氮化物半导体装置制造方法

文档序号:7250549阅读:117来源:国知局
氮化物半导体装置制造方法
【专利摘要】本发明的氮化物半导体装置具备:在氮化物半导体层之上形成的第1电极布线层以及第2电极布线层、在第1电极布线层以及第2电极布线层之上形成且具有第1开口部的第1绝缘膜、在第1绝缘膜之上形成且经由第1开口部而与第1电极布线层以及第2电极布线层分别连接的第1布线层(17a)以及第2布线层(17b)、在第1布线层以及第2布线层之上形成且具有第2开口部的第2绝缘膜(18)、和在第2绝缘膜之上形成且经由第2开口部而与第1布线层以及第2布线层分别连接的第1焊盘层(22a)以及第2焊盘层(22b)。
【专利说明】氮化物半导体装置
【技术领域】
[0001]本发明涉及的氮化物半导体装置,特别涉及具有在活性区域之上形成的电极焊盘(pad)的氮化物半导体装置。
【背景技术】
[0002]由一般式AlxGal-x_yInyN(其中,OSxS 1>0 ^ y ^ I 及 OS x+y ^ I)表示的II1-V族氮化物半导体,具有作为其物理特征的宽带隙和直接迁移型的带域构造,因此被应用于短波长光学元件。进而,由于II1-V族氮化物半导体具有高的击穿电场以及高的饱和电子速度这一特征,因此还在研究将其应用于电子器件等。
[0003]特别是利用在半绝缘性基板之上依次外延生长的氮化铝镓(AlxGai_xN、其中O< X I)层与氮化镓(GaN)层之间的界面所产生的二维电子气(2Dimensional ElectronGas:2DEG)的异质结场效应晶体管(Hetero-junction Field Effect Transistor:HFET),作为高输出器件及高频器件而进行着开发。在HFET中,不仅从载流子供给层(N型AlGaN肖特基层)供给电子,还通过基于自发极化以及压电极化的极化效应来供给电荷。因此,使用了 II1-V族氮化物半导体的HFET的电子密度超过1013em_2。这比使用了砷化铝镓(AlGaAs)以及砷化镓(GaAs)的HFET要大一个量级左右。这样,在使用了 II1-V族氮化物半导体的HFET中,能够期待比使用了 GaAs的HFET高的漏极电流密度,最大漏极电流超过lA/mm的元件例如在非专利文献I等中有所提到。再有,由于II1-V族氮化物半导体具有宽带隙(例如GaN中为3.4eV),还表现出高的耐压特性,因此在使用了 II1-V族氮化物半导体的HFET中,能够使得栅极电极与漏极电极之间的耐压为100V以上。因此,正在研究将使用了 II1-V族氮化物半导体的HFET等的电子器件应用在高频元件、以及比以往更小且能够处理大功率的元件。
[0004]根据这些特性,II1-V族氮化物半导体装置能够将活性区域的大小缩小至硅(Si)半导体装置的三分之一至十分之一程度。但是,现有的II1-V族氮化物半导体装置存在用于连接布线的电极焊盘所占的面积大、无法充分地小型化的这一问题。特别在流过大电流的功率器件的用途中,由于期望与电极焊盘连接的线材直径以及带状尺寸较大,因此电极焊盘的减小是有界限的。
[0005]为此,例如专利文献I等中提出了在活性区域之上形成电极焊盘的、所谓的单元上焊盘(pad on element)构造。功率器件为了处理高电压而采用单元上焊盘构造的情况下,需要形成厚膜的层间膜,以免在电极焊盘与下层的电极之间发生漏电流。
[0006]此外,为了得到高效率的器件,必需降低器件的导通电阻。再有,在功率器件的用途中大电流化以及高耐压化也是必要的。为了获得这些特性,通过增大栅极宽度、且降低导通电阻,能够获得更大的最大电流。
[0007]在先技术文献
[0008]专利文献
[0009]专利文献I JP特开2008-177527号公报[0010]非专利文献
[0011]非专利文献1:安藤祐二、岡本康宏、宫本広信、中山達峰、井上隆、葛原正明著「高耐压 AlGaN/GaN 异质结 FET 的评价」信学技报、ED2002-214, CPM2002-105 (2002-10),pp.29-34
[0012]发明的概要
[0013]发明要解决的技术问题
[0014]但是,若将FET的栅极宽度直线状延长,则因布线电阻引起的导通电阻会增大,无法充分降低导通电阻。此外,因源极电位的上升以及栅极电位的下降而栅极与源极之间的电压差(AVGS)减小,由此,无法获得通过栅极宽度的增大而被期待的最大电流。

【发明内容】

[0015]本发明鉴于上述技术问题,其目的在于能够获得降低导通电阻、且单位栅极宽度的最大电流高的氮化物半导体装置。
[0016]用于解决技术问题的手段
[0017]为了实现上述目的,本发明将氮化物半导体装置构成为在电极布线层与焊盘层之间形成布线层。
[0018]具体而言,本发明涉及的氮化物半导体装置具备:基板;氮化物半导体层,其形成在基板之上,具有活性区域;第I电极布线层以及第2电极布线层,其在氮化物半导体层中的活性区域之上交替分离地形成;第I绝缘膜,其形成在第I电极布线层以及第2电极布线层之上,具有使第I电极布线层以及第2电极布线层露出的多个第I开口部;第I布线层以及第2布线层,在第I绝缘膜之上彼此分离地形成,第I布线层经由第I开口部而与第I电极布线层电连接且与第I电极布线层相交叉地延伸,第2布线层经由第I开口部而与第2电极布线层电连接且与第2电极布线层相交叉地延伸;第2绝缘膜,其形成在第I布线层以及第2布线层之上,具有使第I布线层以及第2布线层露出的多个第2开口部;和第I焊盘层以及第2焊盘层,在第2绝缘膜之上彼此分离地形成,第I焊盘层经由第2开口部而与第I布线层电连接且位于活性区域之上,第2焊盘层经由第2开口部而与第2布线层电连接且位于活性区域之上。
[0019]根据本发明涉及的氮化物半导体装置,具备在第I电极布线层以及第2电极布线层之上形成为分别与其连接的第I布线层以及第2布线层、在第I布线层以及第2布线层之上形成为分别与其连接的第I焊盘层以及第2焊盘层。因此,能够减小与第I电极布线层以及第2电极布线层电连接的各布线层的布线长度,能够增加表见上的布线数,能够减小布线电阻。由此,能够获取导通电阻低且单位栅极宽度的最大电流充分高的氮化物半导体装置。
[0020]在本发明涉及的氮化物半导体装置中,优选第I布线层以及第2布线层各自是多
个金属层。
[0021]该情况下,优选第I布线层以及第2布线层的作为各自的最上层的金属层,较之与作为该最上层的金属层相接的下层的金属层,相对于第2绝缘膜的紧密性高,此外,该下层的金属层是能够防止扩散至第2绝缘膜的材料。
[0022]再有,在这些情况下,优选第I布线层以及第2布线层各自包括形成为与第I绝缘膜相接的第I金属层、在该第I金属层之上形成的第2金属层、和在该第2金属层之上形成的作为最上层的第3金属层,与第2金属层以及第3金属层相比,第I金属层与第I绝缘膜之间的紧密性高,第2金属层由导电率比第I金属层高的金属构成,与第I金属层以及第2金属层相比,第3金属层与第2绝缘膜之间的紧密性高。
[0023]这样一来,通过在第I布线层以及第2布线层中使用导电率高的金属,并且使用与这些的上层以及下层的绝缘膜紧密性高的金属,由此能够维持布线的高导电率,并且能够防止布线层与绝缘膜的界面处的剥离。
[0024]本发明涉及的氮化物半导体装置中,优选第I布线层以及第2布线层的作为各自的最上层的金属层的光泽度为I以上。
[0025]这样一来,在第I布线层以及第2布线层之上形成的第2绝缘膜为感光性材料的情况下,容易在第2绝缘膜形成第2开口部。
[0026]本发明涉及的氮化物半导体装置中,优选第I焊盘层以及第2焊盘层各自包括多个同电位的焊盘层,多个同电位的焊盘层分别与外部装置连接。
[0027]这样一来,能够进一步降低第I布线层以及第2布线层的电阻,因此能够降低导通电阻。
[0028]本发明涉及的氮化物半导体装置中,优选第I焊盘层以及第2焊盘层各自是多个
金属层。
[0029]这样一来,能够使得第I焊盘层以及第2焊盘层的最下层成为与第2绝缘膜之间的紧密性高、且根据需要还具有势垒金属效果的金属层,使得中间层为导电性优异的金属层,使得最上层为适合于与外部装置之间的连接的金属层。由此,能够维持各焊盘层的导电率,并且能够防止与各焊盘层连接的布线以及绝缘膜的剥离。
[0030]本发明涉及的氮化物半导体装置中,优选第I电极布线层以及第2电极布线层各自包括:在氮化物半导体层之上形成为与该氮化物半导体层直接连接的电极、和在电极之上形成的电极布线,在氮化物半导体层之上,形成具有使电极露出的开口部的电极上绝缘膜,电极布线经由电极上绝缘膜的开口部而与电极电连接。
[0031]这样一来,通过与氮化物半导体层直接连接的电极、和连接于该电极的电极布线,能够使第I电极布线层以及第2电极布线层为导电性高的布线金属层。此外,在FET的情况下,其单元尺寸由源极电极与漏极电极之间的距离以及这些电极的宽度来决定,但即便电极上绝缘膜之上的各电极布线的宽度比各电极的宽度大,也没有问题,这样能够降低各电极布线层的电阻。
[0032]根据本发明涉及的氮化物半导体装置,能够获得降低了导通电阻、且单位栅极宽度的最大电流高的氮化物半导体装置。
【专利附图】

【附图说明】
[0033]图1是表示本发明的一实施方式涉及的氮化物半导体装置的俯视图。
[0034]图2是表示本发明的一实施方式涉及的氮化物半导体装置的图1的I1-1I线处的首1J视图。
[0035]图3(a)以及图3(b)是表示本发明的一实施方式涉及的氮化物半导体装置的各层,图3(a)是表示源极电极布线、漏极电极布线以及它们的下层的俯视图,图3(b)是表示第I层间绝缘膜及其下层的俯视图。
[0036]图4(a)以及图4(b)表示本发明的一实施方式涉及的氮化物半导体装置的各层,图4(a)是表示第I布线层、第2布线层以及它们的下层的俯视图,图4(b)是表示第2层间绝缘膜及其下层的俯视图。
[0037]图5是表示本发明的一实施方式的第I变形例涉及的氮化物半导体装置的俯视图。
[0038]图6是表示本发明的一实施方式的第2变形例涉及的氮化物半导体装置的俯视图。
【具体实施方式】
[0039](一实施方式)
[0040]参照图1?图4来说明本发明的一实施方式涉及的氮化物半导体装置。
[0041]如图1以及图2所示,在本实施方式涉及的氮化物半导体装置中,在由硅(Si)构成的基板I之上,依次形成缓冲层2以及氮化物半导体层3。氮化物半导体层3由厚度为
2.5 μ m程度的未掺杂氮化镓(GaN)层4、和在其上形成的厚度为50nm程度的未掺杂氮化铝镓(AlGaN)层5构成。在未掺杂GaN层4与未掺杂AlGaN层5的界面区域产生二维电子气(2DEG),2DEG作为沟道区域发挥功能。
[0042]在氮化物半导体层3之上,作为第I电极的源极电极7a以及作为第2电极的漏极电极7b彼此分离且交替形成,以与该氮化物半导体层3直接连接。本实施方式中,为了降低接触电阻,未掺杂AlGaN层5以及未掺杂GaN层4的一部分被除去,源极电极7a以及漏极电极7b形成为它们的下面位于未掺杂AlGaN层5与未掺杂GaN层4的界面之下。源极电极7a以及漏极电极7b由钛(Ti)以及铝(Al)等金属构成。此外,在源极电极7a与漏极电极7b之间的宽度约I μ m的区域,未掺杂AlGaN层5的膜厚变薄,在其之上形成厚度为200nm程度的掺杂了镁(Mg)的P型GaN层9。在p型GaN层9之上,形成由钯(Pd)、金(Au)以及钼(Pt)等构成的栅极电极8。因此,由P型GaN层9和未掺杂AlGaN层5形成PN结。其结果,即便对栅极电极8施加的电压为OV的情况下,从P型GaN层9向基板I侧和漏极电极7b侧,在未掺杂AlGaN层5以及未掺杂GaN层4中耗尽层变宽。由此,因为沟道区域中流过的电流被切断,因此能够进行正常截止动作。
[0043]本实施方式的氮化物半导体装置,是具有使用了氮化物半导体的多指构造的场效应晶体管(FET),在分别将一个的源极电极7a、漏极电极7b以及栅极电极8作为I个单元时,能够视为多个单元以漏极电极7b为中心交替翻转进行配置。各单元的源极电极7a彼此、漏极电极7b彼此以及栅极电极8彼此如后面所说明那样相互电连接。由此,能够使得氮化物半导体装置的栅极宽度极大,能够获得可流过大电流的功率器件。再者,本实施方式中,在氮化物半导体层3中的形成有一组的源极电极7a以及漏极电极7b的区域以及沟道区域中,将没有被绝缘分离的区域作为活性区域。
[0044]在氮化物半导体层3、源极电极7a、漏极电极7b、栅极电极8以及p型GaN层9之上,形成膜厚为300nm程度的由氮化硅(SiN)构成的电极上绝缘膜6。电极上绝缘膜6具有使源极电极7a以及漏极电极7b的表面(上面)的一部分露出的开口部6a。电极上绝缘膜6是为了使氮化物半导体层3的表面稳定化、防止水分从后述的层间绝缘膜12浸入氮化物半导体层3而设置的。
[0045]在源极电极7a之上形成由Au构成的源极电极布线11a,使其经由电极上绝缘膜6的开口部6a而与源极电极7a连接。源极电极布线Ila为了提高与电极上绝缘膜6之间的紧密性而包括作为紧贴层的Ti层。源极电极布线Ila的膜厚为5μπι程度,其宽度与源极电极7a以及漏极电极7b相等或者在其以上。在此,源极电极7a之上的源极电极布线Ila形成得覆盖相邻的2个单元的栅极电极8,其宽度形成得较之栅极电极8的端部而向漏极电极7b侧展宽,还作为源极场板(source field plate)发挥功能。同样,在漏极电极7b之上形成漏极电极布线11b,使其经由电极上绝缘膜6的开口部6a而与漏极电极7b连接。此夕卜,如图3(a)所示,由源极电极7a和源极电极布线Ila构成的第I电极布线层、以及由漏极电极7b和漏极电极布线Ilb构成的第2电极布线层交替配置,彼此分离且平行地延伸。此外,栅极电极8彼此在没有被源极电极布线Ila覆盖的区域相互连接。
[0046]在电极上绝缘膜6、源极电极布线Ila以及漏极电极布线Ilb之上,形成膜厚为400nm程度的由SiN构成的保护膜10。保护膜10与电极上绝缘膜6同样,是用于保护氮化物半导体层3的耐湿膜,并且作为源极电极布线Ila以及漏极电极布线Ilb与在它们之上形成的后文说明的层间绝缘膜12之间的紧贴(紧密相接)层发挥功能。
[0047]在保护膜10之上,形成膜厚为10 μ m程度的由聚对苯撑苯并二恶唑(PBO)构成的层间绝缘膜12。在此,将保护膜10以及层间绝缘膜12 —并称为第I绝缘膜13。第I绝缘膜13具有使源极电极布线Ila以及漏极电极布线Ilb的上面的一部分露出的开口部13a。如图3(b)所示,使源极电极布线Ila露出的第I绝缘膜13的开口部13a,形成在分别平行地排列的源极电极布线Ila彼此的相同的位置。此外,使漏极电极布线Ilb露出的第I绝缘膜13的开口部13a,形成在分别平行地排列的漏极电极布线Ilb彼此的相同的位置,且形成在与使源极电极布线Ila露出的开口部13a不同的位置。本实施方式中,使源极电极布线Ila露出的开口部13a和使漏极电极布线Ilb露出的开口部,向着各自布线的长边方向而交替形成。
[0048]在第I绝缘膜13之上,形成经由该开口部13a而与源极电极布线Ila的至少一部分连接的第I布线层17a。具体而言,如图4(a)所示,在与源极电极7a电连接的源极电极布线Ila之上形成第I绝缘膜13的开口部13a,第I布线层17a成为与经由该开口部13a而和源极电极7a电连接的源极电极布线Ila相同电位的布线层。此外,在第I绝缘膜13之上,形成经由该开口部13a而与漏极电极布线Ilb电连接的第2布线层17b。第2布线层17b成为与电连接于漏极电极7b的漏极电极布线Ilb相同电位的布线层。第I布线层17a以及第2布线层17b,形成为在与源极电极布线Ila以及漏极电极布线Ilb交叉的方向上延伸。第I布线层17a与第2布线层17b彼此分离,交替配置。第I布线层17a以及第2布线层17b是依次层叠由钛(Ti)构成的下层紧贴层14、由铜(Cu)构成的导电层15、和由镍(Ni)构成的上层紧贴层16而形成的。由Ti构成的下层紧贴层14的膜厚为IOOnm程度,由Cu构成的导电层15的膜厚为5 μ m程度,由Ni构成的上层紧贴层16的膜厚为几十nm?I μ m程度。
[0049]在第I布线层17a以及第2布线层17b之上,形成膜厚为10 μ m程度的由PBO构成的第2绝缘膜18。第2绝缘膜18具有使第I布线层17a以及第2布线层17b的上面的一部分露出的开口部18a(图1的斜线部)。具体而言,如图4(b)所示,在本实施方式中,使第I布线层17a露出的开口部18a形成在图中的左侧的区域,使第2布线层17b露出的开口部18a形成在图中的右侧的区域。
[0050]在第2绝缘膜18之上,形成经由该开口部18a而与第I布线层17a的至少一部分连接的第I焊盘层即源极电极焊盘层22a。即,经由源极电极布线Ila和第I布线层17a而连接源极电极7a和源极电极焊盘层22a。由此,源极电极焊盘层22a成为与源极电极7a相同电位的焊盘。此外,在第2绝缘膜18之上,形成经由该开口部18a而与第2布线层17b的至少一部分连接的第2焊盘层即漏极电极焊盘层22b,与漏极电极7b以及漏极电极焊盘层22b电连接,漏极电极焊盘层22b成为与漏极电极7b相同电位的焊盘。再者,源极电极焊盘层22a以及漏极电极焊盘层22b位于活性区域之上。此外,源极电极焊盘层22a以及漏极电极焊盘层22b是依次层叠由Ti构成的下层紧贴层19、由Cu构成的导电层20、和由Ni构成的上层金属层21而形成的。由Ti构成的下层紧贴层19的膜厚为IOOnm程度,由Cu构成的导电层20的膜厚为5 μ m程度,由Ni构成的上层金属层21的膜厚为I μ m程度。具体而言,如图1所示,电极焊盘层除了包括源极电极焊盘层22a以及漏极电极焊盘层22b以外,还包括与栅极电极电连接的栅极电极焊盘层23,它们彼此分离。在此,栅极电极8在活性区域的外侧收敛,进而绕过活性区域的外周而与栅极电极焊盘层23连接。这是为了栅极电极8不会切断源极电极布线Ila以及漏极电极布线lib。栅极电极8与栅极电极焊盘层23,能够通过贯穿被层叠的绝缘膜的通孔等进行连接。这些电极焊盘层具有与外部装置连接所需的大小以上的大小。各电极焊盘层的最上层是Ni层,在此之上经由弓丨线接合、带状线(ribbon)以及线夹(clip)等而与外部装置连接。Ni层在与Al引线以及Al带状线之间的紧密性以及可靠性方面较为优异。
[0051]在基板I中的与形成了氮化物半导体层3的面相反一侧的面(背面),形成例如由Au以及锡(Sn)等构成的背面电极24,可从外部向基板I提供电位。
[0052]在本实施方式涉及的氮化物半导体装置中,由于源极电极布线Ila以及漏极电极布线Ilb的布线宽度,依赖于形成晶体管的构造的宽度即单元宽度,因此在增大这些布线宽度时,单元宽度变大,器件的每单位面积的栅极宽度变小。因此,为了增大器件的电流,需要减小源极电极布线Ila以及漏极电极布线Ilb的布线宽度,但是由此它们的布线电阻会变大,导致导通电阻的增大以及单位栅极宽度的最大电流的减少。为了降低源极电极布线Ila以及漏极电极布线Ilb的电阻,在这些布线之上交替形成在与它们交叉的方向上延伸的第I布线层17a以及第2布线层17b。由此,能够将源极电极布线Ila以及漏极电极布线Ilb在表见上进行分割,这些布线的电阻能够看作被分割的布线的集合。S卩,由于能够减小源极电极布线Ila以及漏极电极布线Ilb的布线长度,增加表见上的布线数,因此能够抑制各个源极电位的增大,从而抑制最大电流的下降,并且能够降低因源极电极布线Ila以及漏极电极布线Ilb的电阻引起的导通电阻。其中,对于第I布线层17a以及第2布线层17b的宽度,为了使得表见上的指长较短,需要将布线宽度抑制得较小。由此,在第I布线层17a以及第2布线层17b中产生的电阻变大,导致器件整体的导通电阻的上升。为此,如本实施方式那样,形成经由第2绝缘膜18而与第I布线层17a以及第2布线层17b连接的源极电极焊盘层22a以及漏极电极焊盘层22b。如果除了栅极电极焊盘层23以外,还形成源极电极焊盘层22a以及漏极电极焊盘层22b使得各自覆盖活性区域之上的几乎全部,则较之没有形成这些电极焊盘层的情况,能够将第I布线层17a以及第2布线层17b中产生的布线电阻约为二分之一。其结果,能够大幅降低作为整体的导通电阻。
[0053]根据本发明的一实施方式涉及的氮化物半导体装置,能够获取降低了导通电阻、且单位栅极宽度的最大电流高的氮化物半导体装置。
[0054]在本实施方式中,示出了在层间绝缘膜12以及第2绝缘膜18中使用了 PBO的例子,但也可以使用聚酰亚胺、苯并环丁烯(BCB)、环氧系的感光性树脂(例如,化薬7 ^ ” 口’ A公司制的SU-8等)以及氟系的感光性树脂(例如旭硝子公司制的AL-X2等)等的有机膜。此外,层间绝缘膜12以及第2绝缘膜18没必要是相同的材料,也可以是它们组合。这样一来,能够进行有效地发挥各自特性的膜形成。此外,由于这些有机膜能够通过旋转涂布而形成,因此容易填埋凹部,容易使得它们的上表面平坦化。此外,为了在这些有机膜形成开口部,优选通过光刻工序进行,但也可以将氧化硅(SiO2)膜等作为硬质掩膜来进行干蚀刻来形成。有机材料根据材料的种类,其透水性以及耐湿性有很大不同。例如,由于聚酰亚胺膜具有吸湿性,因此会担心因绝缘膜膨胀、龟裂的发生以及水分引起的氮化物半导体装置的可靠性下降。在这种情况下,优选在聚酰亚胺膜之上形成SiN膜等具有耐水性的膜,优选通过干蚀刻法来形成开口部。
[0055]源极电极布线Ila以及漏极电极布线Ilb由作为与下层之间的紧贴层的Ti层、和作为导电层的Au层构成,但用作层间绝缘膜12的PBO与Au层的紧密性较低,因此需要由SiN构成的保护膜10。但是,在将AL-X2等与Au层具有较高紧密性的材料用于层间绝缘膜12的情况下,则不需要保护膜10。该情况下,从器件的耐湿性的观点考虑,优选电极上绝缘膜6设为SiN膜。此外,如果源极电极布线Ila以及漏极电极布线Ilb的最上层是Ti以及Ni等的与有机膜之间的紧密性较高的材料,则同样不需要保护膜10。不过,为了抑制因水分引起的氮化物半导体装置的劣化,优选形成保护膜10。
[0056]本实施方式中,电极上绝缘膜6以及保护膜10是SiN膜,但也可以是SiO2膜等的绝缘膜或者它们的复合膜。不过,希望电极上绝缘膜6以及保护膜10的任意一个是在耐湿性方面优异的SiN膜。SiN膜以及SiO2膜等能够通过等离子化学气相生长法来形成。
[0057]层间绝缘膜12的开口部如上述那样期望利用光刻工序来形成,但在层间绝缘膜12中使用PBO膜以及BCB膜时,它们通过硬性烘烤存在与刚刚显影之后相比开口部的大小变大的趋势。该情况下,较之从特定的源极电极布线Ila或者漏极电极布线Ilb到与其相邻的其他电极布线为止的距离,有时从露出上述特定的电极布线的开口部13a到与该电极布线相邻的其他电极布线为止的距离较短。在将这些任意的距离之中最短的距离设为S(m),将层间绝缘膜12的绝缘击穿电压设为A(V/m)时,为了满足耐压V(V)以上,必需至少满足S≥V/A。为了满足作为功率器件的耐压的一个指标的600V,需要S> 600/A。本实施方式中,将1000V的耐压作为目标,PBO膜的绝缘击穿耐压为250V/un,因此需要将S设为4 μ m以上。此外,由于从源极电极布线Ila或者漏极电极布线Ilb到第I布线层17a以及第2布线层17b为止的距离也需要满足上述式子,因此,层间绝缘膜12的膜厚设为10 μ m程度。其中,也可以将保护膜10的绝缘击穿耐压也考虑在内,而使层间绝缘膜12的膜厚进一步薄膜化。
[0058]也能够与此同样地规定第2绝缘膜18的膜厚。本实施方式中,第2绝缘膜18的膜厚设为10 μ m程度,但具体而言,只要成为第I布线层17a与源极电极焊盘层22a之间、以及第2布线层17b与漏极电极焊盘层22b之间的距离满足如上述那样规定的绝缘击穿电压的膜厚即可。
[0059]在本实施方式的氮化物半导体装置中,示出了在源极电极7a以及漏极电极7b中使用Ti和Al的例子,但作为代替材料或者追加材料,也可以使用N1、Au、钒(V)或者铪(Hf)。优选通过剥离法来形成这些电极。此外,栅极电极8由Pd或者Au构成,但作为代替材料或者追加材料,也可以使用Ni或者Ti等。优选通过剥离法来形成这些电极。
[0060]示出了源极电极布线Ila以及漏极电极布线Ilb由作为与下层之间的紧贴层的Ti层和导电性高的Au层构成的例子,但也可以取代Ti层而使用钽(Ta)层或者Ni层,还可以取代Au层而使用Cu层或者Al层。由于源极电极布线11a、漏极电极布线lib、第I布线层17a、第2布线层17b、源极电极焊盘层22a以及漏极电极焊盘层22b是厚膜的金属层,因此优选通过镀覆法来形成。
[0061]示出了在第I布线层17a、第2布线层17b、源极电极焊盘层22a以及漏极电极焊盘层22b中,在下层紧贴层14、19使用Ti的例子,但作为代替材料、追加材料或者组合材料,也可以使用Ta、TaN, TiN或者Ni。此外,除此以外,在下层紧贴层14中也可以使用较之导电层15而相对于层间绝缘膜12的紧密性高的材料。同样,下层紧贴层19中也可以使用较之导电层20而相对于第2绝缘膜18的紧密性高的材料。下层紧贴层14不仅是为了提高与下层的层间绝缘膜12之间的紧密性,还期望作为导电层15的扩散防止膜。
[0062]此外,示出了在第I布线层17a、第2布线层17b、源极电极焊盘层22a以及漏极电极焊盘层22b中,在导电层15、20使用Cu的例子,但作为代替材料或者追加材料也可以使用Au或者Al等。除此以外,导电层15、20中也可以使用分别较之下层紧贴层14、19导电率高的材料。其中,从提高引线接合时的引线的紧密性的观点考虑,期望第I布线层17a、第2布线层17b、源极电极焊盘层22a以及漏极电极焊盘层22b的上表面是平坦的。因此,期望导电层15、20中使用能够进行通孔填充镀覆的Cu,该通孔填充镀覆在镀覆时能够通过追加添加剂而优选填埋通孔。
[0063]在第I布线层17a以及第2布线层17b中,在与第2绝缘膜18的上层紧贴层16中使用了 Ni,但期望与通过镀覆法来形成下层的导电层15相连续地,通过镀覆法来形成该Ni层。此外,由于Ni层的导电率不高,因此在Ni层的厚度变大时会成为接触电阻增大的原因。因此,期望Ni层的厚度薄,设定为被称为薄镀层的至少I μπι以下的膜厚,优选几十nm?500nm的膜厚。此外,期望该Ni层的光泽度为I以上。具体而言,期望在Ni镀覆的建槽溶液中追加光泽剂,较之氨基磺酸镀液更期望使用瓦特镀液。此外,在上层的第2绝缘膜18由感光性材料构成的情况下,会成为厚膜材料的显影,在下层材料的光泽度低时,由于显影剩余不良多发,因此期望在第I布线层17a以及第2布线层17b的最上层使用能够提高其光泽度的材料,例如期望在使用Ni时加入能够提高光泽度的添加剂来进行镀覆。此外,上层紧贴层16中除了 Ni以外,也可以使用较之导电层15而相对于第2绝缘膜18的紧密性高的材料。此外,在导电层15为Cu的情况下,Cu有可能扩散至第2绝缘膜18,期望上层紧贴层16作为用来防止该扩散的扩散防止膜发挥功能,除了 Ni以外也可以使用T1、Ta、TaN或者TiN等。
[0064]此外,源极电极焊盘层22a以及漏极电极焊盘层22b是最上层具有由Ni构成的上层金属层21的结构。对于该Ni层的形成方法,期望与通过镀覆法形成下层的导电层20相连续地通过镀覆法来形成。这是为了在电极焊盘之上进行引线等的接合,如果引线、带状线以及线夹的材料是Al,则期望上层金属层21由Ni以及Ag构成。如果引线、带状线以及线夹的材料是Au以及Cu,则期望上层金属层21由Au构成。即,优选上层金属层21由适合于连接接合引线的材料构成。
[0065]此外,也可以在源极电极焊盘层22a以及漏极电极焊盘层22b之上的实际上没有进行引线接合的区域形成保护绝缘膜。保护绝缘膜可以是层间绝缘膜12以及第2绝缘膜18中使用的那种有机树脂材料、或者与其相比固化(cure)温度低的材料。此外,优选保护绝缘膜与封装件的密封树脂材料之间的紧密性良好。
[0066]本实施方式中,源极电极布线Ila以及漏极电极布线Ilb的膜厚是比较大的5μπι程度的膜厚,但也可在能够容许源极电极布线Ila以及漏极电极布线Ilb中产生的电阻成分的大小的范围内作为薄膜。在使源极电极布线Ila以及漏极电极布线Ilb薄膜化时,由于能够降低作为器件整体而产生的高低差,因此能够提高引线接合的紧密性。源极电极布线Ila以及漏极电极布线Ilb的电阻成分由第I布线层17a以及第2布线层17b的线宽、即源极电极布线Ila以及漏极电极布线Ilb的电阻成分长度来决定。第I布线层17a以及第2布线层17b的线宽越小,源极电极布线Ila以及漏极电极布线Ilb的电阻成分长度越短,此外表见上的源极电极布线Ila以及漏极电极布线Ilb的根数越增加,则电极布线的电阻越小。因此,能够使得源极电极布线Ila以及漏极电极布线Ilb的膜厚比较薄。同样,由于第I布线层17a以及第2布线层17b的电阻除了依赖于它们的布线宽度以及膜厚之外,还依赖于源极电极焊盘层22a以及漏极电极焊盘层22b的形状,因此需要被设计成处于能够容许器件整体的导通电阻大小的范围内。如倒装芯片那样对外部基板的接合面积大的情况下,增大源极电极焊盘层22a以及漏极电极焊盘层22b的膜厚的必要性不大。但是,在与电极焊盘层的一部分引线接合等的情况下,由于从接合部的片电阻直接影响到导通电阻,因此需要增大它们的膜厚。
[0067]本实施方式的氮化物半导体装置中,背面电极24由Au或者Sn构成,但代替材料或者追加材料也可以使用铬(Cr)或者Ni等。可以通过溅射法或者蒸镀法等来形成这些电极。此外,背面电极24也可以作为贯穿基板I而与源极电极7a或者漏极电极7b电连接,来作为源极电极焊盘层或者漏极电极焊盘层发挥功能。此外,也可以构成为使源极电极7a或者漏极电极7b贯穿至缓冲层2,使基板I处于导电性,而与背面电极24连接。
[0068]本实施方式的氮化物半导体装置中,以FET为例进行了说明,但也可以采用二极管构造,该情况下,可将第I电极以及第2电极作为阳极电极以及阴极电极。
[0069](一实施方式的第I变形例)
[0070]以下,参照图5来说明本发明的一实施方式的第I变形例涉及的氮化物半导体装置。本变形例中,对于与本发明的一实施方式相同的结构,省略其说明,仅说明不同的结构。
[0071]本变形例涉及的氮化物半导体装置中,源极电极焊盘层以及漏极电极焊盘层分别具有作为相同电位的多个焊盘层。
[0072]具体而言,如图5所示,在第2绝缘膜之上,形成有经由该第2绝缘膜的开口部(图5的斜线部)而与第I布线层连接的、分别作为第I焊盘层的第I源极电极焊盘层31a以及第2源极电极焊盘层32a。此外,在第2绝缘膜之上,形成有经由该第2绝缘膜的开口部而与第2布线层连接的、分别作为第2焊盘层的第I漏极电极焊盘层31b以及第2漏极电极焊盘层32b。再者,栅极电极焊盘层33与上述的一实施方式同样地形成。[0073]这样一来,由于能够缩短下层的第I布线层的布线电阻的成分长度,因此能够降低第I布线层中产生的电阻。具体而言,在构成为具有2个源极电极焊盘层和2个漏极电极焊盘层时,较之没有形成这些电极焊盘层的情况,能够使得贡献于第I布线层以及第2布线层的电阻的布线长度约为四分之一。其结果,能够降低器件整体的导通电阻。
[0074]根据本发明的一实施方式的第I变形例涉及的氮化物半导体装置,能够获得降低导通电阻、单位栅极宽度的最大电流高的氮化物半导体装置。
[0075](一实施方式的第2变形例)
[0076]以下,参照图6来说明本发明的一实施方式的第2变形例涉及的氮化物半导体装置。本变形例中,对于与本发明的一实施方式相同的结构,省略其说明,仅说明不同的结构。
[0077]本变形例涉及的氮化物半导体装置是具有2个栅极电极的双栅极构造,上述的一实施方式的源极电极成为SI电极,漏极电极成为S2电极。在一实施方式中,按照位于源极电极布线的下方的方式形成有栅极电极(第I栅极电极:G1电极),但本变形例中成为还具有第2栅极电极(G2电极)的构造,该第2栅极电极(G2电极)形成得位于与S2电极直接连接的电极布线(漏极电极布线)的下方。此外,本变形例涉及的氮化物半导体装置中,与SI电极电连接的SI电极焊盘层、以及与S2电极电连接的S2电极焊盘层分别具有作为相同电位的多个焊盘层。
[0078]具体而言,如图6所示,在第2绝缘膜之上,形成有经由该第2绝缘膜的开口部(图6的斜线部)而与第I布线层连接的、分别作为第I焊盘层的第ISl电极焊盘层41a以及第2S1电极焊盘层42a。此外,在第2绝缘膜之上,形成有经由该第2绝缘膜的开口部而与第2布线层连接的、分别作为第2焊盘层的第1S2电极焊盘层41b以及第2S2电极焊盘层42b。此外,在活性区域的外侧,在第2绝缘膜之上,形成了 Gl电极焊盘层43a,使其经由该第2绝缘膜的开口部而与Gl电极电连接,同样,形成了 G2电极焊盘层43b使其与G2电极电连接。
[0079]根据本发明的一实施方式的第2变形例涉及的氮化物半导体装置,即便在双栅极构造中,也能够与单栅极构造同样地,获取降低了导通电阻、单位栅极宽度的最大电流高的氮化物半导体装置。
[0080]工业上的可利用性
[0081]本发明涉及的氮化物半导体装置能够降低导通电阻,并提高单位栅极宽度的最大电流,特别在具有活性区域之上所形成的电极焊盘的氮化物半导体装置等中是有用的。
[0082]符号的说明
[0083]I 基板
[0084]2缓冲层
[0085]3氮化物半导体层
[0086]4未掺杂GaN层
[0087]5未惨杂AlGaN层
[0088]6电极上绝缘膜
[0089]6a (电极上绝缘膜的)开口部
[0090]7a源极电极
[0091]7b漏极电极[0092]8栅极电极
[0093]9p-GaN 层
[0094]10保护膜
[0095]Ila源极电极布线
[0096]Ilb漏极电极布线
[0097]12层间绝缘膜
[0098]13第I绝缘膜
[0099]13a(第I绝缘膜的)开口部
[0100]14下层紧贴层
[0101]15导电层
[0102]16上层紧贴层
[0103]17a第I布线层
[0104]17b第2布线层
[0105]18第2绝缘膜
[0106]18a(第2绝缘膜的)开口部
[0107]19下层紧贴层
[0108]20导电层
[0109]21上层金属层
[0110]22a源极电极焊盘层(第I焊盘层)
[0111]22b漏极电极焊盘层(第2焊盘层)
[0112]23栅极电极焊盘层
[0113]24背面电极
[0114]31a第I源极电极焊盘层(第I焊盘层)
[0115]31b第I漏极电极焊盘层(第2焊盘层)
[0116]32a第2源极电极焊盘层(第I焊盘层)
[0117]32b第2漏极电极焊盘层(第2焊盘层)
[0118]33栅极电极焊盘
[0119]41a第ISl电极焊盘层(第I焊盘层)
[0120]41b第1S2电极焊盘层(第2焊盘层)
[0121]42a第2S1电极焊盘层(第I焊盘层)
[0122]42b第2S2电极焊盘层(第2焊盘层)
[0123]43aGl电极焊盘层
[0124]43bG2电极焊盘层
【权利要求】
1.一种氮化物半导体装置,其具备: 基板; 氮化物半导体层,其形成在所述基板之上,具有活性区域; 第I电极布线层以及第2电极布线层,其在所述氮化物半导体层中的所述活性区域之上交替分离地形成; 第I绝缘膜,其形成在所述第I电极布线层以及第2电极布线层之上,具有使所述第I电极布线层以及第2电极布线层露出的多个第I开口部; 第I布线层以及第2布线层,在所述第I绝缘膜之上彼此分离地形成,所述第I布线层经由所述第I开口部而与所述第I电极布线层电连接且与所述第I电极布线层相交叉地延伸,所述第2布线层经由所述第I开口部而与所述第2电极布线层电连接且与所述第2电极布线层相交叉地延伸; 第2绝缘膜,其形成在所述第I布线层以及第2布线层之上,具有使所述第I布线层以及第2布线层露出的多个第2开口部;和 第I焊盘层以及第2焊盘层,在所述第2绝缘膜之上彼此分离地形成,所述第I焊盘层经由所述第2开口部而与所述第I布线层电连接且位于所述活性区域之上,所述第2焊盘层经由所述第2开口部而与所述第2布线层电连接且位于所述活性区域之上。
2.根据权利要求1所 述的氮化物半导体装置,其中, 所述第I布线层以及第2布线层分别是多个金属层。
3.根据权利要求2所述的氮化物半导体装置,其中, 所述第I布线层以及第2布线层的作为各自的最上层的金属层,较之与作为该最上层的金属层相接的下层的金属层,相对于所述第2绝缘膜的紧密性高。
4.根据权利要求2或者3所述的氮化物半导体装置,其中, 所述第I布线层以及第2布线层各自包括形成为与第I绝缘膜相接的第I金属层、在该第I金属层之上形成的第2金属层、和在该第2金属层之上形成的作为最上层的第3金属层, 与所述第2金属层以及第3金属层相比,所述第I金属层与第I绝缘膜之间的紧密性闻, 所述第2金属层由导电率比所述第I金属层高的金属构成, 与所述第I金属层以及第2金属层相比,所述第3金属层与所述第2绝缘膜之间的紧密性高。
5.根据权利要求2至4任一项所述的氮化物半导体装置,其中, 所述第I布线层以及第2布线层的作为各自的最上层的金属层的光泽度为I以上。
6.根据权利要求1至5任一项所述的氮化物半导体装置,其中, 所述第I焊盘层以及第2焊盘层各自包括多个同电位的焊盘层, 所述多个同电位的焊盘层分别与外部装置连接。
7.根据权利要求1至6任一项所述的氮化物半导体装置,其中, 所述第I焊盘层以及第2焊盘层分别是多个金属层。
8.根据权利要求1至7任一项所述的氮化物半导体装置,其中, 所述第I电极布线层以及第2电极布线层各自包括:在所述氮化物半导体层之上形成为与该氮化物半导体层直接连接的电极、和在所述电极之上形成的电极布线, 在所述氮化物半导体层之上,形成具有使所述电极露出的开口部的电极上绝缘膜,
所述电极布线经由所述电极上绝缘膜的开口部而与所述电极电连接。
【文档编号】H01L29/41GK103582939SQ201280027008
【公开日】2014年2月12日 申请日期:2012年6月12日 优先权日:2011年6月24日
【发明者】海原一裕 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1