一种锂离子电池用石墨烯/铁锡合金复合负极材料的制备方法与流程

文档序号:11136929阅读:669来源:国知局
一种锂离子电池用石墨烯/铁锡合金复合负极材料的制备方法与制造工艺

本发明属于复合材料制备领域,特别涉及一种锂离子电池用石墨烯/铁锡合金复合负极材料的制备方法。

技术背景

随着能源需求量的日益扩大,人们开始致力于高效率高能量密度储能器件的研究。锂离子电池由于能量密度高,低维护成本,自放电电流小,已经成为最流行的可充电电池,广泛应用在各种电子设备和电动汽车中。传统的锂离子电池负极材料为石墨、硬碳、软碳等碳材料。作为一种新兴的碳家族成员,石墨烯拥有许多极其优异的性能,如极高的载流子迁移率、极大的比表面积、优异的导热性能、良好的透光性、高的化学和热稳定性等,使石墨烯一经发现便引发新一轮碳材料的研究热潮。在可替代的负极材料中,金属锡的理论容量高达990 mAh g-1,且与电解液友好,因而受到人们的关注。但同时它也无法避免金属材料在锂离子电池充放电过程中的通病:锂离子插嵌脱嵌过程中,电极材料的体积变化较大,一般达到原材料的三倍,从而造成电极材料的严重粉化甚至粉碎,大大降低了结构的稳定性,降低了循环性能,严重影响电极材料的性能。大量研究表明纳米结构的复合材料表现出更优异的电化学性能。将拥有优异性能的石墨烯与锡基材料相结合制备石墨烯基铁锡合金复合负极材料,是制备高性能锂离子电池负极材料的有效途径。一方面,原位负载的铁锡合金纳米粒子可以扩大石墨烯在固态下的片层距离,防止其堆积成石墨结构,从而保持石墨烯的优越性能。另一方面,石墨烯与铁锡合金纳米粒子之间存在协同效应,此外纳米结构的锡基合金和作为惰性金属加入的铁能有效缓冲电极材料在锂离子的嵌入和脱出过程中的巨大体积膨胀造成的结构坍塌和由于结构坍塌造成的容量迅速衰减,使得复合材料表现出比单组分更为优越的电化学性能,甚至产生一些新的特性。本发明首次利用金属有机骨架前驱体方法,制备出了石墨烯基铁锡合金复合材料,该复合材料作为锂离子电池负极材料,表现出较高的比容量(970 mAh g-1)和优异的循环稳定性。



技术实现要素:

本发明已经考虑到现有技术中出现的问题,采用将含铁、锡的金属有机骨架(Sn3[Fe(CN)6]4)原位负载在片状的石墨烯片上,然后在惰性气氛中热分解前驱体制备石墨烯上负载铁锡合金纳米粒子的复合物。此方法不仅方法新颖简单、复合效果好,而且可控制产品的形貌和微结构。

本发明目的在于提供一种锂离子电池用石墨烯/铁锡合金纳米粒子复合材料的制备方法,包括如下步骤:

(1) 以天然鳞片石墨为原料,用Hummers法将其氧化得到氧化石墨;

(2)溶液a的配制:将步骤(1)制得的氧化石墨超声分散于醇水混合液中,得到氧化石墨烯分散液;

(3)溶液b的配制:将四价锡盐溶解在稀盐酸溶液中,加入一定量的嵌段共聚物表面活性剂;

(4)溶液c的配制:将铁氰化钾溶解在稀盐酸溶液中;

(5)将溶液b加入到溶液a中,在室温下搅拌,形成混合溶液,将溶液c加入到混合溶液中,继续搅拌,将最终所得的混合溶液加入到聚四氟乙烯内衬的反应釜中,然后将反应釜置于烘箱中进行水热反应,将所得沉淀离心分离,去离子水洗涤,干燥,得到Sn3[Fe(CN)6]4/rGO前躯体;

(6)将步骤(5)所得的前驱体在惰性气氛中程序升温至煅烧温度,煅烧后,得到石墨烯上负载铁锡合金复合负极材料,即石墨烯/铁锡合金复合负极材料。

步骤(2)中,所述的醇水混合液为去离子水和乙二醇的混合液或去离子水和乙醇的混合液,所述氧化石墨烯分散液中氧化石墨的浓度为1-5 mg/mL。

步骤(3)中所用四价锡盐为SnCl4·5H2O,浓度为10-30 mg/mL,所述的嵌段共聚物表面活性剂为聚醚F127。

步骤(4)中所述铁氰化钾溶液浓度为10-50 mg/mL。

步骤(5)中所述混合溶液中氧化石墨:四价锡盐:铁氰化钾的质量之比为17:80:100-68:80:100,水热反应温度为80-150 ℃,反应时间为10-24 h。

步骤(6)中惰性气体为氮气或氩气,升温速率为2-5 ℃/min,煅烧温度为600-800 ℃,煅烧时间为1-3 h。

本发明所得产物中铁锡合金纳米粒子紧密的附着于还原氧化石墨烯的表面,且铁锡合金纳米粒子为立方块结构,边长为50-150 nm。

本发明的有益效果:

本方法操作工艺简单易行,反应时间短,且环保安全,成本低,易于工业化实施,能潜在应用在锂离子电池负极材料中。

附图说明

图1为本发明实施例1制备的还原氧化石墨烯/铁锡合金纳米复合材料的X-射线衍射(XRD)图谱,其中横坐标为衍射角(2θ),单位为度(°),纵坐标为衍射强度,单位为cps。

图2为本发明实施例1制备的还原氧化石墨烯/铁锡合金纳米复合材料的透射电镜(TEM)照片。

图3为本发明实施例1制备的还原氧化石墨烯/铁锡合金纳米复合材料用作锂离子电池负极材料在电流密度为200 mA g-1下的循环性能图。

具体实施方式:

下面结合附图和具体实施例对本发明的技术方案做详细的说明,但本发明的保护范围不限于这些实施例。

实施例1:

将80 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中,超声2 h得到氧化石墨烯分散液。加入8 mlSnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min后加入8 mlK3[Fe(CN)6]溶液(含K3[Fe(CN)6]175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,将混合液加入到50 ml聚四氟乙烯内衬的反应釜中,于烘箱中120℃水热反应24 h,将产物离心,用去离子水/无水乙醇洗涤得到得到石墨烯上负载的立方块状Sn3[Fe(CN)6]4纳米粒子前驱体,将产物于45℃下真空干燥。将前驱体放置于瓷舟中在N2保护的管式炉中700℃下煅烧,升温速率为5 ℃/min,煅烧时间为1 h,得到最终产物还原氧化石墨烯/铁锡合金纳米复合材料(FeSn2@Sn/rGO)。

图1为本发明实施例1制备的产物的XRD图,除了还原氧化石墨烯的衍射峰外,其他峰对应FeSn2和Sn,说明还原氧化石墨烯/铁锡合金纳米复合材料(FeSn2@Sn/rGO)被成功制备出来。

图2为本发明实施例1制备的产物的TEM图,可以看出铁锡合金纳米立方块均匀的附着于还原氧化石墨烯片的表面,其中铁锡合金纳米粒子边长为50-150 nm。

图3为本发明实施例1制备的还原氧化石墨烯/铁锡合金纳米复合材料作为锂离子电池负极材料在电流密度为200 mA g-1时的循环性能图。

实施例2:

将80 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例3:

将70 mg氧化石墨超声分散于10 ml水与14 ml乙醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中120℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例4:

将70 mg氧化石墨超声分散于10 ml水与14 ml乙醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中150℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例5:

将70 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中600 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例6:

将70 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中800 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例7:

将90 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为2℃/min,得到最终产物。

实施例8:

将90 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中600 ℃煅烧1 h,升温速率为2℃/min,得到最终产物。

实施例9:

将70 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中800 ℃煅烧1 h,升温速率为2℃/min,得到最终产物。

实施例10:

将30 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例11:

将50 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中120℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例12:

将50 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中150℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例13:

将50 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中600 ℃煅烧1 h,升温速率为2℃/min,得到最终产物。

实施例14:

将100 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中100℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中700 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例15:

将100 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中120℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中600 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例16:

将100 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中150℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中800 ℃煅烧1 h,升温速率为5℃/min,得到最终产物。

实施例17:

将120 mg氧化石墨超声分散于10 ml水与14 ml乙二醇混合液中。加入8 ml SnCl4·5H2O和F127的HCl溶液(含SnCl4·5H2O 140 mg,F127 150 mg,HCl浓度为0.01 mol/L),常温搅拌30 min。然后加入8 ml K3[Fe(CN)6]溶液(含K3[Fe(CN)6] 175.6 mg,HCl浓度为0.01 mol/L),常温搅拌30 min,加入50 ml聚四氟乙烯内衬的反应釜于烘箱中150℃水热反应24 h。自然冷却后,将样品离心分离,分别用去离子水和无水乙醇洗涤,将产物于45℃下真空干燥。将得到的产物放置于瓷舟中,在N2保护的管式炉中800℃煅烧1 h,升温速率为5℃/min,得到最终产物。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1