一种既散热又耐寒的锂电池组包装材料的制作方法

文档序号:11731034阅读:268来源:国知局

本发明涉及一种包装材料,具体是一种既散热又耐寒的锂电池组包装材料,属于电池包装领域。



背景技术:

锂电池即锂离子二次电池,由于重量轻、容量大、循环寿命长、无记忆效应等优良特点,被广泛应用于诸如手机、笔记本电脑、摄像机等数码产品及新能源电动车等其他电子设备和器件中。目前,锂电池正处于性能不断提高、成本不断降低、应用领域快速扩大、市场份额急剧增长的阶段,如果锂电池的安全性及整体性能无法跟上快速增长的趋势,势必会制约到该行业的发展。

作为电池芯的外壳,锂电池的包装材料对于保证锂电池的长期使用安全有着重要的意义,但是现有的锂电池组包装材料为了实现有效保护,大部分层数多、重量大,且高温(70℃以上)散热不行,导致锂电池膨胀,带来爆炸的隐患;有的包装虽然散热效果可以,但耐寒(-40℃以下)不行,在低温工作状态下,锂离子活性会大大降低,最终导致锂电池可用电量下降,在低温状态下无法正常工作。



技术实现要素:

针对上述现有技术存在的问题,本发明的目的是提供一种质量轻便、在有效散热的同时,又具有良好保温防寒效果,可以保证使用安全的既散热又耐寒的轻质锂电池组包装材料。

为实现上述目的,本发明采用的技术方案是:一种既散热又耐寒的锂电池组包装材料,包括包装层,所述包装层设在基材的表面,所述包装层包括从基材的表面开始依次层叠设置的气凝胶层、粘合剂层、散热材料增强层、聚酯纳米复合材料包覆层,

所述气凝胶层为二氧化硅气凝胶、氧化铝气凝胶、氧化锆气凝胶和碳气凝胶中的一种;

所述粘合剂层为氰基丙烯酸酯粘结剂的触变剂、触变性氰基丙烯酸酯粘结剂、含改性二氧化硅触变剂的氰基丙烯酸酯无液滴粘结剂、触变性a-氰基丙烯酸酯粘结剂中的一种或两种组合而成;

所述散热材料增强层由以下质量份数的几种组分混合成:

pet:20-40份;

抗氧化剂:0.4-1.0份;

润滑剂:0.5-1.5份;

光稳定剂:0.2-0.4份;

散热粉:40-80份;

其中,所述的抗氧化剂是由n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺]和三(2,4-二叔丁基苯基)亚磷酸酯,按质量比1:1混合得到的混合物;所述润滑剂是硬脂酸、硬脂酸丁酯、油酰胺、乙撑双硬脂酰胺中一种或两种按1:1的比例复配;所述光稳定剂是受阻胺光稳定剂、二苯甲酮类紫外线吸收剂和苯并三唑类紫外线吸收剂中的一种;所述散热粉由铝和锌的氧化物中的一种或两种复合而成;所述的pet粘度为0.8-0.88;

所述聚酯纳米复合材料包覆层由以下质量比的组分组成:

pet:60-85%,

纳米硫酸钡或纳米钛白粉:14-39%,

抗氧剂:0.1-0.5%,

抗氧辅剂:0.1-0.5%,

其中,所述的抗氧剂是n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺];抗氧辅剂是三(2,4-二叔丁基苯基)亚磷酸酯。

优选的,所述气凝胶层占包装层总厚度的10~30%、粘合剂层占包装层总厚度的5~20%、散热材料增强层占包装层总厚度的20~40%、聚酯纳米复合材料包覆层占包装层总厚度的20~40%。

优选的,所述气凝胶层的气凝胶中复合有增强相,所述增强相为预氧化纤维。预氧化纤维具有高阻燃性和热稳定性,隔热效果好,且耐酸碱腐蚀,轻质柔软,可以有效防止电池受热和外部酸碱腐蚀,保持内部环境稳定。

优选的,所述聚酯纳米复合材料包覆层通过机械挤压或粘合剂贴合在散热材料增强层表面。

优选的,散热材料增强层和聚酯纳米复合材料包覆层分别由以下方式制得:

将预先配制的混合料在双螺杆挤出机上挤出造粒,从喂料口到模头分为七区:一区温度240~250℃,二区温度230~240℃,三区温度220~230℃,四区温度210~220℃,五区温度220~230℃,六区温度210~220℃,七区温度200~220℃,模头温度230~250℃,驻留时间为0.5~2min,双螺杆挤出机主机转速为320~380r/min,出料、挤出后冷却、干燥、切粒成复合材料粒子,最后经注射成型成为片条状产品。

本发明的锂电池组包装材料中,采用的散热材料增强层导热系数达到了5.5w/m.k,散热系数达到2100w/㎡·℃,可以将锂电池液中液体发生化学反应产生的热量及时散发到电池外面,从而保证电池温度不会升得过高,同时强度高且耐火,在有效防火的同时避免了外界超高温或压力导致的膨胀爆炸现象;由于采用了气凝胶材料,其质量轻,既防火防水,又具有保温性能,能够避免低温时的热量散失,从而防止严寒传导到电池内部,影响锂电池的正常工作;最外层的聚酯纳米复合材料包覆层轻质耐火、耐腐蚀,本发明的锂电池组包装材料整体层数少、密度低、材质轻,有效减轻了整体重量,整体结合了散热和保温的功能,使锂电池内部处于恒温的环境,提升了使用效果,经实际检测,包裹本发明包装材料的锂电池在-30℃下的功率提高了10倍以上,在-41℃环境中可持续放电,放电率超过75%,同时还不减弱电池在常温下的性能和寿命。

附图说明

图1是本发明锂电池组包装材料的结构简图;

图中,1.基材,2.气凝胶层,3.粘合剂层,4.散热材料增强层,5.聚酯纳米复合材料包覆层。

具体实施方式

下面结合附图对本发明作进一步详细说明。

如图所示的既散热又耐寒的锂电池组包装材料,在基材1的一侧表面依次层叠有气凝胶层2、粘合剂层3、散热材料增强层4、聚酯纳米复合材料包覆层5。

实施例1:

采用的气凝胶层2为二氧化硅气凝胶,

粘合剂层3为触变性氰基丙烯酸酯粘结剂,

散热材料增强层4由以下质量份数的几种组分混合成:

pet:20份;

抗氧化剂:1.0份;

润滑剂:1.5份;

光稳定剂:0.4份;

散热粉:40份;

其中,选用的pet粘度为0.8,散热粉为氧化铝;抗氧化剂是由n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺]和三(2,4-二叔丁基苯基)亚磷酸酯,按质量比1:1混合得到的混合物;所述润滑剂是硬脂酸、硬脂酸丁酯按1:1的比例复配;光稳定剂是受阻胺光稳定剂;

在散热材料增强层4外通过机械挤压设有聚酯纳米复合材料包覆层5,聚酯纳米复合材料包覆层5组成的组分和质量比为:

pet:60%,

纳米硫酸钡或纳米钛白粉:39%,

抗氧剂:0.5%,

抗氧辅剂:0.5%,

其中,所述的抗氧剂是n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺];抗氧辅剂是三(2,4-二叔丁基苯基)亚磷酸酯。

上述散热材料增强层4和聚酯纳米复合材料包覆层5分别由以下方式制得:

将预先配制的混合料在双螺杆挤出机上挤出造粒,从喂料口到模头分为七区:一区温度240℃,二区温度230℃,三区温度220℃,四区温度210℃,五区温度220℃,六区温度220℃,七区温度220℃,模头温度250℃,驻留时间为0.5min,双螺杆挤出机主机转速为320r/min,出料、挤出后冷却、干燥、切粒,即成复合材料粒子,最后经注射成型成为片条状产品。从基层开始,各层依次层叠,气凝胶层占包装层总厚度的10%、粘合剂层占包装层总厚度的20%、散热材料增强层占包装层总厚度的40%、聚酯纳米复合材料包覆层占包装层总厚度的30%,最后机械挤压后捆绑固定在一起。

本实施例中用到的散热材料增强层的具体检测数据如下:

从表中可见,材料密度低,导热系数达到了5.5w/m.k,散热系数达到2100w/㎡·℃,可以将锂电池液中液体发生化学反应产生的热量及时散发到电池外面,从而保证电池温度不会升得过高;同时强度高且耐火,在有效防火的同时避免了外界超高温或压力导致的膨胀爆炸现象。

经实际检测,套设包装材料的锂电池在-30℃下的功率比没有包装材料能够提高10倍以上,在零下41℃环境中可持续放电,放电率超75%。

实施例2:

气凝胶层2为氧化铝气凝胶,

粘合剂层3为含改性二氧化硅触变剂的氰基丙烯酸酯无液滴粘结剂,

散热材料增强层4由以下质量份数的几种组分混合成:

pet:40份;

抗氧化剂:0.4份;

润滑剂:0.5份;

光稳定剂:0.2份;

散热粉:80份;

其中,选用的pet粘度为0.88,散热粉为氧化锌;抗氧化剂是由n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺]和三(2,4-二叔丁基苯基)亚磷酸酯,按质量比1:1混合得到的混合物;所述润滑剂是油酰胺、乙撑双硬脂酰胺按1:1的比例复配;光稳定剂是二苯甲酮类紫外线吸收剂;

在散热材料增强层4外通过机械挤压设有聚酯纳米复合材料包覆层5,聚酯纳米复合材料包覆层5组成的组分和质量比为:

pet:85%,

纳米硫酸钡或纳米钛白粉:14%,

抗氧剂:0.5%,

抗氧辅剂:0.5%,

其中,所述的抗氧剂是n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺];抗氧辅剂是三(2,4-二叔丁基苯基)亚磷酸酯。

上述散热材料增强层4和聚酯纳米复合材料包覆层5分别由以下方式制得:

将预先配制的混合料在双螺杆挤出机上挤出造粒,从喂料口到模头分为七区:一区温度250℃,二区温度240℃,三区温度230℃,四区温度220℃,五区温度230℃,六区温度210℃,七区温度200℃,模头温度230℃,驻留时间为2.0min,双螺杆挤出机主机转速为380r/min,出料、挤出后冷却、干燥、切粒,即成复合材料粒子,最后经注射成型成为片条状产品。从基层开始,各层依次层叠,气凝胶层占包装层总厚度的30%、粘合剂层占包装层总厚度的5%、散热材料增强层占包装层总厚度的40%、聚酯纳米复合材料包覆层占包装层总厚度的25%,最后捆绑固定在一起。

本实施例制备得到的散热材料增强层的具体检测数据如下:

实施例3:

气凝胶层2为氧化锆气凝胶,

粘合剂层3为触变性a-氰基丙烯酸酯粘结剂,

散热材料增强层4由以下质量份数的几种组分混合成:

pet:40份;

抗氧化剂:0.4份;

润滑剂:0.5份;

光稳定剂:0.2份;

散热粉:80份;

其中,选用的pet粘度为0.88,散热粉为氧化锌;抗氧化剂是由n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺]和三(2,4-二叔丁基苯基)亚磷酸酯,按质量比1:1混合得到的混合物;所述润滑剂是硬脂酸丁酯;光稳定剂是二苯甲酮类紫外线吸收剂;

在散热材料增强层4外通过机械挤压设有聚酯纳米复合材料包覆层5,聚酯纳米复合材料包覆层5组成的组分和质量比为:

pet:80%,

纳米硫酸钡或纳米钛白粉:19.5%,

抗氧剂:0.2%,

抗氧辅剂:0.3%,

其中,所述的抗氧剂是n,n’-1,6-亚己基-二-[3,5-二叔丁基-4-羟基苯丙酰胺];抗氧辅剂是三(2,4-二叔丁基苯基)亚磷酸酯。

上述散热材料增强层4和聚酯纳米复合材料包覆层5分别由以下方式制得:

将预先配制的混合料在双螺杆挤出机上挤出造粒,从喂料口到模头分为七区:一区温度250℃,二区温度240℃,三区温度230℃,四区温度220℃,五区温度230℃,六区温度210℃,七区温度200℃,模头温度230℃,驻留时间为1.0min,双螺杆挤出机主机转速为380r/min,出料、挤出后冷却、干燥、切粒,即成复合材料粒子,最后经注射成型成为片条状产品。从基层开始,各层依次层叠,气凝胶层占包装层总厚度的30%、粘合剂层占包装层总厚度的5%、散热材料增强层占包装层总厚度的40%、聚酯纳米复合材料包覆层占包装层总厚度的25%,最后机械挤压后捆绑固定在一起。

实际检测,套设本实施例制备的包装材料的锂电池在-30℃下的功率比没有包装材料能够提高10倍以上,在零下41℃环境中可持续放电,放电率超75%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1