专利名称:核酸的衔接线性扩增的制作方法
相关申请的交叉参考本申请是1993年7月23日提交的申请08/095,442的部分继续申请。
背景技术:
技术领域:
本发明涉及核酸的体外复制。更具体地说,本发明涉及一种用于复制感兴趣核酸序列的方法,大量所需的序列最终由衔接的引物延伸反应产生,其中的感兴趣序列以数学线性方式积累。
2、背景技术简述当今称为(并在本文称为)核酸“扩增”的大量核酸复制无论在实践上,还是在理论上都在多种方面发现有广泛的应用。H.G.Khorana和其合作者们首先提出用体外DNA扩增方法以增加通过酶连接合成DNA而产生的双链DNA(主要酵母丙氨酸t-RNA基因的部分序列)的可得到的数量。见K.Kleppe等;分子生物学杂志56341-361(1971)。后来,体外扩增作为现在称为聚合酶链式反应或"PCR"的技术应用于基因组DNA的扩增(Saiki等,科学,2301350-1354(1985))。通过合成寡核苷酸引物,耐热DNA聚合酶和自动化温度循环仪的广泛可用性,PCR成为分子生物学家广泛利用的工具。
PCR方法在文献中称为“指数扩增”方法。在每轮或“每个循环”的引物延伸中,合成了另外一个引物的引物结合位点。因此,在任一以前循环中产生的每个合成DNA分子可用作引物依赖性复制的模板。该方法的此方面,与存在足够大量的引物分子一起导致合成的DNA随着反应的进行以数学指数方式积累。
虽然已证明PCR是分子生物学家有用的技术,并且已广泛应用于人类遗传研究、诊断和法医学的领域,且甚至用于抗体的检测,不过已认识到一些不足。PCR方法难以准确定量,主要因为随着每轮扩增扩增产物是指数增加。PCR产物,即,双链DNA分子本身难以分析或测序。一般地在测序或需要单链核酸的其它下游方法(如与能检测感兴趣序列的探针的杂交)之前必需进行链的分离。
PCR方法也已证明对经过转移以前扩增的DNA序列至一个新的反应中产生的污染很敏感。此问题似乎由下面的事实所引起(1)在任何给定的反应循环中产生很大量的DNA且(2)此方法用所有的产物DNA链作为随后循环的模板。即使微量的污染DNA也可被指数扩增并导致错误结果。见Kwok和Higuchi,自然339237-238(1989)。随着这些污染问题被广泛认识,在文献中已报导了各种减少这种污染的方法(如.化学去污染、物理处理、酶处理及利用封闭系统),见John B.Findlay,“用于体外诊断PCR的开发”,出于“遗传识别”,1992年,11月20日,San Diego,CA。
仍然存在对新的核酸(DNA)扩增方法的需要,该方法应能提供大量DNA并仅选择性扩增感兴趣的特异序列,并避免现在与“PCR”反应有关的问题。具体地说,仍然需要最终产生大量感兴趣的核酸分子,或大量含有感兴趣的核酸序列的分子,但对存在的污染核酸相对不敏感的核酸扩增方法。也存在对产生单链产物的核酸扩增方法的需要。
发明小结前述的和其它的需要通过本发明得到满足,其一方面提供了扩增样品含有的互补核酸链中特异性感兴趣核酸序列的方法,该方法包括下面的步骤(a)在适当条件下将链与含有不可复制因子的引物接触,使第一代引物延伸产物用所述的链作为模板而合成,并且其中用于链的引物的选择是使以其合成的第一代引物延伸产物在与链分离后,可用作互补链引物的模板用于合成第二代引物延伸产物;(b)将第一代引物延伸产物从其模板上分离以制备单链分子;和(c)在适当条件下用步骤(a)的引物处理第一代引物延伸产物从而使用第一代引物延伸产物作为模板而合成第二代引物延伸产物;其中的第二代引物延伸产物至少含有感兴趣核酸序列的部分序列,并且不能够用作延伸后合成其模板的引物合成延伸产物的模板。
在本发明的另一方面,步骤(c)的产物被分离以制备单链分子,并且整个过程至少重复一次。步骤(c)优选在可程控热循环仪的控制下以自动方式完成,步骤(c)的方法重复多次。
第二代引物延伸产物积累之后,其中的每一个均不能够用作延伸以制备其第一代模板的引物的模板,可利用新的一套含有不可复制因子的引物。该套新引物优先结合到第二代合成产物上,与待扩增的感兴趣序列邻接。线性复制过程又一次通过多轮循环完成。这种“衔接在一起”的多轮引物延伸反应最终导致最初感兴趣的核酸序列千倍或百万倍的扩增。因此,本方法命名为“衔接的线性扩增”或“LLA”。
在本发明的另一方面,含有不可复制因子的多重(嵌套)引物组可以单个扩增反应混合物提供。挑选这些引物组从而在严格程度递减的条件下能够结合到它们各自的模板上。因此,完成几个衔接线性扩增所必需的所有成份可以单个反应混合物提供。
在本发明的另一方面,等位基因特异性的核酸复制通过使用针对模板上的已知表示遗传疾病或紊乱,如镰刀形细胞疾病的特异性多态位点的引物根据本发明而完成。设计含有不可复制因子的等位基因特异性引物从而使它们仅引导那些含有所需等位基因的模板的核酸合成。
本方法产生的合成核酸分子可用于遗传紊乱或疾病的诊断,作为进一步技术如基因克隆的试剂、用于法医鉴定等。
本文描述的方法也可用单核酸链作为起始材料而完成。这种方法包括(a)将该链与含有不可复制因子的第一种引物在适当条件下接触,用该链作为模板合成第一代引物延伸产物;(b)将第一代引物延伸产物从其模板上分离以制备单链分子;和(c)将第一代引物延伸产物与第二种含有不可复制因子的引物在适当条件下接触从而用第一代引物延伸产物作为模板而合成第二代引物延伸产物;其中引物的选择是使第二代引物延伸产物不能用作第一种引物延伸的模板。步骤(a)-(c)可重复多次,导致大量的核酸合成,然后将该反应衔接到使用新的一套引物的随后的反应中。
本文描述的方法也可用含有可切割因子的引物来完成。此方法包括(a)将核酸模板链与含有可切割因子的第一种引物在适当条件下接触从而使第一代引物延伸产物用该链作为模板而合成;
(b)从其模板中分离第一代引物延伸产物以制备单链分子;(c)处理该单链分子从而使第一代引物延伸产物在可切割因子的位置被切割;(d)将第一代引物延伸产物与第二种引物在适当条件下接触从而使第二代引物延伸产物用第一代引物延伸产物作为模板而合成;其中引物的选择是使当第一代引物延伸产物在可切割因子处被切割时,第二代引物延伸产物不可用作第一个引物延伸的模板。步骤(a)-(d)可重复多次,导致大量的核酸合成,然后将该反应可与使用新一套引物的随后的反应衔接。此外,第二个引物可任选地含有可切割因子从而使衔接的线性扩增反应可用双链或单链起始模板来完成。
本发明也涉及用于扩增特定核酸序列的试剂盒。这样的试剂盒包括如,DNA聚合酶,两种或更多种用于待扩增的每一序列的引物,其中所述的每种引物包括不可复制因子或掺入可切割因子,以及,任选地,能由引物和DNA聚合酶复制的对照核酸序列。该试剂盒也可含有能够显示特定序列扩增产物存在与否的核酸探针。如果试剂盒含有掺入可切割因子的引物,其也可含有在可切割因子处切割引物的试剂。
附图简述
图1-4为本发明核酸扩增方法的图解。
图5-6为与图1-4中描述方法相连接的核酸扩增方法的图解。
图7为用两种引物进行的本发明的核酸扩增方法的更为详尽的图解。
图8-10给出了用四种引物进行的本发明的衔接线性核酸扩增方法的详细图解。
图11为通过PCR方法及通过本发明的方法而制备的核酸分子的图解。
图12为人类β-珠蛋白基因序列(Gen Bank基因座HUMHBB)及本文描述的几种引物的图解。
图13为实施例7中扩增的人类生长激素序列的序列。在本实验中使用的寡核苷酸的相对位置下面划线。寡核苷酸GHl与所示的人类生长激素序列的互补链杂交。
优选实施方案的详述本发明的核酸复制方法能够制备大量感兴趣的特异性核酸序列。该方法优选形式包括系列衔接的多轮引物延伸反应。在每个多轮循环引物延伸反应中,引物依赖性核酸复制经过许多循环来完成,其引物延伸产物以数学线性方式通过循环逐步积累。将一种独特的引物或一套独特的引物提供给含有待扩增序列的起始样品的每条核酸链。引物延伸产物从循环到循环的线性积累通过使用含有不可复制因子的引物加以保证-该成分终止引物延伸反应,阻止核酸聚合酶复制引物全序列。或者,所需引物延伸产物的线性积累通过使用含有可切割因子的引物加以保证,其中第一代引物延伸产物的切割产生缺乏第一种引物有功能的结合位点的第二代引物延伸产物。通过选择含有这样不可复制或可切割因子的适当引物,及适当的引物退火条件,保证了以最大丰度积累的引物延伸产物(本文称为“第二代引物延伸产物”)不能自己用作以相同引物的随后轮引物延伸的模板。因此,与利用每轮引物延伸产物作为随后轮模板的核酸扩增方法(如"PCR")不一样,“指数扩增”不会从循环到循环中发生。
本发明方法采用并利用了寡核苷酸杂交及引物延伸反应的许多重要特性。本发明利用了下面的优点·DNA聚合酶通过变性及引物依赖性延伸的顺序循环能够拷贝模板DNA许多次。
·引物依赖性延伸可在适当的条件下,甚至引物与模板不完全互补时发生。
·引物延伸可利用在前轮引物延伸中产生的模板。
·当模板中存在非碱基位点或非核苷酸残基时,引物延伸反应被抑制。或者,引物延伸可通过在掺入引物延伸反应所用引物中的可切割位点切割该代引物延伸产物分子而物理去除其中一部分加以抑制。
·引物长度和组成以已知的方式影响引物“引导”模板上聚合酶诱导的延伸的条件(如温度)。
·引物延伸反应可利用热循环仪进行快速循环。
本方法优选利用一系列线性扩增反应,其可连续地或平行地(即,同时地)(衔接)进行以产生大量拷贝的感兴趣的核酸序列。感兴趣的核酸序列可基本上包括全长的模板链,或仅包括其很小的一部分。含有感兴趣序列的模板链可存在于基本上均一的样品中或作为核酸混合物的一部分(甚至是极少的一部分)。
根据本发明,将含有不可复制或可切割因子的引物提供给含有待扩增序列的每条链。在双链模板情况时,引物在模板变性之前或之后加入。使引物与其各自的起始模板退火,并在适合酶功能的条件下在聚合酶存在下使之延伸以形成第一代引物延伸产物。该方法通过变性得到的双链核酸,使引物与链退火及再次完成引物延伸反应而加以重复。在第一引物延伸产物上的引物延伸产生第二代引物延伸产物,其由于存在不可复制因子,不能够用作那些相同的引物在随后循环中的模板。或者,如果引物含有可切割因子,第一代引物延伸产物在可切割因子的位置被切割,从而当第一代引物延伸产物退火到适当的引物上并延伸时,形成的第二代引物延伸产物将缺乏用于产生第一个引物延伸产物的引物的结合位点。
图1-5给出了根据本发明方法用DNA模板完成的一系列引物延伸反应(即,一种线性扩增反应)的图解。该方法以步骤(a)中利用具有明确末端的双链DNA分子开始加以说明。起始DNA链在图1-4中以实心(——)线表示。
起始双链优选通过在含有其的缓冲液中加热变性,且得到的单链与一对引物接触(步骤(b))。每种引物优选以基本上超过起始模板链的摩尔数提供并在其序列内部含有不可复制或者可切割因子,在引物序列中以(X)或(O)表示。在适当的条件下,引物与其各自的模板退火并在DNA聚合酶和四种脱氧核苷酸的存在下根据引物延伸反应延伸(步骤(c))。合成的DNA以点划线(……)表示在图1-4中,以起始双链DNA作为模板合成的DNA表示为“第一代”DNA。得到的模板再次变性,并且与引物退火(步骤(d))。
如图2中步骤(e)中所见到的,用第一代DNA作为模板的引物延伸导致制备了第二代DNA并且没有跨过掺入到第一代合成DNA中的不可复制因子。因此,合成了标号为10和20的DNA分子。这些第二代分子不参与进一步的引物延伸反应,因为,如图中所示,分子10没有掺入含有不可复制或可切割因子(X)的引物的有效结合位点,并且分子20没有掺入含有不可复制或可切割因子(O)的引物的有效结合位点。因此,如步骤(F)和(g)中所见到的,第二代分子在随后轮的引物延伸中以数学线性方式积累。
经过需要的循环数以后,合成的DNA用作(即,衔接到)使用第二套引物的第二系列引物延伸反应的起始材料。如图5-6中所见到的,选择含有标记为(a)和(b)的不可复制因子的引物以能够利用分子10和20(图1-4的反应产物)作为进一步DNA合成的模板。该系列的引物延伸反应同样导致图6步骤(e)中标号为30和40的合成DNA分子的积累,该DNA不能用作用于那些反应中引物的模板。经过所需数目的循环以后,这些合成的分子可衔接到利用又含有不可复制或可切割因子的适当引物进行的进一步复制中。如果引物含有可切割因子,第一个引物延伸反应后接着下面的反应,即第一个引物延伸产物在第二次引物延伸反应之前于可切割因子位置被切割。
因此应很明显任何一系列循环的合成核酸产物仅当提供新的引物或引物套时它们自身才可用作进一步扩增的模板。因此,如果第一个线性扩增完成100个循环后,该反应产生的100个拷贝可用作在能杂交到合成模板上的新引物对的衔接线性扩增(LLA)反应中的模板。再一次100个线性扩增循环提供了10000倍(100×100)累积扩增。以第三套引物重复该过程产生1×106的累积扩增。通过使用又一套引物及又一次循环的引物延伸完成再一次扩增。
图7更为详尽地图解说明了在本发明的扩增方法中两种引物的使用。参照该图,两种引物用于依次几轮的引物延伸。每种引物互补于靶序列但含有单个不可复制因子(X)替代其中的一个互补核苷酸。
有4个反应可参考。在反应1中,引物P1产生数拷贝的模板上链(第一代核酸;产物I)。在每轮循环中产生1拷贝的产物I,m轮循环导致m个拷贝。以反应2中,引物P2同样产生数拷贝的模板下链(第一代核酸;产物II)。每轮循环中产一拷贝的产物II,n轮循环导致n个拷贝。实际上,n和m一般是相同的。
在反应3中,除了模板II中掺入的不可复制因子以外的部分不能复制外,引物P1产生数拷贝的来自反应2的产物II(第二代核酸;产物III)。因此,产物III不是引物P1或P2的模板。
同样地,在反应4中,除了模板I中不可复制因子以外的部分未被复制外,引物P2产生数拷贝的模板I(第二代核酸;产物IV)。因此,产物IV不是引物P1或P2的模板。
表1显示了作为循环数函数的每种产物的积累。正如可以看到的,方程式(n2+n)/2可用于计算反应的产量。如果反应效率不到100%,扩增将更少。
表1在两种引物LLA反应中产物的积累循环(n)I累积的I III 累积的III 累积的I+III (n2+n)/21 1 1 0 0 1 12 1 2 1 1 3 33 1 3 2 3 6 64 1 4 3 6 10 105 1 5 4 10 15 156 1 6 5 15 21 217 1 7 6 21 28 288 1 8 7 28 36 369 1 9 8 36 45 4510 1 10 9 45 55 5511 1 11 10 55 66 6612 1 12 11 66 78 7813 1 13 12 78 91 9114 1 14 13 91 105 10515 1 15 14 105120 1201001 10099 5,0502001 20019920,1005001 500499125,2501,000 1 1,000 500,500
如果含有不可复制因子并互补于产物III或产物IV的第三种引物包括在反应中,一种短于产物III或产物IV的新产物将会积累。该产物在反应中较任何其它DNA链具有更大的丰度并将主要保持为单链。
在图8-10中说明了根据本发明的反应与“衔接”线性扩增反应一起导致大量的DNA合成。在该反应中使用了四种引物,因此连接两个同时进行的双引物反应。在此反应中,引物P1和P3互补于靶核酸的上链且P2和P4互补于下链。引物P3的互补位点为P1互补位点的5’(相对于模板)。同样地,引物P4的互补位点为P2互补位点的5’(相对于模板)。感兴趣的核酸序列将优先位于与2个引物对相邻的区域之内。
6个不同的反应可被考虑,每个反应所用的模板不同。并显示于图中。反应1A,1B、2A和2B分别导致互补于各自起始核酸模板链的第一代合成核酸(分别为产物IA、IB、IIA和IIB)的线性积累。反应3A、3B、4A和4B分别导致第二代合成核酸的线性积累,该第二代核酸由于在反应1A、1B、2A和2B中合成的核酸中存在不可复制因子,所以不能用作引物P1或P2的模板。然而,正如在反应5和6中所见到的,引物P3和P4由于它们互补位点的位置,能够发挥作用从而分别在原始模板DNA及模板IVA和IIIA中引导DNA合成。当然,产物IIIB和IVB,不是此反应任何引物的模板,但含有感兴趣的核酸序列。
很明显对本文描述的反应的变异将是可能的。例如,线性扩增反应可顺序衔接,而不是图8-10中所述同时进行。因此,引物P3和P4可经n轮引物延伸循环以后添加至反应混合物中,其中的n范围例如从2到100。
在另一种变异中,引物P1和P2的选择是使它们能够与模板DNA退火并在不允许引物P3与P4引导的条件(如温度)下引导DNA合成。在起始反应混合物中提供引物P1、P2、P3和P4。第一次线性扩增在仅引物P1和P2参与引物延伸的更为严格的条件下进行。经过所需次数的循环以后,反应条件变得较为不严格,其中的四种引物均参与核酸合成。引物P1和P2用起始模板继续产生第一代引物延伸产物并且用第一代产物作为模板产生第二代引物延伸产物;引物P3和P4也利用引物P1和P2的第二代引物延伸产物作为模板。又一次,感兴趣的核酸序列优选位于以两种引物对界定的模板链的区域之内。
如果第五种含有不可复制因子并互补于产物IIIB或产物IVB的引物包括进反应中,一种短于IIIB或IVB的新产物将积累。此产物在反应中的丰度将大于任何其它的DNA链并将主要保持为单链。分子生物学领域的技术人员将认识到每当利用奇数的引物实施本发明时,将会得到单链DNA的积累。
除了用存在于起始材料中的最初模板核酸链合成的引物延伸产物之外(这种引物延伸产物本文称为“第一代引物延伸产物”),含有不可复制因子及/或可切割因子的引物的使用确保了在此过程中产生的合成核酸都不能用作随后轮引物延伸的模板。因此,如在PCR反应环境中所产生的(Kleppe等.,和Saiki等,出处同上)合成的核酸以数学指数方式从循环到循环的积累得以避免。
在分子生物学及DNA化学领域中有经验的科学家将能够合成含有不可复制或可切割因子的引物。例如,含有1,3-丙二醇残基(终止DNA合成)的引物可根据Seela等,核酸研究. 15,3113-3129(1987)中描述的方法进行合成并在商业上可从Glen Research,44901Falcon Place,Sterling VA,20166美国得到。含有1,4-脱水-2-脱氧-D-核糖醇残基的引物,即非碱基位点模型可借助Eritia,核苷及核苷酸6,803-814(1987)进行合成。公开的欧洲专利申请416,817 A2(帝国化学有限公司;1991年3月13日)描述了在引物序列与多聚核苷酸尾部之间含有一个或多个2’脱氧呋喃核糖萘(2’deoxyribofuranosyl naphthalene)成分作为不可复制因子的引物的合成。含有其它终止聚合酶依赖性的模板拷贝的因子,如核糖核苷及脱氧核糖核苷的衍生物的寡核苷酸引物的合成对于本领域有经验的技术人员将是显而易见的。不可复制因子优选不位于任何引物的末端残基。
在分子生物学和DNA化学领域有经验的科学家同样能够合成含有可切割因子的引物。例如,含有核糖核苷的引物一般可通过核酸化学领域中的技术人员已知的标准寡核苷酸合成方法,通过在寡核苷酸合成反应中掺入保护的核糖核苷酸替代脱氧核糖核苷酸由核酸化学领域的技术人员合成。含有适当核糖核苷的引物在商业上是可得到的。
切割第一个引物延伸产物的一种方法利用了与核糖核苷相邻的磷酸二酯键的反应性与同脱氧核糖核苷相邻的磷酸二酯键的反应性的差异。通过用核糖核酸酶(RNase),如RNase A处理产物可较容易地切割含有核糖核苷酸的引物延伸产物。如果尿嘧啶核苷三磷酸(UTP)掺入到引物中,尿嘧啶N-糖基化酶(UNG)也可用于切割第一个引物延伸产物以去除其互补引物杂交位点。或者,含有核糖核苷的引物延伸产物可通过以氢氧化物,优选0.5N的NaOH处理产物而被切割。优选的引物将含有一个或更多个核糖核苷,其在引物中的位置应使切割能破坏其中一个用于随后引物延伸反应引物的杂交位点。核糖核苷可位于引物的3’末端,因为与不可复制因子不一样,其将不会干扰DNA聚合酶介导的延伸反应。
举例来说,典型的扩增反应将以双链DNA分子起始来进行,该DNA分子含有待复制的位于较长序列内的序列。对每条链特异的寡核苷酸引物退火到各自的链上,每条引物含有本文所述的不可复制因子和/或可切割因子。挑选引物从而使它们在待扩增序列的边界位置结合到各自的模板上。
第一轮引物延伸在所选酶适宜的条件下在DNA聚合酶及四种脱氧核糖核苷酸碱基存在下完成。得到的第一代合成DNA将在其3’末端含有掺入其中的寡核酸引物并在其下游(5’)具有另外引物的完整结合位点。如果引物含有可切割因子,得到的第一代合成DNA将在其3’末端具有掺入其中的含有可切割因子或多个该成份的寡核苷酸引物。
进行第二轮引物延伸循环,其中的第一代合成DNA用作其它引物的模板,即该引物未掺入其3’末端。DNA合成沿着模板进行,但当位于模板中的不可复制因子遇到聚合酶分子时便终止。得到的合成DNA,本文称为“第二代合成DNA”,具有不连续的末端,在其5’末端由其引物的全部序列所限定,并在其3’末端仅由其它引物的部分序列所限定--该部分序列即在遇到不可复制因子之前由DNA聚合酶所拷贝的序列。
第二代合成DNA将不作为模板参于进一步DNA合成。如上所述,第二代合成DNA仅含部分的必需引物结合位点。在所选的引物退火及延伸的条件下,该部分的引物结合位点不足以令引物结合并用作引物依赖性DNA合成的位点。因此,当第三及随后轮引物延伸进行时,仅最初的模板DNA及第一代合成DNA作为模板参与。那些模板的持续拷贝导致含有感兴趣序列的第二代合成DNA的一轮又一轮地“线性”积累。
经所需轮的引物延伸循环以后,通过提供每条链的第二种引物可实现再次的扩增,该第二种引物的选择是使之在第一套引物界定的区域内结合到最初模板链。第二种引物也含有不可复制因子和/或可切割因子,因此确保它们的引物延伸产物不能用作以那些相同引物随后进行的核酸合成的模板。如果第二种引物含有可切割因子,用这些引物制备的第一个引物延伸产物将在可切割因子的位置被切割,从而使从第一个引物延伸产物制备的第二个引物延伸产物将不含有有功能的可产生与第一链引物相同的新的拷贝的结合位点。
已知引物结合条件,尤其是温度能够决定是否特异性引物将结合到特异的模板上。见Rychlik等,核酸研究18,6409-6412(1990);Wu等,DNA细胞生物学10,233-238(1991)。因此,在含有多种碱基组成及/或长度引物的反应混合物中,引物结合温度的选择也能用来选择能够引导DNA合成的引物。例如,通过在一个扩增反应混合物中提供分别在72℃、62℃和52℃引导合成的第一、第二及第三套引物,在72℃进行第一系列的引物延伸反应将确保仅第一个引物套将发挥功能从而导致引物依赖性的核酸合成。经过所需数的循环以后,引物延伸温度可降至62℃,此时第一及第二个引物套将指导DNA合成。降低引物延伸反应温度至52℃允许所有三个引物套参与引物依赖性的DNA合成。在本方法中引物混合物的使用允许该方法以有效的方式进行,无需研究者随着过程的进行单独加入每种引物套。
通过使用市售的,可程序化的热循环仪,上述的所有三种引物套可提供在单个扩增反应混合物中。挑选引物从而使那些在最严格的条件下指导DNA合成的引物在模板上结合到其它引物的3’。同样地,在最不严格的条件下引导的那些引物结合到模板上其它引物的5’。第一系列引物延伸反应(循环)在最严格的(最高温度)引物退火条件下进行,其中仅第一种引物套参与含有感兴趣序列的DNA的合成。经过事先选定数目的引物延伸循环以后,使引物退火条件变得较不严格。第二个引物套将在选定条件下通过指导在第一系列引物延伸循环过程中产生的第二代合成DNA的线性拷贝而起始进一步DNA扩增。当该条件被进一步调整以使第三个引物套能参与引物依赖性的DNA合成时,在第一及第二系列引物延伸反应中产生的第二代合成DNA用作DNA复制的模板。
在预先选定的温度下结合的引物的设计在分子生物学家的技术范围之内。特异性引物发挥作用的温度可通过已有计算方法(Wu等,DNA细胞生物学,10,233-238(1991)及通过计算机程序(Rychlik等,核酸研究,18,6409-6412(1990)),根据引物长度及碱基组成来预测。体外DNA扩增适宜的温度循环可手工或通过商业上可得到的可程序化的热循环仪来完成。用热空气循环仪可获得很快的循环时间(Wittwer等,核酸研究。17,4353-4357(1989));短至30秒的循环时间是可能的(Wittwer等,生物技术10,76-83(1991))。因此一百个引物延伸循环可在少至约50分钟内完成。
失活用于切割第一个引物延伸产物的试剂的适宜温度循环可掺入到用于完成所需扩增反应的可程序化热循环仪的程序中。例如,大多数RN ase的活性通过加热含有RNase的反应混合物至100℃,3至5分钟而失活。等位基因特异性线性扩增在本发明的一个实施方案中,设计引物使其3’核苷酸与模板中的已知可变异的(多态的)特定核苷酸互补。该可变异的核苷酸可以是涉及遗传疾病如镰刀型细胞贫血的核苷酸,或在已知具有多态性的另一位点的核苷酸。如果在引物的3’核苷酸和模板DNA的相应核苷酸之间存在错配,引物设计保证其将很少延伸,或者,优选地完全不延伸。见Petruska等,美国科学院院报美国85,6252-6256(1988)。因此,这样的引物是“等位基因特异性的”并能够在感兴趣核酸序列内识别单个碱基的存在与否。因此在本发明方法中使用等位基因特异性引物之后存在合成DNA则表示在最初DNA模板中感兴趣的等位基因的存在。
此寡核苷酸引导的等位基因特异性特征已用于进行等位基因特异性PCR。见,例如,Newton等,核酸研究17 2503,2516(1989)。然而,与一般PCR一样,等位基因特异性PCR反应的指数行为与运行反应的困难相关联(见Ugozzoli等,方法2,42-48(1991))。然而,本扩增方法的循环的线性行为由于在等位基因特异性引物内存在不可复制因子而避免了这样的困难。扩增产物的检测本发明扩增方法的主要产物为具有限定长度的单链合成DNA。产物链的长度由最后使用的引物位置所决定并等于引物自身长度和可从引物3’末端至模板不可复制因子之间掺入的核苷酸数目的总和。产物可通过已知的核酸检测技术加以检测,包括用放射性、萤光成分或酶等标记的引物或探针,电泳,高压液相色谱等。
本发明在人类及其它动物遗传疾病的诊断中将具有重要的应用。已知许多人类遗传疾病由已知序列的基因中的特异性改变所致。对于这些特异性突变,用杂交或其它等位基因特异性技术(见上)测定各种基因序列中哪个存在于具有疾病风险的病人DNA中来进行基于DNA的诊断是可能的。很明显,靶DNA的扩增在开发这些技术中是很有帮助的。该模板扩增的主要优势为可用较小的样本量,检测系统的信噪比提高,存在真正自动化的可能且扩增系统自身可以是检测系统。
本发明方法提供了由其它扩增反应所提供的所有相同的优势,且还有其它的好处。产物为单链并且因此在检测之前不必变性。如果使用了奇数引物,将产生过量的单链分子。这些分子将是有用的,例如,作为杂交探针,并因此提供了优于其它扩增技术的额外优势。由于产物线性积累并因此可准确定量,故还带来了进一步的优势;与用新合成DNA作为用相同引物的随后轮循环的模板的指数方法相比,“假阳性”的出现几率将减少。
实施例在下面几个实施例中使用的溶液描述如下TE(Tris-EDTA)10mM Tris-HCl,1mM EDTA pH8.0TBE(Tris-硼酸盐-EDTA)89mM Tris-HCl,89mM硼酸,2mM EDTA,pH8.3Klenow聚合酶缓冲液50mM Tris-HCl,10mM MgCl2,pH7.6激酶缓冲液50mM Tris-HCl,10mM MgCl2,5mM DTT,0.1mM亚精胺-HCl,0.1mM EDTA,pH7.6DNA聚合酶I缓冲液50mM Tris-HCl,10mM MgSO4,0.1mM DTT,50μg/ml小牛血清白蛋白,pH7.2测序酶缓冲液40mM Tris-HCl,20mM MgCl2,50mMNaCl,pH7.5Bst聚合酶缓冲液20mM Tris-HCl,20mM MgCl2,pH8.5栖热水生菌聚合酶缓冲液50mM KCl,10mM Tris-HCl,1.5mM MgCl2,0.01%(w/v)明胶,pH8.310x Ficoll上样缓冲液100mM Ths-HCl pH7.5,10mMEDTA,0.5%溴酚蓝,0.5%二甲苯胺(xylene cyanol),30%Ficoll5×SSPE50mM磷酸钠pH7.0,0.9mM NaCl及5mM EDTA6×SSC0.9M NaCl,0.09M柠檬酸钠本发明方法通过下面的实施例加以说明,其并非限制权利要求保护的范围。
实施例1-当存在于模板中时1,3-丙二醇阻止引物延伸为了证实1,3-丙二醇成分用作不可复制因子并终止DNA合成的能力,合成具有或不具有含1,3-丙二醇成分(标记为不可复制因子“X”)的单核苷酸碱基的模板及互补于该模板3’末端的引物。合成的序列如下名称 序列(5’→3’)DNA II 207 GCTCCCTTAGCATGGGAGAGTCTCCGGTTCDNA II 207X GCTCCCTTAXCATGGGAGAGTCTCCGGTTCP12 GAACCGGAGACT
引物与模板退火以形成下面的引物模板复合物5’GCTCCCTTAGCATGGGAGAGTCTCCGGTTCTCAGAGGCCAAG 5’5’GCTCCCTTAXCATGGGAGAGTCTCCGGTTCTCAGAGGCCAAG 5’该引物模板复合物然后在α-[32P]-dCTP存在下以各种DNA聚合酶(DNA聚合酶I Klenow片段,Ampli Taq聚合酶(珀金埃尔默-Cetus公司),BST聚合酶(伯乐实验室,Hercules,CA)及测序聚合酶(美国生物化学,Cleveland,OH))延伸并且产物在变性聚丙烯酰胺凝胶上电泳。
引物与模板以引物/模板比为10进行混合,并采用对聚合酶适宜的缓冲液。20μl反应液中含有1pmol207或207-X,10pmol P12,25μM dNTPs,0.5μCiα-[32P]-dCTP及Ampli Taq缓冲液,BST缓冲液,Klenow缓冲液或测序酶缓冲液。在加入一单位DNA聚合酶及37℃反应10分钟之前样品于90℃加热2分钟并冷却至0℃5分钟。如下所示,结果表明丙二醇残基阻止所有四种DNA聚合酶的引物延伸5′GCTCCCTTAGCATGGGAGAGTCTCCGGTTC<-----------------TCAGAGGCCAAG 5’5′GCTCCCTTAXCATGGGAGAGTCTCCGGTTC<-----------------TCAGAGGCCAAG 5′实施例2-具有含丙二醇碱基的引物不支持PCR制备四种寡核苷酸,其中的2种含有不可复制的1,3-丙二醇成分。该序列在具有Z位的MMT-丙二醇磷酰胺的Eppendorf EcosynD300自动DNA合成仪上合成。当将序列放入合成仪时,Z被导入。该序列列于下表
名称序列(5’→3’)BGP-2 22GGGTGGGAAAATAGACCAATAGBGP-2 22X GGGTGGGAAAATAGACCXATAGBGP-1 30GGCAGGAGCCAGGGCTGGGCATAAAAGTCABGP-1 30X GGCAGGAGCCAGGGCTGGGCATAAAXGTCA人类β-珠蛋白基因(GenBank位置HUMHBB)中该寡核苷酸互补位点显示于图12。
体外扩增反应以四种引物的各种组合完成。在标准PCR反应缓冲液中每种反应含有100ng人类基团组DNA,各6pmol的两种引物。反应置于热循环仪中(Ericomp)并加热至94℃3分钟,冷却至55℃30秒,加热至72℃30秒然后按如下进行31轮加热冷却循环94℃,1分钟,55℃,30秒,72℃30秒。经热循环以后,样品于72℃中再孵育3.5分钟。仅含有不具丙二醇引物(BGP-130和BGP-222)的反应得到了319bp的扩增产物。因此证实含有丙二醇的引物不支持PCR。
实施例3-含有1,3-丙二醇的引物产生特异性DNA片段质粒pHβA与含有丙二醇的引物(BGP-130X及BGP-222X)或不含丙二醇成分的对照引物(BGP-130及BGP-222)混合。引物/模板混合物置于94℃20秒的热循环条件以解离双链模板,接着以48℃20秒。最后一轮循环后,反应混合物于48℃进一步孵育5分钟40秒以完成引物延伸反应和退火单链DNA。利用含有丙二醇引物的反应混合物(根据本发明)经45轮的引物延伸循环。利用不含丙二醇成分的引物的PCR反应经10轮引物延伸的循环。反应产物于1.5%的琼脂糖(TBE缓冲液)上电泳。含有丙二醇的引物产生小于PCR产生片段的DNA片段。较小的片段大小是由于引物延伸没有延伸至模板链末端,导致在产物上留下5’突出端。
图11显示了PCR反应产物与根据本发明的LLA反应产物的比较。以指数方式积累的PCR反应主要产物为完全的双链,具有相应于所用引物末端的限定的末端。然而,由于跨过不可复制因子的引物延伸没有发生,本发明方法的产物短于相应的PCR产物。
实施例4-含有丙二醇的引物支持DNA扩增根据本发明的扩增反应用BGP-130X及BGP-222X进行各种数目的循环。扩增产物进行斑点印迹杂交,并且杂交信号与获自含有该序列的已知量质粒DNA信号相比较。
制备15μl的反应液,其在标准PCR缓冲液中含有1.1ng质粒pHβA(含有克隆于pBR322中的完整人类β-珠蛋白基因),5pmolBGP-1 30X,5pmol BGP-2 22X,83μM dNTPs,2.5单位的AmpliTaqRDNA聚合酶。热循环反应在Corbett Research FTS-1热循环仪中进行45、32及22轮循环,程序如下94℃20秒,48℃20秒。循环结束时反应加热至94℃20秒且然后于48℃孵育4分钟。
反应产物(3μl)与10μl 4N的NaOH、250mM EDTA混合并印迹到Zeta-探针膜(伯乐实验室,Hercules,CA)上。同样变性的56、118及231ng的质粒pHβA也包括在膜上。该膜在5×SSPE,1%SDS,5mg/mlBlotto,10μg/ml Homomlx I RNA中与5’-32P-CTGCAG TAACGGCAGACTTCTCCT于55℃杂交3小时。杂交以后印迹在室温下以6×SSC洗涤,然后用伯乐分子图像仪扫描。反应产物约250倍的扩增证明本发明方法导致感兴趣核酸序列的扩增。
实施例5-从基团组DNA中扩增人类β-珠蛋白基因根据本发明的线性扩增反应根在15μl体积中完成,其中含有栖热水生菌聚合酶缓冲液,模板DNA(800ng基因组DNA或104个质粒pHβ4分子),200μM的每种dNTP(dATP,dTTP,dCTP,及dGTP),2pmol的寡核苷酸引物BGP5-22X及BGP4-22X,以及2单位的Ampli-Taq聚合酶(珀金埃尔默Cetus)。质粒pHβA含有克隆于pBR322中PstI位点的4.4kb的人类β-珠蛋白基因的PstI的片段。作为阴性对照,除了模板DNA之外包括用于前述反应中所有成分进行反应(“无模板”对照)。模板DNA变性3分钟后,扩增按如下进行99轮循环55℃退火30秒,72℃聚合15秒,并于94℃变性30秒。在最后一轮循环结束时,样品于55℃退火30秒并最后于72℃聚合4分钟。
第一步骤(100轮循环)结束时,从每种样品(基因组DNA,质粒DNA,和阴性对照)中取出7.5μl,并与7.5μl含栖热水生菌聚合酶缓冲液,5pmol引物BGP1-35X及BGP2-35X,及2单位Apmpli Taq聚合酶的溶液混合。除了退火温度为63℃以外,循环程序类似于第一步骤所用的程序。
为了控制由扩增产生的片段的大小,进行了两种反应。一种反应含有栖热水生菌聚合酶缓冲液,5pmol引物BGP5-22X及BGP4-22X,1×108个质粒pHβA分子,及3单位的Ampli-Taq聚合酶。除了使用引物BGP1-35X和BGP2-35X之外第二种对照包括与前面反应相同的成分。模板DNA于94℃变性4分钟并然后用下面条件的程序循环48次于55℃退火及聚合30秒;于94℃变性30秒。在最后一轮循环结束时样品于55℃退火30秒并于72℃聚合4分钟。
引物序列(5’-->3’)BGP1-35XCCAGGGCTGGGCATAAAAGTCAGGGCAGAGXCATCBGP2-35XGGGTGGGAAAATAGACCAATAGGCAGAGAGXGTCABGP4-22XCCAAAGGACTCAAAGAAXCTCTBGP5-22XCCTCACCCTGTGGAGCCXCACCLLA产物的分析全部反应(15μl)与1.6μl10×Ficoll上样缓冲液混合并于1.5%琼脂糖凝胶(伯乐超纯琼脂糖)中电泳。电泳于TBE缓冲液中110伏进行90分钟。凝胶随后以溴化乙锭(1μg/ml)染色30分钟,脱色15分钟,并通过紫外(UV)照射拍照。电泳的DNA然后通过碱性转移(Reed,K.C.和D.A.Mann,从琼脂糖凝胶中快速转移DNA至尼龙膜上,核酸研究,137207-722(1985))转移至尼龙膜(Zeta Probe,伯乐)上并通过UV辐射(Church,G.M.和W.Gilbert,基因组测序,美国科学院院报,811991-1995(1984))固定至膜上。膜于5×SSPE,1%SDS,10μg/ml homomix RNA及0.5%脱脂奶粉(康乃馨,洛杉矶,CA)中预杂交1小时并随后以2.5×106cpm/ml 5’末端32P标记的探针5’CAGGAGTCAGGTGCACCATGGT在55℃杂交2小时。膜以6×SSC室温洗2次各30分钟并在室温放射自显影30分钟。
基因组DNA产生与珠蛋白基因质粒DNA对照相同的片段。片段的大小为由BGP1-35X及BGP2-35X引物产生的大小。
实施例6与PCR体外扩增相比LLA扩增产物对污染具有抗性本发明的“LLA”扩增反应在15μl体积中完成,其中含有栖热水生菌聚合酶缓冲液,模板DNA(3.5×109个质粒pHβA分子),200μM每种dNTP(dATP、TTP、dCTP和dGTP),5皮摩尔(picomoles)寡核苷酸引物BGP1-22X及BGP2-22X,以及1.25单位的Ampli-Taq DNA聚合酶(珀金埃尔默Cetus)。模板DNA变性1分钟以后,通过于48℃退火30秒及94℃变性30秒进行49轮扩增。最后一个循环结束时,样品于48℃孵育4分钟。
为了比较目的,在15μl体积中进行PCR反应,其中含有栖热水生菌聚合酶缓冲液,模板DNA(3.5×109个质粒pHβA分子),200μM的每种dNTP(dATP、TTP、dCTP、及dGTP),5皮摩尔的寡核苷酸引物BGP1-22和BGP2-22,及1.25单位的Ampli-Taq DNA聚合酶。模板DNA变性1分钟后,通过于48℃退火30秒并于94℃变性30秒进行9个循环的扩增。最后一个循环结束时,样品于48℃孵育4分钟。
LLA和PCR产物的分析LLA及PCR产物的两倍系列稀释液(1/64μl、1/32μl、1/16μl、1/8μl、1/4μl、1/2μl、1μl、2μl、4μl及8μl)与1×Ficoll上样缓冲液混合并于1.5%琼脂糖凝胶中电泳。电泳在1×TBE缓冲液中以110伏特进行90分钟。电泳的DNA通过碱性转移(Reed和Mann,1985)转移至尼龙膜,通过紫外辐射交联(Church和Gilbert,1984),且然后以2×SSC中和。然后,膜在5×SSPE、1%十二烷基磺酸钠(SDS),10μg/ml homomix RNA,0.5%脱脂奶粉及2.5×106cpm32p标记的探针5’CAGGAGTCAGGTGCACCATGGT中杂交。杂交在55℃进行2小时。杂交以后,膜在室温以6×SSC洗两次各15分钟且然后以伯乐GS-250分子图像仪扫描和定量。
扩增子污染实验相同量的LLA产物(1/26μl)及PCR(1/16μl)产物(由图像仪定量(上述))用蒸馏水进行104、105及106倍的稀释;这些稀释液随后用作PCR反应的DNA模板。扩增反应在15μl体积中完成,其中含有栖热水生菌聚合酶缓冲液,模板DNA(LLA或PCR稀释液),200μM的每种dNTP(dATP、TTP、dCTP及dGTP),5皮摩尔的寡核苷酸引物BGP1-22和BGP2-22,及1单位的Ampli-Taq聚合酶。反应以双份进行且在第-步94℃热变性3分钟以后,样品进行25和30轮扩增循环(55℃30秒,72℃30秒,及94℃30秒)并最后于50℃孵育30秒及72℃孵育4分钟。此外,包括除了模板DNA外含有所有试剂的阴性对照。
为了控制和定量LLA和PCR DNA模板的相对量,用在BGP1-22和BGP2-22内部引导的不同引物套(MD040和PC04)进行第二套PCR反应。反应成分(除了引物)和反应条件如前面段落所述。
15μl反应液与16μl 10×Ficoll上样缓冲液混合并于1.5%琼脂糖凝胶(伯乐超纯琼脂糖)中电泳。电泳于1×TBE缓冲液中110伏特进行90分钟。凝胶然后以溴化乙锭(1μg/ml)染色30分钟,脱色15分钟,并通过紫外(UV)照射拍照。电泳的DNA然后通过碱性转移(Reed和Mann(1985))转移至尼龙膜并通过UV照射固定至膜上(Church(1984))。膜于5×SSPE,1%SDS,10μg/ml homomix RNA及0.5%脱脂奶粉中预杂交1小时,然后与2.5×106cpm/ml 5’-P32标记的探针5’CAGGAGTCAGGTGCACCATGGT于55℃杂交2小时。以6×SSC于室温洗膜2次并且反应以伯乐GS-250分子图像仪定量。
结果测定以外侧引物套(测量扩增子在第二个反应中扩增的能力)与内侧引物套(测量存在于反应中扩增子的数量)扩增的反应的杂交比。正如从下表中所能见到的,LLA反应产生的扩增子能抵抗从外侧引物的扩增并且因此将抵抗遗留污染的影响。
表II污染对随后扩增的影响稀释外侧内侧(PCR)外侧内侧(LLA)10-41.58 0.1710-51.62 0.02实施例7通过LLA用含核糖核苷的引物制备特异性DNA片段用标准的自动固相合成方法制备具有下面序列的寡核苷酸及含核糖核苷的寡核苷酸。在寡核苷酸GH1和GH2中的尿嘧啶核苷为核糖核苷。
名称序列(5’-->3’)GH1 SEQTTCCCAACCAUTCCCTTAGH2 SEQGGATTTCTGUTGTGTTTCGH3 SEQTTCCCAACCATTCCCTTACHG SEQGGATTTCTGTTGTGTTTCMd114 TAGCGTTGTCAAAAAGCC进行用含有核糖核苷的引物GH1和GH2或脱氧引物GH3和GH4从基团组DNA样品中扩增人类生长激素基因片段的体外扩增反应。每种反应在含有1.5单位Taq聚合酶(珀金-埃尔默)的标准PCR反应缓冲液中含有500ng人类基因组DNA及两种引物中每种引物40皮摩尔。通过将反应混合物置于热循环仪中,并加热至95℃4分钟,冷却至52℃2分钟,然后加热至72℃1分钟进行扩增反应。扩增反应按如下持续28个循环94℃4分钟、52℃2分钟及72℃1分钟;且然后进行如下的一轮循环94℃1分钟,52℃2分钟及72℃6分钟。反应以后,扩增产物于1.5%琼脂糖凝胶中分离,然后用制备基因(“Prep-A-Gene”)DNA纯化试剂盒(可从伯乐得到)纯化。
于5.6μl反应体积中的扩增产物以1.4μl 0.5M NaOH处理以在相邻于掺入到第一PCR产物中的尿嘧啶核苷的磷酸二酯键处切割扩增产物,然后加热至95℃15分钟。这些溶液通过加入0.9μl 1M HCl而中和,然后将产物进一步线性扩增以证实第一个引物延伸产物不再含有用于PCR反应的含核糖核苷酸引物的完全拷贝。PCR产物用在5’末端以P32标记的寡核苷酸Md114进行引物延伸。依据反应中所用的引物,用以NaOH处理的PCR扩增片段制备的引物延伸产物短于没有被NaOH切割的PCR扩增片段的引物延伸产物。这些结果证明了掺入的核糖核苷可被切割以阻止在随后轮的PCR扩增中引物的延伸。
权利要求
1.一种用于扩增包含在互补核酸链内的感兴趣的核酸序列的方法,包括(a)在适当条件下将所述的链与含有不可复制因子的引物接触,使第一代引物延伸产物用所述的链作为模板而合成,并且其中用于链的引物的选择是使以其合成的第一代引物延伸产物在与链分离后,可用作互补链引物的模板用于合成第二代引物延伸产物;(b)将第一代引物延伸产物从其各自模板上分离以制备单链分子;和(c)在适当条件下用步骤(a)的引物处理第一代引物延伸产物从而用第一代引物延伸产物作为模板而合成第二代引物延伸产物;其中的第二代引物延伸产物至少含有感兴趣核酸序列的部分序列,并且不能够用作延伸后合成其模板的引物合成延伸产物的模板。
2.根据权利要求1的方法,其进一步包括将产生的第二代引物延伸产物与其各自的模板分离以制备单链分子。
3.根据权利要求1的方法,其中的步骤(c)至少重复一次。
4.根据权利要求1的方法,其中的不可复制因子不位于任何所述引物的末端残基。
5.根据权利要求1的方法,其中的不可复制因子为脱氧核糖核苷酸的衍生物。
6.根据权利要求1的方法,其中的不可复制因子为核糖核苷酸的衍生物。
7.根据权利要求5的方法,其中的不可复制因子为1,3-丙二醇残基。
8.根据权利要求5的方法,其中的不可复制因子为1,4-脱水-2-脱氧-D-核糖醇残基。
9.根据权利要求1的方法,其进一步包括在适当条件下以含有不可复制因子的引物处理第二代引物延伸产物的步骤从而利用第二代引物延伸产物作为模板而合成引物延伸产物。
10.一种用于扩增包含在互补核酸链中的感兴趣的核酸序列的方法,包括(a)在适当条件下将所述的链与含有不可复制因子的第一种引物和第二种引物接触,使第一代引物延伸产物用所述的链作为模板而合成,并且其中第一种引物和第二种引物的选择是使第一代引物延伸产物在与其模板分离后,可用作第一种引物和第二种引物的模板用于合成第二代引物延伸产物;(b)将第一代引物延伸产物从其各自模板上分离以制备单链分子;和(c)在适当条件下用第一种引物和第二种引物处理第一代引物延伸产物从而用第一代引物延伸产物作为模板而合成第二代引物延伸产物;其中的第二代引物延伸产物至少含有感兴趣核酸序列的部分序列,第一种引物的第二代引物延伸产物能够用作模板产生第二种引物的引物延伸产物。
11.根据权利要求10的方法,其进一步包括分离步骤(c)中产生的引物延伸产物以制备单链分子。
12.根据权利要求10的方法,其中的步骤(c)至少重复一次。
13.根据权利要求10的方法,其中的不可复制因子不位于任何所述引物的末端残基上。
14.根据权利要求10的方法,其中的不可复制因子为脱氧核糖核苷酸的衍生物。
15.根据权利要求10的方法,其中的不可复制因子为核糖核苷酸的衍生物。
16.根据权利要求14的方法,其中的不可复制因子为1,3-丙二醇残基。
17.根据权利要求14的方法,其中的不可复制因子为1,4-脱水-2-脱氧-D-核糖醇残基。
18.根据权利要求10的方法,其进一步包括在适当的条件下用第三种引物处理所述第二种引物的第二代引物延伸产物,其中所述的第三种引物含有不可复制因子,从而利用所述第二种引物的第二代引物延伸产物作为模板而形成第三种引物延伸产物。
19.根据权利要求10的方法,其中每条所述的链含有第一种引物的引物结合位点和第二种引物的引物结合位点,第一种引物的引物结合位点位于第二种引物的引物结合位点的3’。
20.一种扩增包含在互补核酸链内的感兴趣核酸序列的方法,包括(a)将所述的链在第一套引物延伸反应条件下与第一种引物及第二种引物接触,所述的第一种引物及第二种引物均含有不可复制因子,从而使第一代引物延伸产物用所述的链作为模板从第一种引物而不是第二种引物合成,并且其中第一种引物的选择是使来自此步骤的第一代引物延伸产物在与其模板分离后,可用作模板合成所述互补链的第一种引物的第二代延伸产物;(b)将第一代引物延伸产物与其各自的模板分离以制备单链分子;(c)以步骤(a)的引物在适当条件下处理第一代引物延伸产物从而用第一代引物延伸产物作为模板产生第二代引物延伸产物;(d)将第二代引物延伸产物与其各自的模板分离以制备单链分子;(e)重复步骤(c)和(d)至少一次;和(f)将步骤(e)的反应混合物置于第二套引物延伸反应条件中从而用第二代引物延伸产物作为模板从所述的第二种引物合成引物延伸产物。
21.根据权利要求20的方法,其中所述的第一套引物延伸反应条件较第二套引物延伸反应条件更为严格。
22.根据权利要求20的方法,其中所述的第一套条件包括较所述的第二套条件更高的温度。
23.根据权利要求20的方法,其中的不可复制因子不位于任何所述引物的末端残基上。
24.根据权利要求20的方法,其中的不可复制因子为脱氧核糖核苷酸的衍生物。
25.根据权利要求20的方法,其中所述的不可复制因子为核糖酸苷酸的衍生物。
26.根据权利要求24的方法,其中的不可复制因子为1,3-丙二醇残基。
27.根据权利要求24的方法,其中的不可复制因子为1,4-脱水-2-脱氧-D-核糖醇残基。
28.根据权利要求20的方法,其中所述的每条链含有第一种引物的引物结合位点和第二种引物的引物结合位点,第一种引物的引物结合位点位于第二种引物的引物结合位点的3’。
29.根据权利要求1的方法,其中的核酸序列含有与遗传疾病有关的多态位点,并且所述的每种引物的选择是使之仅在所述疾病状态存在或不存在时引导核酸合成。
30.根据权利要求29的方法,其中所述的遗传疾病为镰刀型细胞贫血。
31.根据权利要求1的方法,进一步包括检测扩增的感兴趣核酸序列的存在与否。
32.根据权利要求10的方法,进一步包括检测扩增的感兴趣核酸序列的存在与否。
33.根据权利要求20的方法,进一步包括检测扩增的感兴趣核酸序列的存在与否。
34.用于扩增特定核酸序列的试剂盒,包括DNA聚合酶,待扩增的每种序列的引物对,以及能由所述的引物和DNA聚合酶复制的对照核酸序列,其中所述的每种引物均包括不可复制因子。
35.根据权利要求34的试剂盒,其中的不可复制因子为1,3-丙二醇残基。
36.根据权利要求34的试剂盒,其中的不可复制因子为1,4-脱水-2-肿氧-D-核糖醇残基。
37.用于扩增特定核酸序列的试剂盒,包括DNA聚合酶,每种待扩增序列的引物对,以及能够检测特定核酸序列扩增产物存在与否的核酸探针,其中所述的每种引物均包括不可复制因子。
38.根据权利要求37的试验盒,进一步包括能由所述引物和DNA聚合酶复制及能由所述的核酸探针检测的对照核酸序列。
39.根据权利要求37的试剂盒,其中的不可复制因子为1,3-丙二醇残基。
40.根据权利要求37的试剂盒,其中的不可复制因子为1,4-脱水-2-脱氧-D-核糖醇残基。
41.根据权利要求34的试剂盒,其中所述引物的选择是使之扩增代表遗传疾病或异常的核酸序列。
42.根据权利要求37的试剂盒,其中所述引物的选择是使之扩增代表遗传疾病或异常的核酸序列。
全文摘要
感兴趣核酸序列的大量合成(“扩增”)通过一系列衔接的多轮引物延伸反应(LLA)来完成。本方法每个引物延伸反应中使用的引物含有不可复制因子,其终止核酸合成并因此阻止合成的分子用作随后循环的模板。合成的分子在引物延伸过程中以数学线性方式积累,因而使该方法对污染核酸相对不敏感。采用了多引物套从而保证了感兴趣的核酸序列的大量拷贝的积累。本发明也提供了扩增的感兴趣核酸序列的检测方法,以及完成该反应的试剂盒。
文档编号C12N15/09GK1186520SQ96194406
公开日1998年7月1日 申请日期1996年6月6日 优先权日1995年6月7日
发明者罗伯特·布鲁斯·华莱士 申请人:伯乐实验有限公司