用于使预热构件自定中心的装置的制造方法

文档序号:10618001阅读:268来源:国知局
用于使预热构件自定中心的装置的制造方法
【专利摘要】在此所描述的【具体实施方式】一般地涉及用于对准预热构件的装置。在一个【具体实施方式】中,提供对准组件用于处理腔室。所述对准组件包括:下衬垫;预热构件;在所述预热构件的底表面上形成的对准机构;以及在所述下衬垫的顶表面内形成且经配置以与所述对准机构啮合的拉长的槽。
【专利说明】
用于使预热构件自定中心的装置
技术领域
[0001]本发明的【具体实施方式】一般地涉及等离子体处理腔室内的预热构件。【背景技术】
[0002]半导体基板被处理以用于多种应用,包括集成器件和微器件的制造。处理基板的一种方法包括将材料(例如介电材料或导电金属)沉积在基板的上表面上。例如,外延生长为在基板的表面上生长薄的、超纯层(通常为硅层或锗层)的沉积工艺。通过流动与安置在支座上的基板的表面平行的处理气体,以及热分解所述处理气体以将来自所述气体的材料沉积在基板表面上,可将所述材料沉积在横向流动腔室内。
[0003]现代硅技术中使用的最常见的外延薄膜沉积反应器在设计上相类似。然而,除了基板和处理条件之外,沉积反应器(即处理腔室)的设计对在薄膜沉积中使用精密气流的外延生长中的薄膜品质而言是必不可少的。布置在沉积反应器中的基座支撑组件和预热构件的设计影响外延沉积的均勾性。在碳化娃微粒(silicon carbide particulate:SiCP)的外延处理中,厚度均匀性受基座与预热构件之间的缝隙距离变化的不利影响。在预热构件的安装或运动期间,由于热膨胀(例如行走),预热构件的微小的对准不良都会引起基座与预热构件之间不对称的缝隙。所述不对称的缝隙导致在经受外延处理的基板上的“倾斜的”沉积图案,在所述基板上,基板的一边的沉积比另一边厚。
[0004]因此,需要提供用于均匀沉积的在预热构件与基座之间的改良的缝隙均匀性。
【发明内容】

[0005]在此所描述的【具体实施方式】一般地涉及用于对准预热环的装置,以及具有所述预热环的沉积反应器。在一个【具体实施方式】中,用于对准预热环的装置为对准组件的形式。所述对准组件包括设置在拉长的径向对准的槽中的对准机构。所述对准机构和槽设置在预热环的底表面与下衬垫的顶表面之间。所述对准机构和槽经配置以限制预热环相对于下衬垫角向地(azthumally)和/或旋转地移动。【附图说明】
[0006]以上简要总结的本发明的上述特征可被详细理解的方式、对本发明更加特定的描述可通过参考本发明的【具体实施方式】获得,所述【具体实施方式】中的一些在附图中示出。然而,需要注意的是,所述附图仅示出本发明的典型的【具体实施方式】,因此不能认为是对本发明的范围的限制,因为本发明可允许其它等效的【具体实施方式】。
[0007]图1为处理腔室的示意图。
[0008]图2示出了图1的处理腔室的俯视图,所述处理腔室移除了上圆顶,且以虚线显示用于预热环和下衬垫的对准组件。
[0009] 图3为截面图,显示了图2的对准组件。
[0010]图4示出了用于图3的对准组件的下衬垫中的槽设计。
[0011]图5示出了用于图3的对准组件的预热环中的对准机构。
[0012]为便于理解,已在尽可能的情况下,使用相同的参考数字指示在这些附图共通的相同元件。可以考虑到的是,一个【具体实施方式】中的元件和特征可有利地并入其它【具体实施方式】中而无需赘述。【具体实施方式】
[0013]为解释起见,在下面的描述中,许多具体细节被阐明以便为本公开内容的【具体实施方式】提供彻底的理解。在某些情况中,众所熟知的结构和器件以方块图形显示,而不是详细描述,以避免模糊本公开内容。对所述【具体实施方式】进行足够详细的描述以使本领域技术人员能够实施本发明,且应当理解的是,可利用其它【具体实施方式】,以及可产生逻辑、机械、电和其它的改变而不脱离本公开内容的范围。
[0014] 图1示出了具有对准组件190的处理腔室100的示意图。处理腔室100可用来处理一个或多个基板108,包括在基板108的上表面上沉积材料。处理腔室100可包括连同其它部件一起用于加热的辐射加热灯102的阵列、基座支撑组件106的背侧104以及设置在处理腔室 100的壁101内的预热构件180(所述预热构件可为环、矩形构件或具有任意方便形状的构件)。
[0015] 处理腔室100包括上圆顶110、下圆顶112以及设置在上圆顶110和下圆顶112之间的下衬垫114。上下圆顶110、112大体界定处理腔室100的内部区域。在一些【具体实施方式】中,辐射加热灯102的阵列可设置于上圆顶110上方。
[0016] —般而言,上圆顶110的中央窗部分和下圆顶112的底部由例如石英的光学透明材料形成。可环绕基座支撑组件106,以规定的、最佳所期望的方式在靠近下圆顶112和下圆顶 112的下方设置一个或多个灯(例如灯102的阵列)以当处理气体从此处流过的时候,独立控制基板108的各个区域的温度,进而便于材料沉积在基板108的上表面上。虽然在此并未详细论述,但是所述沉积材料可包括砷化镓、氮化镓、氮化铝镓以及类似材料。[〇〇17] 灯102可经配置以包括灯泡136且经配置以加热处理腔室100的内部至大约200摄氏度到大约1600摄氏度范围之内的一温度。每个灯102都被耦接至电力分配板(未示出),经由电力分配板为每个灯102提供电力。将灯102安置在灯头138之内,在利用将例如冷却流体引入至位于灯102之间的通道140、152处理期间或之后,灯头138可被冷却。灯头138传导地和辐射地将下圆顶112冷却,部分是因为灯头138与下圆顶112极为接近。灯头138还可冷却灯壁和环绕灯的反射体(未示出)的壁。或者,可通过在本行业中已知的的对流方法冷却下圆顶112。取决于应用,灯头138可以与或可以不与下圆顶112接触。
[0018]反射体144可以可选择地放置在上圆顶110外面以将从基板108辐射出去的红外光反射回基板108上。反射体144可由例如铝或不锈钢的金属制成。可以通过用例如黄金的高反射涂层涂布反射体区域以改良反射效率。可以通过一个或多个通道146将反射体144耦接至冷却源(未示出)。通道146与在反射体144的一侧面上或在反射体144中形成的通路(未图示)连接。所述通路经配置以传送流体(例如水)流且可沿着反射体144的侧面,以任意所期望的覆盖反射体144部分或整个表面的图案流动,以用于冷却反射体144。
[0019]处理腔室100的内部容积被分成:在预热构件180和基板108之上的处理气体区域 128;以及在预热构件180和基座支撑组件106之下的净化气体区域130。从处理气体供应源148供应的处理气体通过在下衬垫114的侧壁中形成的处理气体进口 150引入至处理气体区域128。处理气体进口 150经配置以大体径向向内的方向引导处理气体。在薄膜形成过程期间,基座支撑组件106可位于处理位置中,所述处理位置与处理气体进口 150的高度接近且大致相同,允许处理气体沿着跨越基板108的上表面所界定的流动路径以层流方式流动。处理气体通过气体出口 155流出处理气体区域128,所述气体出口位于处理腔室100的侧面,与处理气体进口 150相对。耦接至气体出口 155的真空栗156促进通过气体出口 155的处理气体的移除。因为处理气体进口 150和气体出口 155彼此对准,且大约设置在相同高度,相信当与较平的上圆顶110组合使用时,如此平行的安排可以使得大体平坦、均匀的气流流过基板 108〇
[0020]净化气体可自净化气源158通过在下衬垫114的侧壁中形成的可选净化气体进口 160(或通过处理气体进口 150)供应至净化气体区域130。将净化气体进口 160的高度设置低于处理气体进口 150的高度。净化气体进口 160经配置以大体径向向内的方向引导净化气体。在薄膜形成过程期间,预热构件180和基座支撑组件106可位于一个位置,以使得净化气体向下且环绕沿着跨越基座支撑组件106的背侧104所界定的流动路径以层流方式流动。未受任何特定理论限制,净化气体的流动被认为能大体上防止处理气体进入净化气体区域 130(即在预热构件180和基座支撑组件106下方的区域)。净化气体通过在预热构件180与基座支撑组件106之间形成的缝隙182流出净化气体区域130并进入处理气体区域128。净化气体可进而通过气体出口 155从处理腔室100排放而出。
[0021]基座支撑组件106可包括如图所示的盘状的基座支座,或可为带有中心开口的环状的基座支座,且从基板边缘支撑基板108以便于将基板暴露至灯102的热辐射中。基座支撑组件106包括基座支座118和基座120。基座支撑组件106可由碳化硅或涂布有碳化硅的石墨形成以从灯102处吸收辐射能并将辐射能传导至基板108。
[0022]下衬垫114可由石英材料制成且具有唇部116,唇部116经配置以接受置放在所述唇部上的预热构件180。可在下衬垫114上的唇部116与预热构件180之间提供空隙184。通过将预热构件180置于下衬垫114的唇部116上中心位置,对准组件190可均匀地维持空隙184。 空隙184可在下衬垫114与预热构件180之间提供热隔绝。另外,空隙184可允许预热构件180 因温度的改变而膨胀(和收缩),而没有来自下衬垫114的干扰。
[0023]预热构件180可由碳化硅(SiC)材料制成且具有经配置以接受基座支撑组件106以及预热构件180与基座支撑组件106之间的空隙184的内部周长。通过维持跨越缝隙182的均匀宽度,预热构件180进一步经配置以控制底部净化气体对处理气体的稀释。在用于SiCP薄膜的外延处理中,底部净化气体对处理气体具有很大的稀释效应。在一个【具体实施方式】中, 外延处理处理气流在大约30-40SLM的范围内,且底部净化气体大约为5SLM。在用于SiCP处理的另一个【具体实施方式】中,外延处理处理气流在大约5SLM的范围内,且底部净化气体大约为5SLM。顶部与底部气体之间的比率可为几乎相等的。用于底部气体到达顶侧的主要路径在基座支撑组件106与预热构件180之间界定的缝隙182之间。因此,底部净化气体更倾向于稀释顶侧处理气体。
[0024]预热构件180可经配置以在预热构件180与基座支撑组件106之间形成缝隙182,以控制净化气体对处理气体的稀释。当预热构件180由于热膨胀而移动时,缝隙182的大小可以改变。在预热构件180与基座支撑组件106之间的缝隙182的大小直接控制底部净化对顶侧气流的影响程度。在一个【具体实施方式】中,缝隙182可具有大约0.015英寸的距离。[〇〇25]在热循环期间,预热构件180可明显移动且在处理腔室100内安装冷的预热构件 180之后,移动可更复杂。在常规的处理腔室内,预热环的移动倾向于径向、旋转及角向地发生。当预热环移动且不再同心地以基座为中心时,可在基座与预热环之间形成不对称的缝隙(假定完全以基座为中心旋转),这导致在基板的一侧上相对于另一侧的“倾斜的”沉积厚度。为确保在热膨胀期间,预热构件180可受热膨胀及收缩,同时维持与基座支撑组件106同心,在预热构件180与下衬垫114的唇部116之间提供对准组件190。[〇〇26]图2示出了处理腔室100的俯视图,移除了上圆顶,显示出多个用于预热构件180和下衬垫114的多个对准组件190(虚线)。预热构件180具有中线(centerline)240。预热构件 180的中线240可与基座支撑组件106的中心重合,这导致缝隙182具有在预热构件180与基座支撑组件106之间界定的均匀性。[〇〇27]预热构件180还可具有在环内形成的狭缝260。狭缝260可完全穿过预热构件180形成,以使得狭缝260的第一侧面266不接触狭缝260的第二侧面268。狭缝260可具有宽度262。 宽度262可经配置以允许预热构件180在没有导致热应力的情况下膨胀。宽度262可另外经配置以允许净化气体从预热构件180的下侧流通至气体出口 155,用于从处理腔室100抽空。 [〇〇28] 对准组件190可具有对准机构210和槽202(两者均在图2中用虚线显示)。对准机构 210可在预热构件180内或上形成且槽202可在下衬垫114内形成。例如,对准机构210可从预热构件180的底表面117伸出,且经配置以与在预热构件180的顶表面181内形成的槽202配合。或者,对准机构210可在下衬垫114内或上形成且槽202可在预热构件180内形成。例如, 对准机构210可从下衬垫114的顶表面117伸出,且经配置以与在预热构件180的底表面181 内形成的槽202配合。对准机构210还可独立地位于且运动于狭缝内,所述狭缝由在预热构件180和下衬垫114中形成的对准的槽202形成。在一个【具体实施方式】中,对准机构210为球状物。在另一个【具体实施方式】中,对准机构210为凸块或突出。对准机构210和槽202限制预热构件180相对于下衬垫114的移动,同时仍允许预热构件180相对于与构件180的热膨胀和收缩关联的基座支撑组件106的中线240径向移动。
[0029]在一个【具体实施方式】中,对准机构210由SiC形成且是预热构件180的成整体的一部分。对准机构210位于在下衬垫214的不透明的石英中形成的槽202内。槽202的主轴为自中心240如以径向线220所示径向定向。对准机构210可在槽202内相对于中线240径向移动, 但不能横向地、旋转地以及角向地移动。一个或多个对准组件190可被均匀间隔在预热构件 180和下衬垫114周围。在一个【具体实施方式】中,三个对准组件190被均匀间隔的在预热构件 180和下衬垫114周围,例如以极性阵列的方式间隔。例如,用于对准组件190的空隙250可分开大约120度。或者,空隙250可为不规则的。例如,相对第二对准组件,第一对准组件190可具有大约为100度的空隙250,相对第三对准组件,第二对准组件可具有大约为130度的空隙,且相对第一对准组件190,第三对准组件可具有大约为130度的空隙。
[0030]虽然可使用任意数量的对准组件190,但对准组件190的配置可影响缝隙182。例如,单一对准组件190可防止预热构件180旋转而不能防止移动以及产生不对称的缝隙182。 若两个对准组件190互相对准,两个对准组件190在缝隙182内可具有类似的不对称问题。使对准组件190偏移,以使得空隙大约为120度,帮助将预热构件180定中心并跨越缝隙182维持对称的宽度。在一个【具体实施方式】中,预热构件180和下衬垫114具有三个对准组件190,对准组件190使预热构件180相对于中线240自定中心,且防止预热构件180相对于基座支撑组件206横向地或角向地旋转、移动。
[0031]图3为截面图,显示出图2的对准组件190。预热构件180具有经配置以与下衬垫114 的唇部116介面连接的唇部310。当对准机构210被设置在槽202内时,在预热构件180与下衬垫114的唇部116之间可形成第一缝隙342。在下衬垫114的唇部116和预热构件180的唇部 310之间可形成第二缝隙340。第一缝隙342的大小可与第二缝隙340类似,且缝隙342、340两者可为比例相关。即,随着第一缝隙340的大小增加,第二缝隙342的大小同样增加。可有第三缝隙346(以及第四缝隙182)设置在预热构件180与下衬垫114之间。第三及第四缝隙182、 346可为成反比的。例如,随着预热构件180热收缩,第三缝隙182的大小可增加,而第四缝隙 346的大小减小。[〇〇32]热膨胀预热构件180导致对准机构210向槽202的远端303移动。同样地,收缩预热构件180导致球状物移动远离槽202的远端303。对准机构210和槽202经配置以使得预热构件180的热膨胀和收缩不会导致对准机构210离开槽202。在槽202上可形成唇部以使得预热构件180具有受限的横向移动。然而,预热构件180仍能大体上均匀地围绕中线240径向移动。[〇〇33] 通过对准机构210和设置在预热构件180与下衬垫114之间的槽202,可以减少起因于常规沉积反应器内的热膨胀和安装设置造成的缝隙变化。对准机构210和槽202允许预热构件180相对于基座支撑组件106对准并自定中心,如此跨越缝隙182维持均匀的宽度,促进均匀沉积结果。图4示出了在图3的下衬垫114中形成的槽202,同时图5示出了从图3的预热构件180伸出的对准机构210。
[0034]对准机构210可为球状或其它适当的形状。用于对准机构210的圆形形状帮助减少在预热构件180与下衬垫114之间的接触面面积。减少的接触面面积允许预热构件180相对于下衬垫114更容易移动。在一个【具体实施方式】中,对准机构210由包含氮化硅、蓝宝石、氧化锆、氧化铝、石英、石墨涂层、或任意其它适当的供外延沉积腔室内用的材料的组中材料制成。在一个【具体实施方式】中,对准机构210具有约5mm与约15mm之间的直径,例如10mm。虽然图2中仅示出了三个球状物210,但是可以考虑到的是任意数量的球状物210都可以放在预热构件180内。然而,三个球状物210能有利地接触到在任意平面上的点。[〇〇35] 如图4所示,槽202可为进入下衬垫114的埋头孔(countersunk)且形成带有深V字 (deep-Vee)形、梯形轨道或其它形状的椭圆形状,所述椭圆形状经适当配置以接触和保持对准机构210在至少两个接触点上。槽202具有短轴430。短轴430具有尺寸432,尺寸432经调整大小以保持对准机构210,同时在预热构件180与下衬垫114之间提供缝隙342、340 (如图3 所示)。槽202的壁410可为平坦的以促使在对准机构210与槽202的每个壁410之间的单一接触点。如此,在预热构件180和下衬垫114之间的传热被最小化,这有利地允许预热构件180 的更快的加热和冷却,相应地允许基板的温度控制更快且更精确。或者,壁410可为弯曲的以更好地支撑对准机构210。[〇〇36] 槽202为拉长的且具有径向与中线240对准的主轴420。槽202可具有经配置以允许当预热构件180热膨胀和收缩时,对准机构210在槽202内移动的大小422。当对准机构210在槽202内移动时,对准机构210的侧面接触槽202的壁410以防止预热构件180旋转。未以共用的直径对准的至少两个对准组件190将大体上防止预热构件180与基座支撑组件106变得不对准(即将维持跨越缝隙182的均匀性)。[〇〇37]预热构件180具有将V形槽202埋头孔嵌入下衬垫114内的球状对准机构210。多个对准组件190环绕下衬垫的直径而定位,且在一个范例中,多个对准组件190大约隔开120 度,多个对准组件190的每个对准组件都具有对准机构210和槽202。对准组件190允许预热构件180和下衬垫114可重复热膨胀及冷却。在热处理循环期间,对准组件190消除了预热构件180的横向地、角向地或旋转地移动。
[0038]虽然上述针对本发明的【具体实施方式】,但是可设计本发明的其它以及进一步的【具体实施方式】,而不脱离本发明的基本范围,且本发明的范围由下述所要求保护的技术方案所确定。
【主权项】
1.一种用于处理腔室的对准组件,所述对准组件包含:下衬垫,所述下衬垫具有唇部;预热构件,所述预热构件具有底表面;对准机构,所述对准机构从所述预热构件的所述底表面延伸;以及拉长的槽,所述拉长的槽在所述唇部的顶表面内形成,且经配置以接受所述对准机构。2.如权利要求1所述的对准组件,其中,所述对准机构为所述预热构件的成整体的一部 分。3.—种用于处理腔室的对准组件,所述对准组件包含:下衬垫,所述下衬垫具有唇部;预热构件,所述预热构件具有底表面;对准机构,所述对准机构从所述唇部的顶表面延伸;以及拉长的槽,所述拉长的槽在所述预热构件的所述底表面中形成,且经配置以接受所述 对准机构。4.如权利要求3所述的对准组件,其中,所述对准机构为所述唇部的成整体的一部分。5.如权利要求3所述的对准组件,其中,所述对准机构独立位于且运动于狭缝内,所述 狭缝由与在所述预热构件内的所述拉长的槽对准的在所述唇部内的槽形成。6.如权利要求4所述的对准组件,其中,所述对准机构为球状物。7.如权利要求1或3所述的对准组件,其中,所述预热构件和下衬垫具有相对于所述下 衬垫的中线使所述预热构件自定中心的三个对准组件。8.如权利要求1或3所述的对准组件,所述对准组件进一步包含:当所述对准机构被设置在所述槽中时,在所述预热构件与所述下衬垫的所述唇部之间 形成的第一缝隙。9.如权利要求1或3所述的对准组件,其中,所述拉长的槽为带有深V字形的椭圆形状。10.如权利要求1或3所述的对准组件,其中,所述拉长的槽为带有梯形轨道的椭圆形状。11.一种处理腔室,所述处理腔室包含:上圆顶;下圆顶;下衬垫,所述下衬垫设置在所述上圆顶和所述下圆顶之间,其中,所述上圆顶、下圆顶 和下衬垫界定处理气体区域;基座支撑组件,所述基座支撑组件设置在所述处理气体区域内;预热构件,所述预热构件设置在所述基座支撑组件上;以及多个对准组件,所述多个对准组件设置在所述预热构件与所述下衬垫之间,其中两个 对准组件不在共用的直径上,每个对准组件包含:对准机构;以及拉长的槽,所述拉长的槽与所述基座支撑组件的中线径向对准,所述对准机构和槽经 配置以在所述预热构件和所述下衬垫之间维持均匀的缝隙。12.如权利要求11所述的处理腔室,所述处理腔室进一步包含:当在所述槽内设置所述对准机构时,在所述预热构件与所述基座支撑组件之间形成的缝隙。13.如权利要求12所述的处理腔室,其中,所述缝隙大约为0.015英寸。14.如权利要求12所述的处理腔室,其中,所述预热构件与所述基座同心。15.如权利要求11所述的处理腔室,其中,所述预热构件和下衬垫具有三个对准组件, 所述三个对准组件相对于中线使所述预热构件自定中心并防止所述预热构件相对于所述 基座支撑组件旋转、横向地或角向地移动。
【文档编号】H05H1/46GK105981142SQ201480065524
【公开日】2016年9月28日
【申请日】2014年10月9日
【发明人】凯文·约瑟夫·鲍蒂斯塔, 理查德·O·柯林斯, 尼欧·谬
【申请人】应用材料公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1