用于印刷锂电池的电极的水性油墨的制作方法

文档序号:7015951阅读:489来源:国知局
专利名称:用于印刷锂电池的电极的水性油墨的制作方法
用于印刷锂电池的电极的水性油墨发明领域
本发明涉及用于通过印刷来形成特别是二次锂电池的电极的水性油墨,该水性油墨包含活性材料和水溶性或水分散性导电聚合物。
本发明的使用领域具体涉及基于在至少一个电极上的锂的嵌入和脱嵌(或插入/ 脱出)的原理来操作的锂电化学发生器。
背景
锂或锂离子电池具有包括布置在有机或无机隔离物的任一侧上的两个电极的结构。这两个电极——一个是正的而另一个是负的——都被组装在金属集流体上。
在印刷锂离子电池(

图1)的情况下,不同的电池元件根据下列步骤被连续地印刷
■将第一电极(正的或负的)沉积在第一金属集流体上;
■将聚合物或陶瓷隔离物沉积在第一电极上;
■将第二电极(正的或负的,与第一电极相反)沉积在隔离物上;
■安装第二集流体。
印刷电池由于粘合结构(不同的层不能相对于彼此移动)而具有灵活的优点,并具有轻的优点。可特别通过丝网印刷(图2)、苯胺印刷(图3)、轮转凹版印刷(图4)或通过喷墨印刷来执行电极的印刷。这样的印刷技术通常允许高生产率。
通常,电极油墨包含活性电极材料、一个或多个碳电子导体、一种或多种粘合剂、 以及有机溶剂。
电化学活性材料允许锂阳离子的嵌入和脱嵌,而电子导体能够提高导电。另一方面,粘合剂不仅使油墨成分容易粘附到集流体,而且提高活性材料的内聚力。
某些活性材料例如碳、LiFePO4 (锂离子磷酸盐)或Li4Ti5O12 (锂钛氧化物)的水性形成通常需要使用与胶乳共聚物例如NBr (丙烯腈丁二烯)、SBr (苯乙烯-丁二烯)或乙烯-丙烯-二烯-三元共聚物缔合的水溶性聚合物,例如纤维素衍生物CMC (羧甲基纤维素)、HMC(羟甲基纤维素)。虽然使用这样的聚合物混合物配制的油墨具有良好的电极苯胺印刷质量,但包括这样的电极的电池没有与设置有有机地配制的电极的电池一样高的电化学性能。
所使用的聚合物粘合剂的物理化学特征对表面张力和油墨的流变性质有影响。电极的最佳图案定义和面积容量因此从粘合剂、活性材料和干提取物的选择产生,特别是在丝网印刷中。此外,在苯胺印刷中,不同的油墨转移的优化和因而产生的电极的质量取决于表面张力调节。
PVDF(聚偏二氟乙烯 )是在锂离子电池电极中最广泛使用的粘合剂之一。然而, 它通常引入非常低的油墨表面张力值,因而使苯胺印刷非常难。高极性的第二聚合物例如 PVA(聚(乙烯醇))的引入能够增加表面张力,并因而能够通过苯胺印刷来印刷。然而,这个添加弓丨起短期油墨稳定性的问题。
代替或除了常规电子导体(炭黑、碳纤维...),还可使用导电聚合物。例如,与导电粒子悬浮液比较,常常与PSS (聚磺苯乙烯)缔合的聚苯胺、聚吡咯和聚噻吩以及更具体地PEDOT(聚(3,4_乙烯二氧噻吩))主要用于其用户友好性,但也用于提高活性电极材料的电渗透的可能性。
文献W02004/011901描述了通过用油墨涂覆而得到的电极,该油墨特别包括覆盖有导电材料(PED0T-PSS)层并覆盖有具有低折射率的材料(氟化聚合物、氧化钒、聚丙烯) 的活性材料(LiFePO4)的粒子。
文献US2009/0095942描述了包含具有氨基的导电聚合物、氢键化合物和质子酸的二次锂电池的阴极。该电极通过水性涂料来制造。
文献US7651647描述了一次锂电池电化学电池(不可再充电的电池)的阴极的制造。活性阴极材料(氧化钒——银或氟化碳)和导电聚合物(聚苯胺和/或聚二氧噻吩) 首先被混合,而不添加除了导电聚合物以外的其它粘合剂。混合物接着被加工以(a)通过将粉末烧结在集流体(先前可使导电聚合物沉积在集流体上)上或(b)通过烧结以薄片形式的粉末(其接着沉积在集流体上,因此产生接触)来形成阴极。
如已经指示的,用于印刷锂离子电池电极的技术可能有局限性。事实上,在苯胺印刷中,在一次通过中得到的表面容量是低的。此外,用于配制有导电聚合物的油墨的不同的转移的压力是低的(从10到50N),并强烈地依赖于印刷板的聚合物的硬度。
面积容量也强烈地依赖于网纹辊负荷容量,S卩,依赖于形状和依赖于存在于其上的图案的深度。在转移、油墨与不同辊之间的表面能量差异的最佳条件中,所转移的油墨的量至多是存在于网纹辊上的油墨的量的四分之一。
在轮转凹板印刷术的情况中,所转移的油墨的量通常至多是存在于辊上的油墨的量的一半。
虽然现有技术具有用于印刷锂离子电池电极的油墨,但后者不是令人满意的。事实上,活性材料常常与额外的聚合物缔合以使其形成容易。此外,某些粘合剂例如PVDF需要添加高极性的聚合物(PVA)以达到适合于印刷技术的表面张力。这最后一个解决方案依然是不能令人满意的,PVDF/PVA混合物是不稳定的。
本发明涉及稳定的水性油墨,其具有能够通过苯胺印刷、轮转凹版印刷或丝网印刷来改善锂离子电池的印刷的粘度。
发明概述
申请人开发了用于印刷电极的水性油墨,且配方包括能够进一步增加所述油墨的表面张力的导电聚合物粘合剂。该油墨能够改善在印刷过程期间`的不同转移以及电极与集流体的粘附。
更具体地,本发明涉及用于通过印刷来形成电极的水性油墨,该水性油墨包含至少一种活性电极材料和至少一种水溶性或水分散性导电聚合物。该聚合物至少由PEDOT/ PSS缔合物形成,并具有范围在20和IOOdPa. s之间的粘度。
如已经指示的,PEDOT是聚(3,4_乙烯二氧噻吩)聚合物,而PSS是聚磺苯乙烯。 PED0T/PSS缔合物的粘度根据这些聚合物特有的性质而变化。
根据本发明的水性油墨的活性电极材料可以有利地选自包括下面的化合物的组 LiFePO4, LiCoO2, Li4Ti5O12, Cgr, S1、SiC, LiNixCoyAlzO2 且 x+y+z = I。如已经指示的,活性材料能够嵌入和脱嵌锂阳离子。
还更有利地,正电极的活性材料是LiFePO4,而LiTi5O12在负电极的情况下是优选的。
与现有技术不同,鉴于导电聚合物起粘合剂和电子导体的双重作用,根据本发明的水性油墨不必包含常规碳电子导体。油墨中的活性材料的比例因此可明显增加。此外, 在根据本发明的油墨中,活性材料不与减小表面张力的PVDF(聚偏二氟乙烯)缔合。根据优选实施方式,根据本发明的水性油墨包含单一电子导体——PED0T/PSS。
根据优选实施方式,活性电极材料的量在根据本发明的水性油墨的重量的25%和 50%范围之间,且还更有利地在40%和50%范围之间。
根据本发明的水性油墨还包含至少一种水溶性导电聚合物,其可实现粘附功能。 它有利地是PED0T/PSS缔合物。根据优选的实施方式,根据本发明的水性油墨包含单一水溶性导电聚合物——PED0T/PSS。
PED0T/PSS是与聚磺苯乙烯(PSS)缔合以预测出其导电性的聚(3,4_乙烯二氧噻吩)(PEDOT)。PED0T/PSS比率范围有利地在1/2. 51/1之间。
有利地,本发明能够通过使用PED0T/PSS的粘性水分散体作为导电粘合剂来配制目前在水性锂离子电池领域中使用的所有活性材料。
水溶性或水分散性导电聚合物的量相对于水性油墨的重量有利地在1. 5%和4% 范围之间,且还更有利地在1. 5%和2. 5%范围之间。
如已经规定的,在本发明的上下文中使用的PED0T/PSS是具有范围在20和 IOOdPa. s之间的粘度的聚合物的混合物。它的粘度有利地为约60dPa. S。与包括PEDOT/ PSS的现有技术油墨不同,由于PED0T/PSS的粘性,根据本发明的水性油墨可通过印刷来得到。
有利地,根据本发明的 水性油墨的粘度范围在受到12s—1的剪切速度的O.1Pa. s和 25Pa. s之间,且还更有利地在O. 5Pa. s和15Pa. s之间。
调节水性油墨组分的比例以得到根据印刷技术而变化的期望粘度、期望流变行为在本领域技术人员的能力内。事实上,虽然苯胺印刷和轮转凹板印刷术需要具有液体剪切速率稀释特性并具有相对长的弛豫时间的油墨,但使用具有剪切速率稀释特性并具有较短的弛豫时间的较粘的油墨用于丝网印刷是优选的。
根据本发明的特定实施方式,水性油墨还可包含选自电子导体例如Super p 碳、 碳纤维的至少一种添加剂。
根据另一特定的实施方式,根据本发明的水性油墨包含至少一种活性电极材料和 PEDOT/PSS, PED0T/PSS的粘度范围有利地在20和IOOdPa. s之间。
本发明还涉及所述水性油墨通过将所述水性油墨印刷在集流体上来形成电极的用途。所述电极可以是正的或负的。
用于形成所述电极的方法包括下列步骤
■将根据本发明的水性油墨沉积在集流体上,有利地通过喷墨印刷、苯胺印刷、轮转凹版印刷或通过丝网印刷来执行所述沉积;
■使油墨干燥;
■可能地压缩或砑光通过将油墨沉积在集流体上而形成的电极。
可能通过涂覆来执行油墨沉积。
有利地,集流体可由铝、铜或镍或甚至这些金属的合金制成。根据优选实施方式, 正电极的集流体由铝制成,而负电极的集流体由铜制成。
本发明还涉及能够根据上述制造方法得到的电极。
根据本发明的水性油墨的干提取物通常范围在30%和60%之间。它代表固体物质相对于油墨组分的整体的百分比。
如已经指示的,在根据本发明的水性油墨中的活性材料的比例可明显增加,因而能够得到具有比现有技术中的更高的每重量和每体积容量的电极。
有利地,对于大于2C的充电-放电速率,根据本发明的电极的面积容量大于3mAh. cm_2,这里的2C即,对于具有Icm2表面积的电极的电池,在6mA下30分钟的充电(或放电) 时间。
本发明还涉及包括通过沉积根据本发明的油墨而制备的至少一个电极的锂储存器(accumulateur),而且涉及包括根据本发明的至少一个锂储存器的锂电池。
有利地,锂电池是二次锂电池,其中电极通常由有机或无机隔离物隔离。
从本发明产生的电极可导致三种类型的电池,其中锂离子交换出现在正电极和负电极之间
■能量源,其能够在非常长的持续时间内提供低电流,通常具有高的每重量和体积容量;
■功率源,其能够在相当短的时间内提供高电流,通常具有较低的每重量和体积容量;
■高容量功率源,其能够在长时间内提供高电流(如果不,低电流),通常具有高的每重量和体积容量。
从下面的附图和实施例中,本发明和因而产生的优点将更好地显现。
附图
图1A示出印刷锂离子电池的设计的概括的原理。
图1B以顶视图和以侧视图示出组装的电池。
图2示出锂离子电池的电极和膜的丝网印刷的原理。
图3示出锂离子电池的电极和膜的苯胺印刷的原理。
图4示出锂离子电池的电极和膜的轮转凹版印刷的原理。
图5示出与根据现有技术的LiFePO4电极相比以不同的速率提供根据本发明的 LiFeP04/PED0T-PSS电极的性能的循环测试的结果。
图6示出以不同的速率提供根据本发明的LiCo02/PED0T-PSS电极的性能的循环测试的结果。
图7示出以不同的速率提供根据本发明的LiCo02/PED0T-PSS电极的性能的循环测试的结果。
图8a示出通过本发明的具有45%的干提取物的油墨的苯胺印刷来印刷的电极的板。图8b示出图案的放大图,因而突出电极的高清晰度(d6finition)。
图9示出通过具有40%的干提取物的油墨的苯胺印刷来印刷的电极的板。
图10示出通过使用印刷板对油墨苯胺印刷来印刷的电极的板,该印刷板包括比图8所示的板多的图案。它由于在印刷板上的图案的较大接近度而能够突出电极之间的上墨的缺乏。
附图的详细描述
图1A示出印刷锂离子电池的设计的概括的原理。第一电极(2)印刷在第一集流体⑴上。隔离物⑶接着印刷在第一电极⑵上。它能够避免两个电极之间的任何短路。 具有与第一电极(2)的电荷相反的电荷的第二电极(4)在被第二集流体(5)覆盖之前印刷在隔离物⑶上。
图2示出锂离子电池的电极和膜的丝网印刷的原理。油墨线(6)直接沉积在本身由框架(11)支撑的掩膜(7)上。油墨线(6)接着根据可设置的速度(10)被刮片⑶推动。 施加到刮片的压力也是可调节的。这能够在图案(9)是镂花模板的情况下调节面积容量的设置值,并能够在图案(9)有网孔的情况下使油墨¢)穿过网孔。面积容量在丝网印刷的情况下通过掩膜(7)的厚度来设置,且如果印刷图案(9)有网孔,则通过网孔的尺寸和形状来设置。该印刷技术是卷到卷而不是辊到辊的。它在印刷支撑物(12)上实现。
图3示出苯胺印刷的原理。印刷板(13)上的图案是凸起的。油墨直接放置在网纹辊(14)上、在油墨槽中或在墨头中。网纹辊因此通过旋转被上墨(油墨线(18)),且刮片(15)相对于网纹辊的旋转轴被正地或负地定位,以移除过量的油墨。网纹辊接着与印刷板接触,并通过油墨转移使印刷辊(图案)的凸起部分上墨。印刷辊接着与印刷支撑物(16) 接触,印刷支撑物(16)在目前的情况下是集流体。反压滚筒(17)与印刷支撑物(16)接触以在油墨从墨辊转移到印刷支撑物(16)时控制所施加的压力。不同的压力(网纹辊/印刷板上墨压力和印刷板/印刷支撑物印刷压力)是可设置的,并能够调节沉积厚度,其在锂离子电池的印刷的情况下能够设置最终电极面积容量和印刷图案的空间清晰度。
图4示出锂离子电池的电极和膜的轮转凹版印刷的原理。印刷板的雕刻的金属滚筒(19)在墨槽中或在墨头中被直接上墨(23)。如在苯胺印刷的情况中的,滚筒配备有刮片系统(20)以从辊移除过量的油墨。滚筒(19)的雕刻深度能够设置沉积的潮湿高度 (hauteur humide)并因此设置电极的面积容量。上墨的滚筒接着与印刷支撑物(21)接触, 印刷支撑物(21)在锂离子电池的情况下是集流体。通过旋转和油墨转移,电极被印刷。在上墨的滚筒和支撑物之间的印刷压力由反压滚筒(22)提供,并且是可设置的。压力在这种情况下也相对低以得到最大可能的面积容量,且强烈地取决于用于覆盖反压滚筒的聚合物的硬度。正如苯胺印刷一样,它大约从10到50N。面积容量将取决于雕刻的图案的深度。 在转移、油墨与不同的辊之间的表面能量差异的最佳条件中,所转移的油墨的量至多是存在于滚筒上的油墨的量的一半。
本发明的实施方式
实施例1到实施例5涉及根据本发明的水性油墨和其用于制造电极的用途,而比较实施例1涉及现有技术油墨。实施例6到实施例8示出通过根据本发明的油 墨的苯胺印刷来印刷电极。
实施例1 :
在图5中示出该实施例。
材料:
在本实施例中,所使用的活性材料是来自Pulead Technology Industry的碳 LiFeP04。所使用的导电聚合物是在水中的粘性等级的PED0T-PSS分散体,额外粘合剂来自H. C. Starck Clevios GmbH并在商标名Clevios S V3下出售(印刷膜的电阻率大约 700 Ω/sq,在环境温度时的粘度60dPa. S,所测量的干提取物6. 5% )。
用于隔离纽扣电池的两个电极的聚乙烯相应于Celgard等级2400。
电极和纽扣电池的形成:
通过混合93. 6重量份的Pulead LiFePO4和6. 4重量份的PED0T-PSS来得到正电极。纯水,即,去离子水接着被添加到混合物以得到按重量计45. 1%的干提取物。
接着借助于运动叶片混合器以2,OOOrpm混合油墨30分钟。得到具有适合于形成技术例如丝网印刷或涂覆的粘度,即,从6Pa. s到12Pa. s的油墨。
油墨接着散布在铝集流体上150 μ m的厚度,并接着在50°C下干燥一天。这个 150 μ m高度能够得到具有1. 16mAh. cm—2的面积容量的电极。
接着具有14_直径的小球从这个电极被采样,其后它通过压力机在2吨压力 (1. 3T. cm-2)下被压缩。该小球接着在100°C下在真空下在BUchi型系统中干燥48个小时以在被引入手套箱中之前移除可能残留的微量的水。接着它与具有16_直径的金属锂电极相对地被组装为纽扣电池,其采用聚乙烯隔离物的16. 5mm直径的小球作为聚合物隔离物。
纽扣电池充电-放电测试和结果:
纽扣电池接着在2V和4. 2V之间以不同的速率经历不同的充电-放电循环 10C/20-D/20 循环;10C/10-D/10 循环;10C/5_D/5 循环;10C/5_D/2 循环;10C/5_D 循环; 10C/5-2D循环;10C/5-ro循环;然后,多于100次循环的C/10-D/10循环老化。
以不同的速率的放电容量结果在图5中被讨论并显示在D/20下148mAh. g_ 1的恢复容量和在下78mAh. g—1的恢复容量。
D/10老化显示在137次循环之后2%的容量损失(-0. 0146% /循环),恢复容量为大约144mAh. g'这样的结果根据在比较实施例1中得到的结果是极好的。
C/20充电意味着恒定电流被施加到电池20个小时,电流的值等于容量除以20。2C 循环相应于30分钟充电,而C-D/5循环相应于一小时充电和5小时放电。
实施例2 (图5)
在本实施例中,电极和纽扣电池的所使用的配方和制造条件与在实施例1中描述的那些相同,唯一的差异是施加到电极的压缩力是I吨(即,O. 65T/cm2)。
纽扣电池经历与用于实施例1的循环序列相同的循环序列,差异是在66次 C/10-D/10老化循环之后,新系列循环以不同的速率施加到纽扣电池10C/5-D循环; 10C/5-2D循环;10C/5-ro循环;10C/5_10D循环;10C/5_20D循环;然后,多于100次循环的 C/5- 循环老化。
以不同的速率的放电容量结果在图5中被讨论并显示在D/20下141mAh. g—1的恢复容量和在下78mAh. g—1的恢复容量。
D/10老化揭示在65次循环之后没有容量损失,恢复容量为大约142mAh. g'
其后以不同的速率执行的新系列循环提供与对第一系列发现的那些结果相同的结果。老化提供-0.4% /循环的容量损失(在下115次循环以上的初始容量的-54% )。
这些结果根据在比较实施例1中得到的结果是极好的且类似于在实施例1中得到的那些结果。
实施例3(图5)
根据表I的参数,电极和纽扣电池的实施方式与在实施例1中描述的那些相同。
纽扣电池接着在2V和4. 2V之间以不同的速率经历不同的充电-放电循环 5C/20-D/20 循环;5C/10-D/10 循环;5C/5_D/5 循环;5C/5_D/2 循环;5C/5_D 循环;5C/5_2D 循环;5C/5-ro循环;5C/5-10D循环;然后,C/5-D循环老化。
以不同的速率的放电容量结果在图5中被讨论并显示在D/20下155mAh. g—1的恢复容量和在2D下99mAh. g_1但在下小于5mAh. g_1的恢复容量。D老化揭示在62次循环之后小于O. 5%的容量损失(-0. 0034% /循环),恢复容量为大约118mAh. g'
这些结果根据在比较实施例1中得到的结果是极好的且类似于在实施例1和实施例2中得到的那些结果。以低速率恢复的较强容量起源于电极面积容量差异。这些结果也表明对小球,即便是轻的,压缩看来对以高速率的正确操作是必要的。
比较实施例1(图5)
根据下文中的表I的参数,电极和纽扣电池的实施方式与在实施例1中描述的那些相同。
通过混合来获得具有范围从6Pa. s到12Pa. s的粘度的油墨
■ 82 重量份 Pulead LiFePO4 ;
■ 4 重量份 Super P 碳;
■ 6重量份VGCF碳纤维(“蒸汽产生的碳纤维”);以及
■以按重量计12%溶解在N-甲基吡咯烷酮NMP中的8重量份聚偏二氟乙烯 PVDF (索尔维等级SOLEF 6020)。
纯NMP接着加入到混合物中以得到按重量计41. 4%的干提取物。
纽扣电池接着在2V和4. 2V之间以不同的速率经历不同的充电-放电循环 5C/20-D/20 循环;5C/10-D/10 循环;5C/5_D/5 循环;5C/5_D/2 循环;5C/5_D 循环;5C/5_2D 循环;5C/5-ro循环;5C/5-10D循环;接着,C/5-D循环老化。
以不同的速率的放电容量结果在图5中被讨论并显示在D/20下135mAh. g_1的恢复容量、在2D下78mAh. g—1的恢复容量和在下大约40mAh. g—1的恢复容量。
D老化揭示良好的稳定性,恢复容量大约是98mAh. g'这些结果揭示使用根据实施例1、2和3得到的电极得到的结果是极好的。
实施例4(图6)
根据表I的参数,电极和纽扣电池的实施方式与在实施例1中描述的那些相同。
纽扣电池接着在2. 5V`和4. 25V之间以不同的速率经历不同的充电-放电循环 5C/20-D/20 循环;5C/10-D/10 循环;5C/5_D/5 循环;5C/5_D/2 循环;5C/5_D 循环;5C/5_2D 循环;5C/5-ro循环;5C/5-10D循环;接着,C/5-D循环老化。
以不同的速率的放电容量结果在图6中被讨论并显示在D/20下147mAh. g—1的恢复容量和在2D下67mAh. g_1但在下小于12mAh. g_1的恢复容量。
D老化揭示在100次循环之后的70%的容量(-0. 6% /循环)。这些结果表明使用PED0T/PSS作为粘合剂,该材料的水性形成是可能的,以及可能以低速率恢复整个放电容量。
实施例5(图7)
根据表I的参数,电极和纽扣电池的实施方式与在实施例1中描述的那些相同。
纽扣电池接着在IV和2. 8V之间以不同的速率经历不同的充电-放电循环 5C/20-D/20 循环;5C/10-D/10 循环;5C/5_D/5 循环;5C/2_D/5 循环;5C_D/5 循环;52C_D/5 循环;55C/D/5循环;510C/D/5循环;接着,C/5-D循环老化。
以不同的 速率的放电容量结果在图7中被讨论并显示在C/20下96mAh. g—1的恢复容量和在2C下45mAh. g—1但在5C下小于ImAh. g—1的恢复容量。
C老化揭示在77次循环之后的11%的容量(-0. 125% /循环)。这些结果证明将 PED0T/PSS用于负极是可能的。以低速率恢复的容量不是全部的,且这个现象可能是由于施加在电极上的过量压缩力。
实施例6(图8)
该实施例证明通过使用在实施例1到5中使用的PED0T-PSS配制的苯胺印刷油墨进行印刷的可能性。
根据在实施例1和2中公开的方法来得到油墨,有45%的干提取物。5ml的该油墨沉积在具有IOOcm3容量和45°条纹图案的网纹辊的表面上。被确实地安装的刮片接着在网纹辊的整个表面上分配油墨。网纹辊接着与具有可光致固化的聚合物作为表面材料的印刷体接触。
接着通过在网纹辊和印刷板之间施加ION压力来将凸起的图案上墨。
印刷板接着与印刷支撑物(具有20 μ m厚度的铝带)接触。在反压滚筒和印刷板之间(Al支撑物在这两者之间)施加的压力是20N。
油墨接着非常正确地转移,然而一些翼片出现在图案之间。这些可能是由于在网纹辊上的太多的油墨,辊因此在凸起的图案之间被上墨。
使用这个100-cm3网纹辊,在最佳转移条件中,湿沉积的厚度必须在理论上达到 25 μ m,其以45%的干提取物在理论上提供大约12 μ m的最终电极厚度。
所形成的电极具有平均11. 5μπι的厚度(图8a和图8b),这指示98%的转移率。 水性LiFePO4和PED0T-PSS制剂因此具有理想地适合于不同的苯胺印刷转移的表面能量。
实施例7(图9)
与实施例6的油墨类似但具有40%的干提取物的油墨提供在干燥之后具有9.7μπι的平均厚度的电极,相对于理论,相应于97%的油墨转移率。
实施例8(图10)
在本实施例中使用的油墨优选地与实施例6的油墨相同。对印刷板进行修改图案较接近,这能够限制在实施例6和7中观察到的在图案之间的上墨的现象,但材料是相同的。电极的空间清晰度因此被明显提高。转移率具有与实施例6的转移率可比较的质量。
表1:油墨组成和电极面积容量
权利要求
1.一种用于通过印刷来形成电极的水性油墨,包含至少一种活性电极材料和至少一种水溶性或水分散性导电聚合物,所述聚合物至少由具有范围在20和IOOdPa. s之间的粘度的PED0T/PSS缔合物形成。
2.如权利要求1所述的水性油墨,特征在于,所述活性电极材料选自包括下面物质的组LiFeP04、LiCo02、Li4Ti5012、Cgr、S1、SiC、LiNixCoyAlz02,x+y+z = I。
3.如权利要求1或2所述的水性油墨,特征在于,所述水溶性或水分散性导电聚合物的粘度为约60dPa. S。
4.如前述权利要求中任一项所述的水性油墨,特征在于,所述水性油墨的粘度范围在O.1Pa. s和25Pa. s之间,且还更有利地在O. 5Pa. s和15Pa. s之间。
5.如前述权利要求中任一项所述的水性油墨,特征在于,所述活性电极材料的量相对于所述水性油墨的重量在25%和50%范围之间,更有利地在40%和50%范围之间。
6.如前述权利要求中任一项所述的水性油墨,特征在于,所述水溶性或水分散性导电聚合物的量相对于所述水性油墨的重量在1. 5%和4%范围之间,更有利地在1. 5%和2.5%范围之间。
7.如前述权利要求中任一项所述的水性油墨,特征在于,所述水性油墨还包含选自包括电子导体例如碳纤维的组的至少一种添加剂。
8.权利要求1到7中任一项所述的水性油墨用于通过将所述水性油墨印刷在集流体上来形成正电极或负电极的用途。
9.一种用于形成电极的方法,包括下列步骤■将权利要求1到7中任一项所述的水性油墨沉积在集流体上,有利地通过喷墨印刷、 苯胺印刷、轮转凹版印刷或通过丝网印刷来执行所述沉积;■使所述油墨干燥。
10.如权利要求9所述的用于形成电极的方法,还包括压缩或砑光通过将所述油墨沉积在所述集流体上而形成的所述电极。
11.根据权利要求9和10中任一项得到的电极。
12.如权利要求11所述的电极,特征在于,对于大于2C的充电-放电速率,所述电极的面积容量大于3mAh. cnT2。
13.包括权利要求11和12中任一项的至少一种电极的锂储存器。
14.包括权利要求13的至少一种锂储存器的锂电池。
全文摘要
本发明的水性油墨意图通过印刷来形成电极。它包含至少一种电极活性材料和至少一种水溶性或水分散性导电聚合物,有利地是PEDOT/PSS。
文档编号H01M4/139GK103069618SQ201180040739
公开日2013年4月24日 申请日期2011年7月22日 优先权日2010年9月22日
发明者莱昂内尔·皮卡德, 耐莉·吉鲁, 海琳·鲁奥, 塞巴斯蒂安·索兰 申请人:原子能与替代能源委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1