减力;衰减力产生机构,设置于所述第一通路,对通过所述活塞的移动而产生的所述工作流体的流动进行限制以产生衰减力;以及自由活塞,设置于所述第二通路中,将该第二通路分隔为上游侧和下游侧; 在所述第一通路及第二通路的中途,设有能够调节各自的通路面积的通路面积可变机构。
2.如权利要求1所述的缓冲器,其特征在于,能够调节所述第一通路及所述第二通路的各自的通路面积的所述通路面积可变机构能够通过一操纵杆来操作。
3.如权利要求1所述的缓冲器,其特征在于,所述通路面积可变机构在所述第一通路的面积变小的可变区域中具有所述第二通路的面积为恒定的恒定区域。
4.如权利要求1所述的缓冲器,其特征在于, 所述第二通路形成于所述活塞杆内,所述通路面积可变机构包括配置于所述活塞杆内且设有开口的开口面积可变部件, 和使该开口面积可变部件旋转或直动的致动器。
5.如权利要求1所述的缓冲器,其特征在于,所述自由活塞能够移动地设置在内部形成有所述第二通路的至少一部分流路的壳体内,在所述壳体和所述自由活塞之间配置有对该自由活塞的位移产生阻力的阻力构件。
6.如权利要求5所述的缓冲器,其特征在于, 所述阻力构件为弹簧。
7.如权利要求6所述的缓冲器,其特征在于,在所述自由活塞和所述壳体之间设有一个或多个弹性体,所述自由活塞的与所述弹性体接触的所述自由活塞接触面,和所述壳体的与所述弹性体接触的所述壳体接触面中的至少任一个面具有相对所述自由活塞的移动方向倾斜的面,该倾斜的面由曲面形成。
8.如权利要求6所述的缓冲器,其特征在于,在所述自由活塞和所述壳体之间设有多个弹性体,所述自由活塞的与所述弹性体接触的所述自由活塞接触面和所述壳体的与所述弹性体接触的所述壳体接触面具有在所述自由活塞的移动方向上相对的部分。
9.如权利要求8所述的缓冲器,其特征在于,所述弹性体具有所述自由活塞向一方向移动时发生压缩变形的一弹性体,和所述自由活塞向另一方向移动时发生压缩变形的另一弹性体。
10.如权利要求1所述的缓冲器,其特征在于,所述衰减力产生机构具有伸长侧衰减力产生机构和缩短侧衰减力产生机构,所述第一通路具有在所述伸长侧衰减力产生机构内流通的伸长侧第一通路和在所述缩短侧衰减力产生机构内流通的缩短侧第一通路,所述通路面积可变机构能够调节所述伸长侧第一通路和所述缩短侧第一通路的各自的通路面积。
全文摘要
一种缓冲器,在变更了衰减力特性的情况下,也能够根据各特性,任意地改变频率感应机构的衰减力可变幅度。设置于活塞杆(3)的下端侧的频率感应机构(25)包括与活塞杆(3)一体地在内筒(1)内位移的筒状壳体(26)、自由活塞(29)、O型密封圈(30、31)。通路面积可变机构(32)的闸门(33)设有沿轴向延伸的内孔(33A)、阻尼孔(33B)、油槽(33C、33D、33E、33F)。根据闸门(33)的转动位置,改变油孔(3C)和阻尼孔(33B)之间的开口面积。油孔(3D、3E)和油槽(33C、33D)之间以及油孔(3F、3G)和油槽(33C、33D、33E、33F)之间的开口面积也根据闸门(33)的转动位置来可变地调节。
文档编号F16F13/00GK102537177SQ201110446000
公开日2012年7月4日 申请日期2011年12月28日 优先权日2010年12月28日
发明者中楯孝雄, 山下干郎, 山冈史之, 片山洋平, 野田健次 申请人:日立汽车系统株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1