氮化物半导体模板及其制造方法与流程

文档序号:11334377阅读:280来源:国知局
氮化物半导体模板及其制造方法与流程

本发明涉及氮化物半导体模板(template)及其制造方法。



背景技术:

以往,已知在ga2o3基板上隔着aln缓冲层形成有氮化物半导体层的氮化物半导体模板(例如,参照专利文献1)。

根据专利文献1,通过选择ga2o3基板的主面的面方位,能够使氮化物半导体层的表面成为镜面。

现有技术文献

专利文献

专利文献1:特开2014-199935号公报



技术实现要素:

发明要解决的问题

然而,在ga2o3基板上形成氮化物半导体的情况下,用于抑制氮化物半导体的凹坑(pit)、裂纹(crack)的条件会根据氮化物半导体的al组分的大小而不同,因此,为了得到更高质量的氮化物半导体,要求对每种组分使用最佳的方法。

近年来,以代替用于焙烘等的高压水银灯为目标,推进了315~360nm波段的紫外线led的开发。

本发明的目的在于,提供一种透明的氮化物半导体模板和能够简便地制造该氮化物半导体模板的制造方法,该氮化物半导体模板具有高质量的氮化物半导体,适于紫外线led用途,具有导电性。

用于解决问题的方案

为了达到上述目的,本发明的一方式提供以下的[1]~[5]的氮化物半导体模板、[6]~[8]的氮化物半导体模板的制造方法。

[1]一种氮化物半导体模板,具有:ga2o3基板;缓冲层,其形成在上述ga2o3基板上,以aln为主成分;第1氮化物半导体层,其形成在上述缓冲层上,以alxga1-xn(0.2<x≤1)为主成分;以及第2氮化物半导体层,其形成在上述第1氮化物半导体层上,以alyga1-yn(0.2≤y≤0.55,y<x)为主成分。

[2]根据上述[1]所述的氮化物半导体模板,上述缓冲层的厚度为10nm以下。

[3]根据上述[1]或[2]所述的氮化物半导体模板,上述第2氮化物半导体层在表面没有裂纹。

[4]根据上述[1]或[2]所述的氮化物半导体模板,上述第2氮化物半导体层在表面没有凹坑。

[5]根据上述[1]或[2]所述的氮化物半导体模板,上述第2氮化物半导体层的位错密度为2.0×1010cm-2以下。

[6]一种氮化物半导体模板的制造方法,具有:ga2o3基板;在上述ga2o3基板上形成以aln为主成分的缓冲层的工序;在上述缓冲层上形成以alxga1-xn(0.2<x≤1)为主成分的第1氮化物半导体层的工序;以及在上述第1氮化物半导体层上形成以alyga1-yn(0.2≤y≤0.55,y<x)为主成分的第2氮化物半导体层的工序。

[7]根据上述[6]所述的氮化物半导体模板的制造方法,上述缓冲层的厚度为10nm以下。

[8]根据上述[6]或[7]所述的氮化物半导体模板的制造方法,上述第2氮化物半导体层的生长温度高于1100℃,第1氮化物半导体层的生长温度不到1100℃。

发明效果

根据本发明,能够提供一种透明的氮化物半导体模板和能够简便地制造该氮化物半导体模板的制造方法,该氮化物半导体模板具有高质量的氮化物半导体,适于紫外线led用途,具有导电性。

附图说明

图1是实施方式所涉及的氮化物半导体模板的垂直截面图。

图2a是试料1的第2氮化物半导体层的表面的通过光学显微镜观察的图像。

图2b是试料4的第2氮化物半导体层的表面的通过光学显微镜观察的图像。

图2c是试料5的第2氮化物半导体层的表面的通过光学显微镜观察的图像。

图3示出试料5的氮化物半导体模板的基于对称反射法的x射线衍射图形。

图4示出试料5的氮化物半导体模板的光致发光光谱。

具体实施方式

〔实施方式〕

(氮化物半导体模板的结构)

图1是实施方式所涉及的氮化物半导体模板10的垂直截面图。氮化物半导体模板10是适于发光波长为315~360nm的紫外线led用途的模板。

氮化物半导体模板10包含:ga2o3基板11;ga2o3基板11上的缓冲层12;缓冲层12上的第1氮化物半导体层13以及第1氮化物半导体层13上的第2氮化物半导体层14。

ga2o3基板11包括β-ga2o3单晶。ga2o3基板11的主面是能够成为质量高的氮化物半导体晶体的生长基底的(-201)面、(101)面、(310)面、(3-10面)或者以大约±2°以内的范围从这些面倾斜的面。ga2o3基板11例如是直径为50.8mm(2英寸)的圆形基板,但其形状和大小没有限定。

ga2o3几乎不会吸收波长为315~360nm的光,因此,ga2o3基板11作为发光波长为315~360nm的紫外线led所用的氮化物半导体模板10的基板是优异的。另一方面,例如,gan擅于吸收波长315~360nm的光,因此,gan基板不合适作为紫外线led用的模板,为了防止光取出效率的下降,必须在制造led后将gan基板除去。

另外,ga2o3基板11含有si、sn等掺杂物,具有优异的导电性,因此,作为led用基板是优异的。另一方面,例如,在使用如蓝宝石基板这样导电性低的基板的情况下,无法形成纵型的led,另外,即使是在形成横型的led的情况下,电流也会流过基板上的膜厚较薄的氮化物半导体层,因此电阻变高。

缓冲层12包括以aln为主成分的晶体。缓冲层12可以是如图1所示的那样部分地覆盖ga2o3基板11的上表面,也可以是覆盖ga2o3基板11的整个上表面。为了提高晶体质量,缓冲层12的厚度优选为10nm以下,更优选为5nm以下。

在使用氮化物半导体模板10形成的紫外线led中,第2氮化物半导体层14用作包覆层。为了形成发光波长为315~360nm的紫外线led,要求成为包覆层的第2氮化物半导体层14的组分大约为alyga1-yn(0.2≤y≤0.55)。

第1氮化物半导体层13的al组分大于第2氮化物半导体层14的al组分。即,第1氮化物半导体层13的组分表示为alxga1-xn(0.2<x≤1),第1氮化物半导体层13的al组分x与第2氮化物半导体层14的al组分y满足y<x的关系。通过使第1氮化物半导体层13具有这样的组分,能够使第2氮化物半导体层14的表面成为镜面且抑制裂纹和凹坑的产生。

第1氮化物半导体层13和第2氮化物半导体层14也可以含有si等掺杂物。第1氮化物半导体层13的厚度例如为100~300nm。第2氮化物半导体层14的厚度例如为1~2μm。

第2氮化物半导体层14的表面为镜面,另外,几乎没有或者完全没有裂纹和作为孔状缺陷的凹坑。

此外,在不设置第1氮化物半导体层13而在缓冲层12上形成第2氮化物半导体层14的情况下,第2氮化物半导体层14的表面会产生裂纹。另外,在不设置第2氮化物半导体层14而在缓冲层12上仅形成第1氮化物半导体层13的情况下,无法使表面成为镜面。

(氮化物半导体模板的制造方法)

以下,说明氮化物半导体模板10的制造方法的一例。

首先,对进行了cmp(chemicalmechanicalpolishing:化学机械抛光)处理后的ga2o3基板11实施有机清洗和spm(sulfuricacid/hydrogenperoxidemixture:硫酸/过氧化氢混合物)清洗。

接着,将ga2o3基板11搬运到mocvd(metalorganicchemicalvapordeposition:金属有机化学气相沉积)装置的腔内。

接着,在ga2o3基板11上形成缓冲层12。该膜状的缓冲层12是通过如下方式形成的:在将腔内的温度保持为400~600℃的状态下,将原料气体和作为载流气体的n2气体供应到腔内,使aln晶体在ga2o3基板11上生长。

缓冲层12的原料气体例如使用作为al的原料的三甲基铝(tma)气体和作为n的原料的nh3气体。此外,载流气体也可以使用h2气体等。

接着,在缓冲层12上形成第1氮化物半导体层13。具体地说,例如,在将压力保持为100毫巴(mbar),温度保持为885℃以上的状态下,将第1氮化物半导体层13的原料气体和作为载流气体的h2气体供应到腔内,使第1氮化物半导体层13生长。

氮化物半导体层13的原料气体,例如使用作为al的原料的三甲基铝(tma)气体、作为ga的原料的三甲基镓(tmg)气体以及作为n的原料的nh3气体。此外,载流气体也可以使用n2气体等。

接着,在第1氮化物半导体层13上形成第2氮化物半导体层14。具体地说,例如,在将腔内的温度保持为1100℃以上的状态下,将第2氮化物半导体层14的原料气体和作为载流气体的h2气体供应到腔内,使第2氮化物半导体层14生长。

在此,通过使第2氮化物半导体层14以高于1100℃的生长温度生长,能够抑制凹坑的产生,通过使第2氮化物半导体层14以1120℃以上的生长温度生长,能够更可靠地抑制凹坑的产生。

第2氮化物半导体层14的原料气体可以使用与氮化物半导体层13的原料气体相同的原料气体。此外,载流气体也可以使用n2气体等。

(第2氮化物半导体层的表面状态的评价)

以下的表1示出各层的生长条件和第2氮化物半导体层的表面状态的评价结果。

该评价所使用的7种氮化物半导体模板(试料1~7)的ga2o3基板均是以(-201)面为主面的直径为2英寸的圆形基板。另外,第1氮化物半导体层和第2氮化物半导体层的al原料、ga原料、n原料分别使用的是三甲基铝(tma)气体、三甲基镓(tmg)气体、nh3气体。

[表1]

试料1~7的第2氮化物半导体层的生长速率均为2μm/h。

在试料1、2中,未成膜第1氮化物半导体层,在缓冲层上直接形成了第2氮化物半导体层。试料1的第2氮化物半导体层的表面产生了凹坑和裂纹,另外,仅直径为25mm的一部分区域得到了镜面。另外,试料2的第2氮化物半导体层的表面也同样产生了凹坑和裂纹。考虑这是由于未形成第1氮化物半导体层所致。

另外,在试料1中,ga2o3基板的一部分被蚀刻了。考虑这是由于:在缓冲层上直接成膜了生长温度比第1氮化物半导体层高的第2氮化物半导体层,因而缓冲层过度迁移(或晶体化),导致缓冲层对ga2o3基板的一部分表面的保护不够。此外,在试料2中,由于缓冲层的生长温度过高,因而在成膜缓冲层的阶段,ga2o3基板就已经被蚀刻了。

试料3的第2氮化物半导体层的表面产生了裂纹。考虑这是由于第1氮化物半导体层与第2氮化物半导体层的al组分相等所致。

试料4的第2氮化物半导体层的表面产生了凹坑。考虑这是由于当第2氮化物半导体层的生长温度为1100℃时晶体的横向生长不足所致。

试料5的第2氮化物半导体层的表面未产生裂纹和凹坑。考虑这主要是由于:既形成了第1氮化物半导体层又形成了第2氮化物半导体层,第2氮化物半导体层的al组分小于第1氮化物半导体层的al组分。另外,考虑由于第2氮化物半导体层的生长温度为1120℃,其高于1100℃,因而未产生凹坑。

试料6是为了降低第1氮化物半导体层的电阻而将第1氮化物半导体层的材料从试料5的aln变为了al0.8ga0.2n,但在该试料中,也未产生裂纹和凹坑。

试料7是为了面向短波长的led而与试料5、6相比提高了第2氮化物半导体层的al组分,但在该试料中,也未产生裂纹和凹坑。

此外,在试料1~7中,第2氮化物半导体层的位错密度均被抑制到2.0×1010cm-2以下。

从上述的试料1~7的评价结果可知,为了得到表面状态良好的第2氮化物半导体层的条件如下:既形成第1氮化物半导体层又形成第2氮化物半导体层,第2氮化物半导体层的al组分小于第1氮化物半导体层的al组分;以及第2氮化物半导体层的生长温度高于1100℃。

图2a、图2b、图2c分别是试料1、4、5的第2氮化物半导体层的表面的通过光学显微镜观察的图像。如表1所示,在图2a的试料1的第2氮化物半导体层的表面观察到裂纹,在图2b的试料4的第2氮化物半导体层的表面观察到凹坑。另一方面,在图2c的试料5的第2氮化物半导体层的表面未观察到裂纹和凹坑。

图3示出试料5的氮化物半导体模板的x射线衍射图形。图3的x射线衍射图形仅包含ga2o3基板的(-201)面以及与(-201)面平行的面上的衍射所形成的波峰、作为第1氮化物半导体层的aln的与(0001)面平行的面以及作为第2氮化物半导体层的al0.3ga0.7n的与(0001)面平行的面上的衍射所形成的波峰,并示出了第2氮化物半导体层不包含生长于不同方位的相。此外,由于假设从波峰位置起是完全晶格弛豫而求出al0.3ga0.7n的al组分时,其值为0.29,因此在图3中记为al0.29ga0.71n。

另外,对试料5的氮化物半导体模板进行了x射线摇摆曲线测定,(0002)面上的衍射所形成的波峰的半值宽度为1164角秒(arcsec),(1-102)面上的衍射所形成的衍射峰的半值宽度为1536角秒。

图4示出试料5的氮化物半导体模板的光致发光光谱。该光谱是通过利用波长244nm的激发光在室温下进行光致发光测定而得到的,具有被认为是由带边发光(bandedgeemission)所致的波长为305nm的波峰作为主波峰。

(实施方式的效果)

根据上述实施方式,能够得到在ga2o3基板上具有高质量的氮化物半导体,适于发光波长为315~360nm的紫外线led用途的氮化物半导体模板。

以上说明了本发明的实施方式,但本发明不限于上述实施方式,在不脱离发明的主旨的范围内能进行各种变形实施。

另外,上面所述的实施方式并不限定权利要求书所涉及的发明。另外,应当注意,实施方式中所说明的特征的组合对用于解决发明问题的方案来说并非全都是必须的。

工业上的可利用性

提供一种透明的氮化物半导体模板和能够简便地制造该氮化物半导体模板的制造方法,该氮化物半导体模板具有高质量的氮化物半导体,适于紫外线led用途,具有导电性。

附图标记说明

10…氮化物半导体模板,11…ga2o3基板,12…缓冲层,13…第1氮化物半导体层,14…第2氮化物半导体层。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1