发动机悬置的制作方法

文档序号:11150476阅读:499来源:国知局
发动机悬置的制造方法与工艺

本发明涉及一种被安装成使由发动机产生的振动衰减并支撑发动机负载的发动机悬置(engine mount),更具体涉及一种具有自我转化特性的发动机悬置,以便在没有单独的驱动单元的情况下,基于行驶条件,通过改变衰减特性更有效地衰减振动。



背景技术:

汽车发动机通常安装在汽车车身的发动机室内,利用发动机悬置以衰减发动机中的振动。对于应用于客车的悬置,通常使用利用橡胶的弹性力来绝缘和衰减振动的橡胶悬置,以及其中封装预定量液压液的流体填充型悬置(例如,液压悬置)。

具体地,流体填充型悬置具有这样的结构,其中预定量的液压液被密封,并且通过液压液的流动衰减振动,具有在高频区域和低频区域同时衰减振动的效应,从而逐步地增大流体填充型悬置的应用范围。然而,在制造流体填充型悬置时,当封装的液压液的密封量增大时,损耗因子(例如,阻尼)增大,并且动态特性增加,从而引起噪音、振动、粗糙度(NVH)性能劣化。另外,当封装的液压液的密封量减小时,动态特性也减小,因此提高NVH性能,但是损耗因子也减小。因此,为了在流体填充型悬置的特定频率区域更有效地衰减振动,人们已开发出主动悬置,其可主动地控制阻尼特性。

主动悬置被配置成以开/关方式控制悬置的动态特性。如图1中所示,现有技术中的主动悬置具有这样的结构,其中绝缘体2安装在壳体内的上侧,该绝缘体2由弹性材料制成并且结合到芯体1,隔膜4结合在壳体的下端,喷嘴板3安装在绝缘体2和隔膜4之间,从而将内部空间分成上液压腔和下液压腔。

喷嘴板3包括沿喷嘴板的圆周形成的环形流动路径,以允许封装的液压液在上液压腔和下液压腔之间流动。当结合到芯体1的绝缘体2 通过负载运动以及从发动机传递的振动而弹性变形时,随着上液压腔体积的增大和减小,产生液压液的流动。

此外,第二流动路径布置在喷嘴板3的中部,该第二流动路径使上液压腔和下液压腔还可以沿竖直方向彼此连通;杆5设置在第二流动路径的下侧,该杆5具有与隔膜4连接的上端并且竖直地移动。杆5连接于弹簧(未示出),从而沿着杆5遮蔽第二流动路径的方向(沿着杆5向上移动的方向)提供弹性力,并且线圈6被布置成与杆5相邻。此外,当电力被施加到线圈6时,杆5在电磁力作用下向下移动,并且第二流动路径使上液压腔和下液压腔还能够彼此连通。

然而,由于主动悬置具有这样的结构,其中在流体填充型悬置上还安装有驱动单元(包括杆、弹簧、线圈、动力供应单元等),因此存在一定的问题,即由于还安装有驱动单元,因此增加了生产成本和重量,同时还增加了电力消耗,因而对燃料效率具有负面影响。



技术实现要素:

本发明提供一种流体填充型发动机悬置,其能够在不需要额外的驱动单元的情况下,在根据基于各种行驶条件输入的振动特性自主地改变液压液的流动特性进行自我转化的同时,进一步提高阻尼性能和NVH性能。

本发明的示例性实施例提供一种发动机悬置,其中喷嘴板安装在绝缘体和隔膜之间,以便将内部空间分成上液压腔和下液压腔,封装的液压液根据发动机悬置中体积的变化,经由形成在喷嘴板上的第一流动路径,在上液压腔和下液压腔之间流动,该发动机悬置包括:第二流动路径,形成在喷嘴板中并具有出口,出口置于第二流动路径的上端并且与上液压腔连通;隔膜,连接于喷嘴板的下部以形成下液压腔,并且被安装成将下液压腔分成主液压腔和副液压腔;以及阀板,位于第二流动路径的上端的上方,其中主液压腔经由第一流动路径与上液压腔连通,副液压腔经由第二流动路径与上液压腔连通,并且当阀板在施加于上液压腔的负压力的作用下向上移动时,液压液在上液压腔和副液压腔之间经由第二流动路径流动。

此外,在第二流动路径中还形成有狭窄通道,狭窄通道使第二流 动路径与上液压腔彼此连通,以使液压液即使在阀板处于关闭状态下,仍然能够连续地流动。在第二流动路径的上端形成有倾斜孔,倾斜孔具有朝向其上方增大的内径,并且在阀板上形成倾斜突起部以便被装配到倾斜孔中,倾斜突起部具有朝向其下端减小的内径。阀板具有圆板形状,并且多个流动孔围绕形成倾斜突起部的中心部而形成,阀板被安装成以便安放在肋中,肋以圆形形状从喷嘴板的上表面突出。

在本发明的示例性实施方式中,狭窄通道可形成在倾斜孔的表面上。此外,在隔膜的下侧安装有下壳体,并且形成于下壳体的上表面的杯状紧密接触部被配置成将隔膜按压到喷嘴板的下表面上,从而将下液压腔分成主液压腔和副液压腔。

现有技术中的主动悬置在性能方面是有利的,因为可对于每个行驶条件改变阻尼特性,但是的问题在于增加了制造成本和重量,与驱动单元连接的配线布置比较复杂,因此,存在对安装有主动悬置的汽车类型的限制。但是,根据本发明示例性实施例的发动机悬置在产生与现有技术中流体填充型发动机悬置相同的成本,但不增加其重量的情况下被制造,因为省去了驱动单元,因此不需要配线,因而还可将发动机悬置应用到各种类型的汽车。

此外,根据本发明的发动机悬置的阻尼特性,可基于输入振动的强度,例如主动悬置的阻尼特性自主地改变,因此,振动衰减性能可优于现有技术中流体填充型悬置的振动衰减性能(其不具有驱动单元),并且可减小动态特性(例如,可提高NVH性能)。

附图说明

本发明的上述和其它目标、特性和其它优点,将从下面结合附图的详细描述中得到清楚地理解,其中:

图1是示出现有技术中的主动悬置沿纵向剖切的视图;

图2是示出根据本发明示例性实施例的发动机悬置沿纵向剖切的视图;

图3A-3B是示出图2中“α”部以及从图3A的视图分离的阀板的视图;

图4是示出当产生具有较大振幅的振动时(当汽车行驶时)被操作的阀板的视图;以及

图5是示出当产生具有较低振幅的振动时(当发动机空转时)被操作的阀板的视图。

具体实施方式

应当理解本文使用的术语“汽车”或“汽车的”或其它的类似术语通常包括机动汽车,如包括运动型多用途汽车(SUV)、公共汽车、卡车、各种商用汽车的载客汽车,包括各种小船和轮船的水运工具,飞机等等,且包括混合动力汽车、电动汽车、插电式混合动力汽车、电动汽车、燃烧,插电式混合动力汽车、氢动力汽车以及其它替代燃料汽车(如,来源于石油之外的资源的燃料)。

本文所使用的术语是仅仅是为了描述特定的实施例,并不旨在限制本发明。如本文所使用的,除非上下文清楚地指出其它情况,单数形式“一个/种(a)”、“一个/种(an)”以及“该(the)”意图也包括复数形式。还应当理解,当术语"包含了"和/或"包括着"用于本说明书中时,其指定所述特征、整数、步骤、操作、要素和/或成分存在,但并非排除其一个或多个其它特征、整数、步骤、操作、要素、成分和/或其组群的存在或加入。如本文所用的术语“和/或”包括一个或多个相关的所列事项的任何和所有组合。

在下文,将参考附图详细地描述本发明,因此本发明所属领域的技术人员看更容易地进行本发明。但是,本发明可以各种不同的方式实现,并且不限于本文所描述的示例性实施例。

与说明书不相关的部件将被省略以清楚地描述本发明,并且相同或相似的构成元件将始终由相同的附图标记来表示。另外,基于发明人可合理定义术语的概念以通过最佳方式描述他/她自己的发明的原则,本说明书和权利要求书中使用的术语或字词不应该限制为一般或字典中的意思,并且应该被解释为符合本发明的技术精神的意思或概念。

参考图2,与图1所示的现有技术中的流体填充型发动机悬置类似,根据本发明示例性实施例的发动机悬置可具有这样的结构,其中 由弹性材料制成并连结到芯体31的绝缘体30安装在壳体内的上侧,隔膜40连接在壳体的下端,喷嘴板10安装在绝缘体30和隔膜40之间,从而将其内部空间分成上液压腔和下液压腔。此外,喷嘴板10可包括沿喷嘴板的周边形成的环形流动路径,以使封装的液压液能够在上液压腔和下液压腔之间流动。此外,当上液压腔的体积因绝缘体30在负载运动以及从发动机传递的振动的作用下而弹性变形时,液压液会流动。

此外,喷嘴板10包括第二流动路径,其具有布置在第二流动路径上端且与上液压腔连通的出口(即,第一出口),以及布置在第二流动路径下端且与副液压腔连通的出口(即,第二出口),并且隔膜40可将下液压腔分成主液压腔和副液压腔。换句话说,下壳体50可安装在隔膜40的下侧,并且在下壳体的上表面形成的杯状紧密接触部51可被配置成将隔膜40按压到喷嘴板10的下表面上,从而将下液压腔分成主液压腔和副液压腔。主液压腔可以经由流动路径(例如,第一流动路径)与上液压腔连通,副液压腔可以经由第二流动路径与上液压腔连通。

另外,阀板20安放在第二流动路径上端的上侧。换句话说,阀板20可安放在第二流动路径的上侧,且可被配置成阻挡液压液流经第二流动路径,并且当负压力被施加到上液压腔时,由于绝缘体30的弹性变形,阀板20向上移动。因此,当阀板20向下移动时,液压液可通过流动路径流入主液压腔,并且当阀板20向上移动时,液压液也可通过第二流动路径流入副液压腔。

然而,在第二流动路径中还可形成有使第二流动路径和上液压腔能够彼此连通的细小通道(例如,狭窄通道),以使液压液即使在阀板20处于关闭状态下也能够连续(例如,细微地)流动。具体地,如图3A和图3B所示,第二流动路径的上端可形成倾斜孔11,其具有朝向倾斜孔11的上侧增大的内径,并且在阀板20上可形成倾斜突起部21以被装配到倾斜孔11中,该倾斜突起部21具有朝向其下端减小的内径,并且还可形成多个细小通道12(例如,狭窄通道),其不被倾斜突起部21屏蔽。

在本发明的示例性实施例中,阀板20具有圆形板状,并且多个流 动路径孔22可围绕形成倾斜突起部21的中心部形成,以便即使阀板不远离肋向上移动,也可以使液压液流动。此外,阀板20可被安装以安放在肋13中,其以圆形形状从喷嘴板10的上表面突出,因此当阀板20向上移动时,阀板20可在不偏离初始位置(例如,阀板自己的位置)的状态下被引导。

具有上述配置的本发明,可以通过在发动机空转时关闭第二流动路径,增加损耗因子,并减小动态特性,因此产生具有低振幅的振动,并且在车辆行驶时通过打开第二流动路径,产生具有高振幅的振动。

换句话说,在车辆行驶,因此沿垂直方向产生具有高振幅的振动时,绝缘体30可如图4所示发生弹性变形(例如,当芯体向下移动,然后向上移动时),因此,可在上液压腔中产生负压力。因此,阀板20可利用负压力而向上移动,液压液可流经上液压腔和副液压腔。具体地,在负压力作用下,从副液压腔吸入到上液压腔的液压液的流量大于从上液压腔流入到副液压腔的液压液的流量。因此,封装的液压液的量会增大,从而提高阻尼性能。

因此,液压液的流量比阀板关闭状态下的流量显著增加,因此,损耗因子增大且阻尼性能提高。具体地,液压液不断地流经细小通道12,但是当绝缘体大致如上放置时,从副液压腔向上移动到上液压腔的液压液的流量,远远大于通过细小通道流回到副液压腔的液压液的流量。

此外,当发动机空转并因此产生具有较低振幅的振动时,绝缘体30可如图5所示较小地弹性变形,因此,所产生的负压力不足以在上液压腔中使阀板20向上移动。因此,上液压腔中的部分液压液可通过细小通道12返回到副液压腔。具体地,当绝缘体弹性变形时,由于重力和/或上液压腔与副液压腔之间的压力差,通过细小通道12返回的液压液会流动,上液压腔中的压力变得比副液压腔中的压力大。另外,由于封装的液压液的量可被减小到与返回到副液压腔的液压液的量同样多,因此动态特性可减少,且NVH性能可提高。

根据具有上述配置的本发明的示例性实施例,考虑到输入到发动机悬置的振动特性基于发动机空转时和车辆行驶时进行变化,还可设置经由第二流动路径与上液压腔连通的副液压腔,并且通过输入振动 的振幅来调节阀板20以打开或关闭第二流动路径,因此,可以通过在车辆行驶时打开阀板20以使液压液能够从副液压室向上被吸入到上液压腔,从而增大损耗因子并增加阻尼性能,并且可以通过在发动机空转时关闭阀板20以使液压液从上液压腔返回到副液压腔,从而减小动态特性并提高NVH性能,其中上液压腔具有比副液压腔更大的压力。

上面已经描述的本发明不受限于上述示例性实施例和附图,并且对于本发明所属领域技术人员来说显而易见的是,在不偏离本发明的技术精神的情况下,还可做出各种替换、修改和变更。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1