核酸连接酶反应与核酸连接酶链式反应的实时检测方法

文档序号:456487阅读:318来源:国知局
专利名称:核酸连接酶反应与核酸连接酶链式反应的实时检测方法
技术领域
本发明涉及到分子生物学领域中的检测方法,具体涉及一种单核苷酸多态性分析技术。
背景技术
随着生命科学的快速发展,人类对于基因在生命过程中作用的认识愈来愈深入,这对于推动遗传性疾病的诊断、治疗甚至预测以及对恶性肿瘤发生发展机制的研究提供了非常有利的锲机。这对于控制人类疾病、提高生活质量具有非常重要的作用,成为医学、生物学研究的热点。
在基因水平上对疾病进行诊断分析需要灵敏、可靠而方便的基因检测技术,特别是核酸单核苷酸多态性(Single Nucleotide Polymorphism,SNP)的分析对于许多遗传性疾病和恶性肿瘤的诊断、治疗具有重要价值,因此得到了广泛的关注和研究。
连接酶检测反应(Ligase Detection Reaction,LDR)和连接酶链式反应(LigaseChain Reaction,LCR)是非常重要的核酸单核苷酸多态性分析方法,它们利用了耐热性原核生物连接酶对切口处碱基序列的高度保守性勘别目标核酸处单碱基的变异,并结合循环产物扩增,因而具有高度特异性和灵敏度,是单碱基突变遗传疾病诊断的常用分析方法。目前,对LDR和LCR扩增产物的分析主要用两种方法一是凝胶电泳加成像,观察电泳条带;二是利用捕获探针将生物素标记的扩增产物固定,然后用化学发光方法检测。这些方法都不能实现对扩增过程的实时检测,还会带来两个问题一是操作繁杂,周期长;二是无法获得实时的扩增过程信息,从而影响实验定量结果的准确性。这些不利因素极大地影响了此类方法的推广应用。因此需要研究一种核酸连接酶反应与核酸连接酶链式反应的实时检测方法,以解决单碱基突变遗传疾病诊断的分析。

发明内容
本发明旨在研制一种实时荧光的核酸连接酶反应与核酸连接酶链式反应检测方法,应用于核酸单核苷酸多态性分析研究中,解决现有基因分析技术的不足,以促进相关研究的开展。
本发明是通过以下技术方案实现发明目的的。本分析方法中使用了与待分析目标核酸链匹配的两段扩增核酸片段(LCR分析中还需要与之匹配的另外两段核酸链),环部与分析核酸片段序列相匹配、尾部一端带有荧光标记、另一端带有荧光标记或者荧光熄灭基团的分子信标核酸探针,以及用于LDR或LCR检测的Taq连接酶在相应的缓冲溶液中组成。
实时荧光LDR分析单双链核酸目标在检测体系缓冲液中加入分子信标、Taq连接酶、LDR扩增核酸片段以及单链或双链核酸目标,在PCR仪上做LDR温度循环,最后在荧光仪上检测样品的荧光强度;实时荧光LCR分析单双链核酸目标在检测体系缓冲液中加入分子信标、Taq连接酶、LCR扩增核酸片段以及单链或双链核酸目标,在PCR仪上做LCR温度循环,最后在荧光仪上检测样品的荧光强度;样品的荧光强度检测所用波长根据分子信标修饰的荧光染料来选择。
下面结合附图详述本发明。


图1(A1A2B1B2)为实时LDR和LCD分析方法示意图;图2为实时LDR和LCD分析方法原理验证结果;图3为实时LDR方法对单链核酸对象的分析结果;图4为实时LDR方法对双链核酸对象的分析结果;图5为实时LCR方法对单链核酸对象的分析结果;图6为实时LCR方法对双链核酸对象的分析结果;本发明利用核酸连接酶、核酸以及分子信标核酸探针的特性,建立了实时荧光的核酸连接酶反应与核酸连接酶链式反应检测方法,方法采用的检测系统由核酸连接酶、LDR或LCR扩增核酸片段以及分子信标核酸探针在相应的缓冲溶液中组成。
本发明利用分子信标核酸探针作为信号转换器件,能将目标核酸的序列结构信息高灵敏、高特异性地转换为荧光信号。避免了传统分析方法中凝胶电泳、放射性自显影等繁杂的操作。
如图1所示的本发明原理示意图中有两种检测策略,这两种策略的不同之处在于分子信标的环部序列设计,如图1(A1)所示的检测方法是在两段扩增核酸片段与分子信标杂交后在切口处存在多余碱基,而图1(B1)所示的检测方法是在两段扩增核酸片段与分子信标杂交后形成缺口结构,这两种情况下Taq连接酶都无法以分子信标为模板将扩增核酸片段连接,而当存在所要分析的目标核酸时(图1A2B2),扩增核酸片段会被连接,所形成的连接产物会将分子信标打开,从而产生荧光增强信号,实现对LDR或LCR分析过程的实时检测。其中LDR与LCR循环的温度参数与检测目标、引物设计有关,循环次数由待分析样品量所决定。
本发明巧妙地利用了连接酶、核酸以及分子信标核酸探针的特殊性质,将它们有机地结合起来,为单核苷酸多态性分析研究提供了全新的手段和思路。具有重要的科学价值和广阔的市场前景,有巨大的社会效益和经济效益。
具体实施例方式
实施例1(检测方法原理的验证实验)实验中配制了6个样品,在200uL样品缓冲液(包括20mM Tris-HCl(pH=7.6),25mM KAc、10mM Mg(Ac)2、10mM DTT、1mM NAD、0.1%Triton-X100)和终浓度为200nM的MB,此外各样品中分别加入不同的DNA引物(A)Primer1+Primer4;(B)Primer1+Primer5;(C)Primer2+Primer5;(D)Primer1+Primer6;(E)Primer3+Primer4;(F)Primer3+Primer6;其中Primer1到Primer6的终浓度都是200nM。将样品置于F2500荧光仪中,恒定样品温度于45摄氏度。然后用激发波长497nm、发射波长521nm的参数检测样品荧光强度。待荧光强度稳定后加入10U的Taq连接酶,实时监测并记录样品的荧光强度,结果如图2所示。
如图2所示,各样品中只有A样品的荧光值在加入Taq连接酶后明显上升,而其它样品的荧光值均没有明显变化,这是因为其它样品中的DNA引物在与分子信标杂交后形成缺口或突尾结构,而不是象A样中的切口,此时连接酶就无法连接DNA引物。此实验结果表明,该检测方法设计原理是可行的。
实验中所用到的分子信标和寡聚核苷酸片段序列见表1,它们以镰刀形红细胞贫血症这一单碱基突变所导致的遗传性疾病为模型进行设计。
表1 合成的分子信标和寡核苷酸序列

荧光检测所用波长根据分子信标修饰的荧光染料来选择(见表2)。
表2.常用荧光染料及其最大吸收和发射波长

注为避免激发光对发射光的影响,在具体测量时根据实际情况适当调整。
实施例2(实时LDR方法对单链核酸对象的分析)实验中配制了6个样品,在200uL样品缓冲液(包括20mM Tris-HCl(pH=7.6),25mM KAc、10mM Mg(Ac)2、10mM DTT、1mM NAD和0.1%Triton-X100)中加入30U的Taq连接酶和终浓度为200nM的MB,除一个MB的对照样A不加DNA样品以外,其它样品中分别有(B)PrimerA+PrimerB;(C)MutantDNA1+PrimerA+PrimerB;(D)NormalDNA1+PrimerA+PrimerB;(E)MutantDNA1+PrimerC+PrimerD;(F)NormalDNA1+PrimerC+PrimerD;其中扩增引物PrimerA到PrimerD的终浓度都是200nM,模板DNA的浓度为10nM。将这5个样品置于PCR仪中,设定程序作LDR温度循环,在45摄氏度停留5分钟作连接扩增,升温到80摄氏度保持3分钟使DNA解链,一共作25个循环。然后利用F2500荧光仪检测样品荧光强度,激发波长497nm,发射波长521nm,恒温水浴45摄氏度检测样品。结果见图3。
如图3所示,A样中分子信标MB未做LDR循环,荧光强度最小,而B样经过了LDR循环,荧光本底有一定增强,C样和D样相比,荧光强度有明显增强,而E样比F样的荧光强度也有显著性提高。在C样和E样中加入了突变型的目标DNA,而在D样与F样中则是正常型的目标DNA,因此C样和E样的荧光信号显著增强。此实验结果表明,该分析方法可以实现对单链核酸目标的实时检测。
实施例3(实时LDR方法对双链核酸对象的分析)实验中配制了6个样品,在200uL样品缓冲液(同实施例2)中加入30U的Taq连接酶和终浓度为200nM的MB,除一个MB的对照样A不加其它DNA样品以外,其它样品中分别有(B)PrimerA+PrimerB;(C)MutantDNA1+MutantDNA2+PrimerA+PrimerB;(D)NormalDNA1+NormalDNA2+PrimerA+PrimerB;(E)MutantDNA1+MutantDNA2+PrimerC+PrimerD;(F)NormalDNA1+NormalDNA2+PrimerC+PrimerD;其中扩增引物PrimerA到PrimerD的终浓度都是200nM,模板DNA的浓度为10nM。将这5个样品置于PCR仪中,设定程序作LDR温度循环,在45摄氏度停留5分钟作连接扩增,升温到80摄氏度保持3分钟使DNA解链,一共作25个循环。然后利用F2500荧光仪检测样品荧光强度。结果见图4。
如图4所示,A样中分子信标MB未做LDR循环,荧光强度最小,而B样经过了LDR循环,荧光本底有一定增强,C样和D样相比,荧光强度有明显增强,而E样比F样的荧光强度也有显著性提高。在C样和E样中加入了突变型的目标DNA,而在D样与F样中则是正常型的目标DNA,因此C样和E样的荧光信号显著增强。实验结果表明,本方法可实现对双链核酸目标的LDR实时检测。
实施例4(实时LCR方法对单链核酸对象的分析)实验中配制了5个样品,在200uL样品缓冲液(同实施例2)中加入30U的Taq连接酶(A样与B样中不加连接酶)和终浓度为200nM的MB,这些样品中分别有(A)MutantDNA1+PrimerC+PrimerD+PrimerE+PrimerF;(B)MutantDNA1+PrimerC+PrimerD+PrimerE+PrimerF;(C)PrimerC+PrimerD+PrimerE+PrimerF;(D)MutantDNA1+PrimerC+PrimerD+PrimerE+PrimerF;(E)NormalDNA1+PrimerC+PrimerD+PrimerE+PrimerF;其中扩增引物PrimerC和PrimerD的终浓度为200nM,PrimerE和PrimerF的终浓度是20nM,模板DNA的浓度为5nM。将后面4个样品置于PCR仪中,设定程序作LCR温度循环,在45摄氏度停留5分钟作连接扩增,升温到80摄氏度保持3分钟使DNA解链,一共作18个循环。然后利用F2500荧光仪检测样品荧光强度。结果见图5。
如图5所示,A样与B样中没有加入Taq连接酶,A样不做LCR温度循环,荧光值在152左右,B样经过LCR温度循环后荧光值在172左右,而作为对照样C样荧光值为182,这与E样中存在正常DNA模板时的荧光值相差不大(220),只有样品D荧光值出现显著性增长,达到了364,这是因为样品中存在突变型的目标DNA,实验结果表明利用本方法可实现对单链DNA目标的LCR实时分析。
实施例5(实时LCR方法对双链核酸对象的分析)实验中配制了5个样品,在200uL样品缓冲液(与实施例2相同)中加入30U的Taq连接酶(A样与B样中不加连接酶)和终浓度为200nM的MB,这些样品中分别有(A)MutantDNA1+MutantDNA2+PrimerC+PrimerD+PrimerE+PrimerF;(B)NormalDNA1+NormalDNA2+PrimerC+PrimerD+PrimerE+PrimerF;(C)PrimerC+PrimerD+PrimerE+PrimerF;(D)MutantDNA1+MutantDNA2+PrimerC+PrimerD+PrimerE+PrimerF;(E)NormalDNA1+NormalDNA2+PrimerC+PrimerD+PrimerE+PrimerF;其中扩增引物PrimerC和PrimerD的终浓度为200nM,PrimerE和PrimerF的终浓度是20nM,模板DNA的浓度为5nM。将这5个样品置于PCR仪中,设定程序作LCR温度循环,在45摄氏度停留5分钟作连接扩增,升温到80摄氏度保持3分钟使DNA解链,一共作18个循环。然后利用F2500荧光仪检测样品荧光强度。结果见图6。
如图6所示,A样与B样中没有加入Taq连接酶,经过LCR温度循环后荧光值都在149左右,而作为对照样C样荧光值为208,这与E样中存在正常DNA模板时的荧光值相近(201),只有样品D荧光值出现显著性增长,达到了377,这是因为样品中存在突变型的目标DNA,实验结果说明利用本方法可实现对双链DNA目标的LCR实时分析。
权利要求
1.一种核酸连接酶反应与核酸连接酶链式反应的实时检测方法,其特征在于该方法使用的检测系统由环部与分析核酸片段序列近似匹配、尾部一端带有荧光标记另一端带有荧光标记或者荧光熄灭基团的分子信标核酸探针,与目标核酸序列相匹配的两段或两段以上扩增引物以及Taq连接酶在相应的缓冲溶液中组成,(1)对单、双链目标核酸的LDR检测方法为在缓冲液中加入分子信标、Taq连接酶以及两段扩增引物,然后加入待分析的单链或双链目标核酸,进行LDR温度循环,其中连接扩增温度为40~55℃,时间1~8分钟,DNA解链温度为70~95℃,维持1~5分钟,在连接扩增期间检测样品荧光强度;(2)对单、双链目标核酸的LCR检测方法为在缓冲液中加入分子信标、Taq连接酶以及两段和另两段不同浓度的扩增引物,然后加入待分析的单链或双链目标核酸,进行LCR温度循环,其中连接扩增温度为40~55℃,时间1~8分钟,DNA解链温度为70~95℃,维持1~5分钟,在连接扩增期间检测样品荧光强度;
2.按权利要求1所述的核酸连接酶反应与核酸连接酶链式反应的实时检测方法,其特征在于荧光检测所用波长根据分子信标修饰的荧光染料来选择,激发波长为338~560mm,发射波长为505~660mm。
全文摘要
本发明涉及一种单核苷酸多态性的分析技术。本发明检测方法使用的检测系统由分子信标核酸探针,扩增核酸片段以及Taq连接酶在相应的缓冲溶液中组成;对单、双链核酸片段的LDR实时分析和对单、双链核酸片段的LCR实时分析,是在缓冲液中加入分子信标,Taq连接酶以及扩增引物,然后加入待分析的单双链目标核酸,进行LDR、LCR温度循环,在低温循环期检测样品荧光强度。本发明利用了Taq连接酶、核酸以及分子信标核酸探针的特性,为单核苷酸多态性分析方法研究提供了新的技术和思路。具有重要的科学价值和广阔的市场前景,有较大的社会效益和经济效益。
文档编号C12Q1/68GK1626675SQ200410046658
公开日2005年6月15日 申请日期2004年8月13日 优先权日2004年8月13日
发明者王柯敏, 唐志文, 谭蔚泓 申请人:湖南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1