一种智能化全自动堆取料机控制装置的制作方法

文档序号:12062804阅读:402来源:国知局
一种智能化全自动堆取料机控制装置的制作方法

本发明涉及一种智能化全自动堆取料机,属于散状物料输送技术领域和自动化技术领域。



背景技术:

自20世纪50年代开始,国外就采用连续堆取料工艺取代抓斗、铲车等低效率设备,堆取料机开始在散货搬运工作中起着重要作用。1966年大连工矿车辆厂设计了中国第一台堆取料机,并于1968年在攀枝花钢厂投入使用。20世纪80年代,中国开始改革开放,引进国外先进技术,合作制造,这是堆取料机的繁荣时期,在这时期,积累了经验,设计、制造与检验水平有了很大进步。20世纪90年代末,我国已具备了自主设计开发大型堆取料机的能力。进入21世纪,国内的堆取料机设计制造能力已经与国外发达国家相当,基本满足国内用户的要求,完全可以取代国外进口的同类产品。

然而,堆取料机实现自动化的难度非常大!如果堆取料机能够实现全自动化,则整个料场系统的自动化就很容易实现,就可提高生产效率、减少污染、降低成本、减少故障率,保证整个电厂的高效运行。



技术实现要素:

本发明针对上述现有技术存在的不足,提供一种智能化全自动堆取料机控制装置,其具有典型堆取料智能模型功能、料堆形状识别功能、自身位置识别功能、自动检测和保护功能以及完备的中控功能。

本发明解决上述技术问题的技术方案如下:一种智能化全自动堆取料机控制装置,包括:中央处理服务器、中控远程PLC系统、堆取料机PLC系统、人机HMI操作界面以及激光扫描系统,其中,所述中控远程PLC系统与所述中央处理服务器相连接,所述堆取料机PLC系统与所述中央处理服务器、所述中控远程PLC系统分别连接,所述人机HMI操作界面与所述中央处理服务器、所述中控远程PLC系统、所述堆取料机PLC系统分别连接,所述激光扫描系统与所述中央处理服务器相连接;所述智能化全自动堆取料机控制装置中的连接皆是通过智能化远程通讯网络,包括工业现场总线网络、工业以太网和/或工业电视网络。

在上述技术方案的基础上,本发明还可以做如下改进。

优选地,所述中央处理服务器包括数据服务器和图像服务器。

优选地,在所述数据服务器中安装有中控防碰撞系统,保证在多台堆取料机同步作业的情况下,避免堆取料机碰撞。

优选地,在所述图像服务器中安装有三维图像处理系统,将所述激光扫描系统所采集的数据进行整合和计算,转化为料堆三维图像与料堆盘点数据。

优选地,所述激光扫描系统包括多个用于扫描作业料堆的激光扫描仪,扫描当前作业料堆并进行数据的采集整理;所述激光扫描仪连接并将数据传输至所述图像服务器,进而反馈到所述人机HMI操作界面上,并提供料场三维扫描堆形与料堆盘点数据。

优选地,所述激光扫描仪配置在堆取料机上。

优选地,所述激光扫描仪配置在堆取料机以外的机架或建筑物上。

优选地,还包括视频监视系统,所述视频监视系统包括:多个安装在堆取料机上的摄像头、与所述摄像头连接的视频分频器以及连接于所述视频分频器的视频显示器和视频操作键盘;所述视频显示器还连接至所述人机HMI操作界面。

优选地,还包括连接至所述中控远程PLC系统进而控制所述堆取料机PLC系统的远程操作手柄。

优选地,可供使用的模式有:经典堆料模式、空场堆垛模式、补垛模式以及取料模式。

本发明的有益效果是:

1、专门的分段设定堆积高度模型减少因堆积原料落差太大而产生扬尘污染环境,当在雨季来临时,也可以适当降低堆积高度,减少料堆塌方;

2、专门的分层分段堆料模型避免因为只分段所造成的塌垛情形;

3、经典的堆取料模型减少了大车多次调整大臂俯仰角度、行走、换层造成的不必要的能耗,并延长了设备的使用寿命,效益最大化;

4、中控远程PLC系统授予操作员在紧急情况下的特殊操作,避免了在发生状况时需通知现场点检的时间损耗而造成的损失;

5、中控防碰撞系统避免堆取料机碰撞等严重安全事故的发生;

6、设备的全自动化作业,实现料场管理、中央控制、堆取料机无人控制的一体化。

附图说明

图1为本发明的智能化全自动堆取料机控制装置的结构示意图;

图2a为本发明的定点俯仰堆积工艺图一;

图2b为本发明的定点俯仰堆积工艺图二;

图3为本发明的分段堆积高度方法示意图;

图4为本发明的旋转分层取料工艺图;

在附图中,各标号所表示的部件名称列表如下:

101 中央处理服务器

1011 数据服务器

1012 图像服务器

102 中控远程PLC系统

103 堆取料机PLC系统

104 人机HMI操作界面

105 激光扫描仪

106 摄像头

107 视频分频器

108 视频显示器

109 视频操作键盘

110 远程操作手柄

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

请先参照图1所示,其为本发明的智能化全自动堆取料机控制装置的结构示意图。所述智能化全自动堆取料机控制装置包括:中央处理服务器101、中控远程PLC系统102、堆取料机PLC系统103、人机HMI操作界面104以及激光扫描系统,其中,

所述中控远程PLC系统102与所述中央处理服务器101相连接,所述堆取料机PLC系统103与所述中央处理服务器101、所述中控远程PLC系统102分别连接,所述人机HMI操作界面104与所述中央处理服务器101、所述中控远程PLC系统102、所述堆取料机PLC系统103分别连接,所述激光扫描系统与所述中央处理服务器101相连接;在本发明的所述智能化全自动堆取料机控制装置中,所有的连接皆是通过智能化远程通讯网络,包括工业现场总线网络、工业以太网和工业电视网络,以满足不同数据通讯的需要。

需要进行说明的是:由于本发明中设备繁多,为使附图简洁,省略了一些连接线,本领域技术人员应理解的是,关于本发明的连接关系,以文字描述为准。

中央处理服务器101,其包括数据服务器1011和图像服务器1012,负责数据通讯、信号接收发送和参数计算修正等重要工作并建立一套完整的系统内部通讯网络;

在所述数据服务器1011中安装有中控防碰撞系统,所述中控防碰撞系统保证在多台堆取料机同步作业的情况下,避免堆取料机碰撞等严重安全事故的发生;当所述中控防碰撞系统的防碰撞演算得出堆取料机可能发生碰撞时,立即通知所述堆取料机PLC系统103,及时修改和限定作业堆取料机的运行动作,防止碰撞事故的发生;

在所述图像服务器1012中安装有三维图像处理系统,所述三维图像处理系统将所述激光扫描系统所采集的一系列料堆扫描数据进行整合和计算,将这些数据转化为料堆三维图像的直观呈现,以提供控制用的料堆盘点数据;

中控远程PLC系统102,其负责协调各操作单元对所有堆取料机的控制,授予操作员在紧急情况下的特殊操作;所述中控远程PLC系统102向三维图像处理系统请求计算相关数据并获得计算结果,然后发送给堆取料机PLC系统进行实时控制,所述中控远程PLC系统102亦向三维图像处理系统发送作业状态等信息;

堆取料机PLC系统103,其从所述中央处理服务器101和所述中控远程PLC系统102获得控制指令和数据参数,下达命令给堆取料机的行走机构、回转机构、俯仰机构、轮斗机构、尾车机构以及机上皮带机构等;所述堆取料机PLC系统103实时将现场作业的各种作业参数和运作状况信息反馈给所述人机HMI操作界面104;

人机HMI操作界面104,其包含了针对作业堆取料机的各项参数显示以及可控制和修改实际作业流程的具体按键;在所述人机HMI操作界面104上,下发和修改作业指令和数据参数,通过所述中央处理服务器101和所述中控远程PLC系统102的整合和计算,下发给所述堆取料机PLC系统103,使作业堆取料机按照具体指令进行运作;

激光扫描系统,其包括多个用于扫描作业料堆的激光扫描仪105,能实时和清晰地对当前作业料堆进行扇形扫描,快速准确地对作业料堆扫描数据进行采集和整理;然后,将扫描数据发送给所述图像服务器1012,三维图像处理系统随即将数据进行数据筛选和公式计算,进而转化成可以直观显示的三维图像模式,反馈到所述人机HMI操作界面104上;多个激光扫描仪105可配置在堆取料机上,也可配置在堆取料机以外的机架或建筑物上;

优选地,所述智能化全自动堆取料机控制装置还包括视频监视系统,其包括:多个安装在堆取料机上的摄像头106、与所述摄像头106连接的视频分频器107、连接于所述视频分频器107的视频显示器108和视频操作键盘109,所述视频显示器108还连接至所述人机HMI操作界面104;由此,所述视频监视系统实时将作业现场的真实画面传输到所述视频显示器108上,同时亦显示在所述人机HMI操作界面104上,方便操作员对现场作业场景进行实时的监视,并协助做出准确的判断;

优选地,所述智能化全自动堆取料机控制装置还包括远程操作手柄110,其连接至所述中控远程PLC系统102,通过工业现场总线网络控制所述堆取料机PLC系统103。

在本发明的智能化全自动堆取料机控制装置中,可供使用的模式有以下四种:

1、经典堆料模式

模型如图2a、2b和3所示,工艺如下:

首先,根据垛堆宽度来确定落料点位置,落料点位置为堆垛宽度的中间位置,图2a的CD线为堆场宽度中心线;

其次,根据堆存高度,来确定大臂的俯仰角度,保证落料位置为如图2a所示的CD线上;

根据垛堆的长度S,煤种等信息,确定每次寸动的距离⊿S;

具体堆法:将大机行驶至堆料开始点位置,确定了大臂的俯仰高度和寸动距离后,设定该值并保持大臂俯仰高度不变,然后开始堆料,利用煤料的自然重力进行滑动,形成如图2b所示的三角形截面;当堆至指定高度H后,料位计报警,则进行寸动走行⊿S距离,开始下一堆堆料,如此循环,直至寸动完料堆长度距离S,则堆料完成。作业中有时需要采用分段设定堆积高度的方法来减少扬尘。如图3所示,堆积高度分为三段,6m、9m、12.4m,对应的悬臂高度为8.4m、11.8m、14.5m,堆积高度由“料位检测器”进行控制。

自动堆料操作工艺:中控系统在收到包含作业货种、计划作业量的作业计划后,根据作业货种在基础信息库中查出对应堆比重、堆积角度信息,然后确定堆积方式;随后分析料场当前使用状态,确定作业机械、堆积地址、料堆堆高;将以上信息作为作业指令自动通过工业网络下发对应堆取料机;同时给地面皮带流程发送“堆料准备”指令。无人堆料过程中,堆取料机按照作业计划,自动进行堆料计算,并进行自动对位,“定点堆积法”功能由堆取料机上PLC实现,堆取料机按照中控指令先启动悬臂皮带、中间皮带,地面皮带机按流程顺序开始运转,堆取料机按照堆料要求在起始地址等待物料通过,参照预定堆积原则对大车寸动距离和旋回角度进行调整,堆积结束后,自动调整堆积高度,进行第二层定点覆盖补堆,直至预定高度,完成第一料堆的堆积。当第一料堆达到规定高度、宽度时,堆取料机自动向第二堆积点移动,按照第一堆积点的作业顺序方式重复堆积,直至作业结束。

自动堆料操作流程如下:

1)主服务器接收人机交互界面下发的堆料作业计划;

2)分析堆料作业计划内容,确定堆料模式,生成大机的堆料控制指令;

3)中控画面显示堆料作业控制指令,进行参数修正(包括走形、回旋和俯仰值);

4)堆料控制指令下发到大机PLC系统;

5)大机收到堆料作业指令,进行正式作业前的调整工作;

6)大机走行到计划堆料区域的起始地址,大机各机构作业准备完毕;

7)地面流程启动,给料机与相应的输送机开始作业,大机开始自动堆料作业;

8)自动堆料过程的控制;

9)大机未到达堆积终止地址(但给料机已停止给料)或堆料作业到达堆积终止地址,大机完成堆料作业的处理;

10)堆料结束后,将煤堆扫描数据进行分析和保存。

2、空场堆垛模式

此种情况下的堆料只需要确定堆垛起始地址和终止地址,系统会根据卸煤量、煤种来计算卸煤体积,再结合堆垛方法来模拟在场地的堆存效果,操作人员可以进行堆存预判。

空场堆垛方法:

1)根据卸车量、煤种信息,计算出堆存体积;

2)确定堆料起始地址;

3)选择堆垛方法;

4)将堆存体积结合堆垛方法,模拟仿真堆存效果图;

5)开始堆料;

6)堆料结束后,将煤堆扫描数据进行分析和保存。

3、补垛模式

此种情况下的堆料首先需要确定现有垛型的情况,确定堆存的起始地址和终止地址,系统会根据卸煤量、煤种来计算卸煤体积,再结合堆垛方法来模拟在现有存量的场地上所展现的堆存效果,操作人员由此进行堆存预判和选择合适的场地。

补垛方法:

1)根据卸车量、煤种信息,计算出堆存体积;

2)确定堆料起始地址;

3)选择堆垛方法;

4)扫描现有堆垛的数据,或者调用已保存的垛型数据;

5)将堆存体积结合堆垛方法,在现有堆垛上进行扫描生成堆存效果图;

6)开始堆料;

7)堆料结束后,将煤堆扫描数据进行分析和保存。

4、取料模式

经典模型如图4,首先操作堆取料机行走,旋转、俯仰装置使整机置于料堆顶层作业开始点位置上,然后靠旋转控制开始取料,每达到旋转范围时行走机构微动一个设定距离即进给量,取完第一层后,进行换层操作,每层的旋转角度由物料的安息角及层数决定;俯仰高度由层数设定,行走距离由进给量决定。臂架旋转速度应与臂架回转角度成确定函数关系,并根据驱动电动机的电流进行反馈,实现旋转分层等量取料算法。

当垛型较大较长时,有时需进行旋转分层分段取料,即按照设定的供料段的长度进行,取完当前层时自动进行换层,当取完最下一层后进行换段操作,置于第二段最顶层的作业开始点上,重复进行取料,直到取料完成。自动取料操作流程如下:

1)实现料堆激光扫描三维成像并为自动取料控制提供数据依据,作业计划设定;

2)根据三维成像提供的分析数据,确定分层、寸动量、边界值等数据,以设定系统自动取料的依据;

3)在取同一层时,根据设定参数自动运行取料;

4)当层取完后按照设定参数自动对位、开层、换层;

5)取料结束后,将煤堆扫描数据进行分析和保存。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1