嘧啶-2,4,6-三酮的药物组合物的制作方法

文档序号:1108262阅读:248来源:国知局
专利名称:嘧啶-2,4,6-三酮的药物组合物的制作方法
技术领域
本发明包含嘧啶-2,4,6-三酮(三氧嘧啶)的药物组合物,其生产方法及其用途。
基质金属蛋白酶(MMPs)是能够降解细胞外基质(ECM)与基底膜的锌和钙依赖蛋白酶家族(Egeblad,M.,and Werb,Z.,Nat.Rev.Cancer 2(2002)161-174;Overall,C.M.,and Lopez-Otin,C.,Nat.Rev.Cancer 2(2002)657-672)。据信它们在胚胎发育和生长中(Holmbeck,K.,et al.,Cell 99(1999)81-92;Vu,T.H.,et al.,Cell 93(1998)411-422)以及组织重塑和修复中(Shapiro,S.D.,Curr.Opin.Cell Biol.10(1998)602-608;Lund,L.R.,et al.,EMBO J.18(1999)4645-4656)扮演着重要的角色。MMPs过量或者不当的表达可能因此与许多组织重塑进程的发病机理相关,包括肿瘤发展(Egeblad,M.,and Werb,Z.,Nat.Rev.Cancer 2(2002)161-174;Overall,C.M.,and Lopez-Otin,C.,Nat.Rev.Cancer 2(2002)657-672)和动脉瘤形成(Carmeliet,P.,et al.,Nat.Genet.17(1997)439-444)。MMP的作用还远不只限于ECM降解(Chang,C.,and Werb,D.,Trends Cell Biol.11(2001)S37-43)。被ECM蛋白包裹的肽生长因子在ECM被MMP-9降解后就可以被利用了。(Manes,S.,et al.,J.Biol.Chem.274(1999)6935-6945)。MMPs可以增加VEGF的生物利用度(Bergers,G.,et al.,Nat.Cell Biol.2(2000)737-744),还可以通过切割血纤维蛋白溶酶原产生血管生成抑制剂如血管抑素(Dong,Z.,et al.,Cell 88(1997)801-810)。MMPs被认为参与骨髓干细胞的运动(Janowska-Wieczorek,A.,et al.,Blood 93(1999)3379-3390)。在G-CSF诱导的HPC运动中观察到了高浓度的MMP9(Carstanjen,D.,et al.,Transfusion 42(2002)588-596)。
三氧嘧啶是来自一个众所周知的结构类别的化合物。这些化合物被描述在例如美国专利Nos.6,242,455和6,110,924;WO 97/23465,WO 98/58915,WO 01/25217中,在此将其加入作为参考,以及描述在Grams,F.,等的Biol.Chem.382(2001)1277-1285,其对于MMP-2,MMP-9,和MMP-14有效且高度选择。
环糊精是衍生自淀粉的环碳水化合物。它们之间的区别在于其结构中吡喃型葡萄糖单元的数量。母体环糊精含有6,7和8个吡喃型葡萄糖单元,这些环糊精分别叫做α,β,和γ环糊精。通过酶淀粉转换制备的α,β,或者γ环糊精其疏水空穴的直径不同,并且它们通常适于包涵许多亲脂物质。
作为高效MMP抑制剂的三氧嘧啶,其很难溶于水和基于水的溶剂。因此,本发明的目标是提供一种水性组合物,其中该三氧嘧啶是可溶的,并且该三氧嘧啶的水性组合物可以被用于药物组合物。
发明简述令人惊讶地发现,由下述式(I)描述的三氧嘧啶衍生物和水溶性环糊精(进一步缩写成CD)形成的三氧嘧啶-环糊精复合物显示出增强的水溶性,良好的稳定性,和低局部刺激,其可被用作治疗剂。
进一步发现该具有环糊精和佐剂例如L-赖氨酸或者L-精氨酸的三氧嘧啶复合物显示出改善的水溶性和生物利用度,良好的稳定性,和低局部刺激,其可以被用作治疗剂。因此,本发明提供了由三氧嘧啶衍生物或其盐和环糊精形成的三氧嘧啶-环糊精复合物,所述环糊精优选α-,β-或者γ-环糊精或者水溶性环糊精衍生物(水溶性被定义为在25℃下至少0.5gr/100ml水的溶解度),其中的三氧嘧啶衍生物由式(I)表示。
此外,本发明提供了由式(I)代表的三氧嘧啶衍生物或其盐和环糊精于存在佐剂例如L-赖氨酸或者L-精氨酸、优选L-赖氨酸情况下形成的三氧嘧啶-环糊精复合物,所述环糊精优选α-,β-或者γ-环糊精或者水溶性环糊精衍生物(水溶性被定义为在25℃下至少0.5gr/100ml水的溶解度)。
本发明的该复合物是三氧嘧啶-环糊精的包含复合物,并且以液体或者固体形式提供。
在本发明的复合物中,优选1mol的三氧嘧啶被大约1-2mol的优选为β-或者γ-环糊精或其衍生物的环糊精所复合和封闭。
本发明还提供了用于治疗需要治疗患者的药物制剂,优选用于治疗支气管炎症疾病,该药物制剂以药物有效量含有作为活性组分的本发明的三氧嘧啶-环糊精复合物。
本发明的药物制剂可以用于治疗、预防或者防治很重要的或者不合适的MMP表达引起的病理学。优选地,这种治疗是对下列疾病的治疗,预防或者防治类风湿性关节炎,肿瘤,转移性侵袭,骨质疏松,黄斑变性,糖尿病视网膜病,角膜溃烂,动脉粥样硬化,支气管炎症疾病,支气管炎症疾病如哮喘,慢性阻塞性肺病或者肺气肿。
本发明还提供了一种注射制剂,该制剂以药物有效量含有本发明的三氧嘧啶-环糊精复合物。
本发明的又一目的是本发明复合物的液体水性制剂,药用载体是水,给予的组合物是水溶液。本发明的活性物质随后通过包涵在水溶液的环糊精中处于复合物状态。
本发明的另一目的是在L-赖氨酸存在的情况下(L-赖氨酸浓度介于10mM和1000mM,优选介于10mM和500mM,更优选介于10mM和100mM)的本发明复合物的液体水性制剂,药用载体是水,给予的组合物是水溶液。本发明的活性物质随后在L-赖氨酸存在的情况下通过包涵在水溶液的环糊精中处于复合物状态。
本发明的另一个目的是固体状态的本发明复合物,该复合物是可溶于水的粉末形式,其在溶解后给予或者以其本身直接被给予。
本发明的另一目的是被依照给予所需的形式被包含在不同盖仑制剂形式中的复合物,给予的形式可以是用于肠胃外给予的片剂、胶囊、复合颗粒体系、口服溶液、口服悬浮液、溶液、悬浮液,和植入物,用于吸入的溶液或者粉末,用于局部、经皮的或者阴道用的亲水或者亲脂类型的乳膏和油膏、水性或者水-醇胶体、洗剂,子宫内装置;用于眼使用的溶液、悬浮液、植入物,用于直肠使用的栓剂、悬浮液、喷剂、溶液和泡沫。
本发明还提供了以药物有效量的这种药物制剂在患有该疾病,优选为支气管炎症疾病的患者中治疗该疾病的应用。本发明的复合物优选以局部、经皮、经皮肤、口服或者肠胃外水平给予。
本发明还提供了用于生产药物制剂的方法,优选用于治疗这些疾病,优选支气管炎症疾病,特征在于通过以药物有效量在水中或者缓冲的水性溶液中复合三氧嘧啶和环糊精,所述的水或者缓冲的水性溶液优选地含有额外的辅助物质,缓冲剂,防腐剂,溶剂和/或粘度调节剂。
优选的环糊精是-α-环糊精及其合成的衍生物例如HPαCD,甲基化的αCD,羟基丁基αCD,麦芽糖基αCD,葡萄糖基αCD。
-β-环糊精及其合成的衍生物例如HPβCD,SBEβCD,RMβCD,DIMEβCD,TRIMEβCD,羟基丁基βCD,葡萄糖基βCD,麦芽糖基βCD。
-γ-环糊精及其合成的衍生物例如HPγCD,RMγCD和DIMEγCD,羟基丁基γCD,葡萄糖基γCD,麦芽糖基γCD。
本发明还涉及治疗有效量的药物组合物在制备用于治疗、预防或者防治上述疾病的药物中的应用,所述的药物组合物包括嘧啶-2,4,6-三酮和至少一种环糊精以及,可能地,药用载体。
本发明还涉及治疗有效量的药物组合物在制备产用于治疗、预防或者防治上述疾病的药物中的应用,所述的药物组合物包括a)嘧啶-2,4,6-三酮,b)至少一种环糊精,c)L-赖氨酸或者;L-精氨酸,优选L-赖氨酸,以及d)可能地,药用载体。
发明详述本发明的嘧啶-2,4,6-三酮(三氧嘧啶)是式(I)的那些 其中R1是C3-C20烷基,其可以任选地被-S-,-O-或者-NH-间断一次或者几次;或者,基团W-V,其中W是化学键或者苯基;并且V是苯基,苯氧基,苯硫基,苯基亚磺酰基(phenylsulfinyl),苯基磺酰基或者苯基氨基,其中苯基部分可以是未取代的或者被卤素,羟基,C1-C6烷基,C1-C6烷氧基,C1-C6-烷硫基,C1-C6烷基亚磺酰基,C1-C6-烷基氨基,氰基,硝基或者C1-C6-烷基磺酰基取代一次或者几次;和R2是C1-C10烷基,其中烷基是未取代的或者被羟基或者氨基取代一或者二次,并且可以被-S-,-O-或者-NH-任选地间断一次或者几次;苯甲酰基团,其可以是未取代的或者被卤素,羟基,硝基,C1-C6-烷氧基,C1-C6-烷基氨基,C1-C6-烷硫基,C1-C6-烷基亚磺酰基,C1-C6-烷基磺酰基,酰氨磺酰基,C1-C6-烷基酰氨磺酰基,二-C1-C6-烷基酰氨-磺酰基取代一次或者几次;芳香杂环酰基基团,或者苯基-或者杂芳基基团,其是未取代的或者被卤素,羟基,C1-C6-烷氧基,C1-C6-烷基氨基,C1-C6-二烷基氨基,氰基,C1-C6-烷基,C2-C6链烯基,C2-C6-炔基,C1-C6-酰基,C1-C6-烷硫基,C1-C6-烷基磺酰基,C1-C6-烷基亚磺酰基,C1-C6--烷基氨基羰基,氨基羰基,C1-C6-烷基酰氨基磺酰基,酰氨基磺酰基,二-C1-C6-烷基酰氨基磺酰基,硝基,C1-C6-烷氧基羰基,羧基取代一次或者几次。
本发明的一个目的是式(I)化合物,以及其药用盐,对映异构型,非对映异构型和外消旋物在制备新药物制剂中的应用。
对于本发明中使用的R1,术语C3-C20烷基代表线性的或者支化的饱和烃,其含有3-20个,优选4-12个,更优选8-12个碳原子。实例是丁基,己基,辛基,癸基,2-乙基己基,2-乙基辛基。优选的C3-C20烷基残基是n-辛基和n-癸基。C3-C20烷基基团可以被-S-,-O-或者-NH-,优选被-O-间断一次或者几次。这些C3-C20烷基基团的实例是5-乙氧基-n-戊基,9-甲氧基-n-癸基。
苯基部分的取代基“V”优选位于邻和/或间位。
优选的基团“W-V”是p-丁氧基苯基,联苯基,苯氧基苯基,p-氯-苯氧基苯基,p-溴-苯氧基苯基,3,4二氯-苯氧基苯基。
R2中术语“C1-C10-烷基”代表线性的或者支化的饱和烃,其含有1-10,优选1-6,更优选1-4个碳原子。所述的C1-C10-烷基可以被-S-,-O-或者-NH-,优选地被-O-间断一次或者多次,更优选地,被如此地间断以提供由乙烯氧基片段组成的基团。优选的C1-C10-烷基基团的实例是羟乙基;羟丙基;乙氧基乙基;1,2-二乙氧基乙基;1,2-二-羟基-乙基。
这里使用的术语芳香杂环如R2中的“芳香杂环酰基基团”表示5或者6元的芳香环,其中1,2或者3个环原子是氧,氮或者硫,其余的环原子是碳原子。所述的芳香杂环基团可以与另一苯环融合。这样的芳香杂环酰基基团的实例是呋喃羧基,硫苯羧基,4-咪唑基羧基,3-苯硫苯羧基,吡啶基羧基。优选的实例是呋喃羧基和硫苯羧基。
这里使用的术语“杂芳基”指的是如上定义的芳香杂环。优选的杂芳基基团是缺电子的残基例如含有氮的6元环如吡啶,嘧啶,吡嗪或者1,3,5-三嗪。特别优选的是杂芳基基团嘧啶基和吡嗪基。
在R2的苯基或者杂芳基基团上可以出现的取代基主要是位于适于各自取代反应的任何位置。优选的一个或者两个取代基以邻位和/或间位存在。
在此单独或者与C1-C6-烷氧基,C1-C6-烷基氨基,C1-C6-二烷基氨基,C1-C6-酰基,C1-C6-烷硫基,C1-C6-烷基磺酰基,C1-C6-烷基亚磺酰基C1-C6-烷基氨基羰基,C1-C6-烷基酰氨基磺酰基,二-C1-C6-烷基酰氨基磺酰基或者C1-C6-烷氧基羰基结合使用的术语C1-C6-烷基指线性的或者支化的饱和烃,其含有1-6,优选1-4个碳原子。优选的实例是甲基,乙基,丙基,异丙基,或者叔丁基。
在此使用的术语“C2-C6-链烯基”指的是线性的或者支化的不饱和烃,其含有2-6,优选2-5个碳原子,和一个或者两个双键。如果存在两个双键,它们可以是分离的或者共轭的双键,优选共轭双键。优选的实例是烯丙基或者戊二烯(pentadienyl)。
在此使用的术语“C2-C6-炔基”指的是线性的或者支化的烃,其含有2-6,优选2-4个碳原子。优选的实例是炔丙基。
术语“卤素”表示氟、氯、溴、碘,优选氯或溴。
本发明使用的术语“几次”指的是一次,二次,三次或者4次,优选一或者二次。
本发明使用的术语“药用盐”指的是常规的、保持式(I)化合物生物有效性和性质的酸加合盐或者碱加合盐,其形成自合适的无毒有机或者无机酸或者有机或者无机碱。样品酸加合盐包括那些衍生于无机酸如氢氯酸,氢溴酸,氢碘酸,硫酸,氨基磺酸,磷酸,和硝酸,和那些衍生自有机酸如p-甲苯磺酸,水杨酸,甲烷磺酸,草酸,琥珀酸,柠檬酸,马来酸,乳酸,延胡索酸等等。样品碱加合盐包括那些来自铵,钾,钠和季铵氢氧化物,例如诸如氢氧化四甲基铵。将药物化合物(即药物)化学修饰成盐的方法以获得化合物的改善理化稳定性,吸湿性,流动性和溶解性的技术对药剂师来说是熟知的。(见,例如Ansel,H.,et.al.,Pharmaceutical DosageForms and Drug Delivery Systems,6th ed.,(1995),pp.196 and 1456-1457)。
本发明的化合物可以如EP 0 869 947和WO 01/25217所述的那样制备。
依照本发明,下面的化合物是特别优选的5-联苯-4-基-5-[4-(4-硝基-苯基)-哌嗪-1-基]嘧啶-2,4,6-三酮(化合物I)5-(4-苯氧基-苯基)-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮(化合物II)5-[4-(4-氯-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮(化合物III)5-[4-(3,4-二氯-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮(化合物IV)5-[4-(4-溴-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮(化合物V).
同样明显当三氧嘧啶衍生物(I)含有酸性部分例如羧基基团或者磺酰基基团的时候,衍生物可以与碱经由酸性部分形成盐。
除了上述加合型盐,三氧嘧啶可以采用水合形式或者溶剂化形式。水合物和溶剂化物包括式(I)的自由化合物以及式(I)化合物的盐。其还包括式(I)化合物的互变异构体。
依照本发明的环糊精(CD)是通过酶解淀粉生产的环寡聚糖,其由多为6,7或者8的可变数目的吡喃型葡萄糖单元组成这些环糊精分别叫做α,β,和γ环糊精(αCD,βCD和γCD)。依照本发明的环糊精是环糊精本身或环糊精衍生物,其在25℃下至少以0.5gr/100ml的量溶于水。
本发明优选使用的水溶性环糊精指的是至少具有β-环糊精水溶性的环糊精。这种水溶性环糊精的实例是硫代丁基环糊精,羟基丙基环糊精,麦芽糖基环糊精,及其盐。特别地,硫代丁基-β-环糊精,羟基丙基-β-环糊精,麦芽糖基-β-环糊精,及其盐。
本发明优选的环糊精还是甲基环糊精(环糊精甲基化的产物),二甲基环糊精(DIMEB)(优选地在2和6位取代),三甲基环糊精(优选地在2,3,和位取代),“随机甲基化的”环糊精(优选地随机在2,3,和6位取代,但吡喃型葡萄糖单元具有大量1,7到1,9甲基,RMβCD),羟基丙基环糊精(HPCD,羟基丙基化的环糊精,优选主要随机在位置2和3取代(HP-βCD,HP-γCD)),硫代丁醚环糊精(SBECD),羟基乙基-环糊精,羰基甲基乙基环糊精,乙基环糊精,通过在羟基基团中接枝烃化链获得的、能够形成纳米颗粒的两亲环糊精,通过接枝单氨化的环糊精(具有间隔臂)获得的胆固醇环糊精和甘油三酯环糊精。
本发明的佐剂是L-赖氨酸或者L-精氨酸,优选L-赖氨酸。这些佐剂可以用于通过形成三元复合物增加酸性组分的溶解度。本发明的三氧嘧啶-环糊精复合物可以通过生产含有三氧嘧啶或其盐和水溶性环糊精的水溶液来获得。所使用水溶环糊精的量优选为1mol或者更多,基于1mol/mol三氧嘧啶或其盐,更优选1-10mol,特别优选1-2mol环糊精/mol三氧嘧啶。
水溶性环糊精的浓度越高,三氧嘧啶的溶解度增加得越多。制造所述水溶液的方法没有具体的限制,例如通过使用水或者温度范围大约从-5℃-35℃的缓冲液生产。
当搅动具有过量式I三氧嘧啶的环糊精水溶液的时候,在这两个分子间形成复合物。但是大约需要至少几天才能达到平衡,这样,在几个小时后甚至在一天后也观察不到依照本发明的增加溶解度的三氧嘧啶。过滤该溶液容许在过滤物中以溶液形式回收该复合物,所述的复合物是溶于水的。该复合物也可以通过计算适当比例、通过水溶液中混合溶解的已知量的式I的三氧嘧啶和溶解的已知量的CD获得。
另一种获得复合物的方法是向环糊精水溶液中添加溶剂(如醇、丙酮等)中的式I三氧嘧啶溶液。可以在充分的搅拌后蒸发溶剂,或者甚至在溶剂存在的情况下形成该复合物。
在所有这些获得三氧嘧啶-CD复合物的方法中,L-赖氨酸或者L-精氨酸溶液(氨基酸浓度介于10mM和1000mM,优选介于10mM和500mM,更优选介于10mM和100mM)可以被用作佐剂。L-赖氨酸溶液是优选用作佐剂的。
本发明复合物溶液的冻干或者雾化容许该复合物以固体形式获得。由此可以获得无定形粉末形式的复合物。也可能以这样的方式获得固体状态的该复合物在适当有机溶剂中溶解CD和式I三氧嘧啶后再将溶剂蒸发。
其它方法可以被用来制备固体复合物,它们是在非常少量的水中激烈搅拌式I的三氧嘧啶和CD的悬浮液,随后在干燥或者使用超临界状态CO2以在超临界状态CO2存在时混合式I的三氧嘧啶和CD后收集复合物。
本发明的复合物可以例如以本身已知的方式从溶液中制备,也可以使用糊剂法,对于分子量大约1300的环糊精,环糊精对三氧嘧啶的重量比应该介于2(2∶1)-540(540∶1),优选介于2-25,特别优选在2.6-3.5(对1∶1的环糊精复合)或者5.2-6.2(对1∶2的环糊精复合)。
优选从浓缩的、水性环糊精制剂中制备复合物。制剂的环糊精浓度优选50-400mM。优选100-250mM的环糊精浓度。取决于一致性,混合物被激烈地搅拌或者捏合。环糊精的重量百分比是基于水性环糊精制剂的总重量。
更优选在L-赖氨酸溶液(L-赖氨酸浓度介于10mM和1000mM,优选10mM和500mM,更优选10mM和100mM)存在的情况下,从浓缩的、水性环糊精制剂中制备复合物。制剂的环糊精浓度优选介于50-400mM。优选100-250mM的环糊精浓度。取决于一致性,混合物被激烈地搅拌或者捏合。环糊精的重量百分比是基于水性环糊精制剂的总重量。
反应温度通常介于20℃和80℃之间,优选介于20℃和60℃之间,特别优选介于25℃和45℃之间。反应时间取决于温度,并且至少是一些天。优选的反应时间是至少7天以使复合物形成达到平衡。随后,如果未溶解的材料仍然存在,则过滤反应混合物,如果完全溶解了,则直接使用。如果需要,可以用例如色谱方法分离复合物。优选地,三氧嘧啶和环糊精的浓度和比率要使复合物形成发生完全(达到平衡)并且无可检测到的未溶解或未复合的三氧嘧啶。
依照本发明,已经确立式I三氧嘧啶和环糊精的复合物惊人地增加了三氧嘧啶在水中的溶解度。同样发现,复合物的形成并没有干扰三氧嘧啶的药理学性质。
依照本发明,已经确立式I三氧嘧啶,环糊精,和佐剂如L-赖氨酸或者L-精氨酸的复合物惊人地增加了三氧嘧啶在水中的溶解度。同样发现,复合物的形成并没有干扰三氧嘧啶的药理学性质。
所有这些性质容许制备液体制剂以作为用于注射或者喷雾的溶液,并且容许生物利用度的改善,特别是口服。本发明的三氧嘧啶-环糊精复合物可以被如此应用或者以粉末形式应用,粉末形式是通过去除共存的水获得的。用来移除水的方法包括在减压下冻干和干燥。由冻干获得的粉末产品是特别优选的。
本发明的三氧嘧啶-环糊精化合物通过口服给予或者肠胃外给予表现出了其效果,其优选被形成到用于肠胃外给予的制剂中,特别优选用于注射剂或者局部给予,特别是气溶胶制剂。
本发明复合物的剂量可以依照年龄、体重和患者症状的严重程度适当地调节,并且可以单次或者分多次给予该复合物。制剂形式的实例包括片剂,胶囊,粉剂和粒剂。这些可以通过已知的技术通过使用典型添加剂例如赋形剂,润滑剂和粘合剂生产。
本发明涉及通过将药物有效量的本发明复合物施用于患者,用于在需要该治疗的宿主哺乳动物中治疗支气管炎症疾病如尤其是哮喘和慢性阻塞性肺病(COPD)的方法。哮喘是一种与过敏原暴露相关或者不相关的支气管树炎症疾病。该炎症通过刺激支气管平滑肌收缩、增强黏液分泌和被认为对疾病进程是恶化因素的诱导支气管形态学变化,在患者中引发症状。气道高响应性(Aireway hyperesponsiveness)是该疾病的特征并且是多数症状形成的原因。支气管树是一个具有许多细胞类型(上皮细胞、平滑肌细胞、炎症细胞、神经、黏液产生细胞、成纤维细胞等)的非常复杂的组织,而且包含许多方面的支气管重塑事件主要在于将细胞外基质组分沉积到支气管壁和粘膜产生细胞的过度增生。使用本发明的复合物抑制了炎症细胞流入支气管肺泡灌洗室和支气管周围组织,并且抑制了被定义为对刺激剂如乙酰甲基胆碱异常反应的高反应性。该疾病及当前的治疗被综述在例如GINA Workshop Report,Global Strategy for Asthma Managementand Prevention(NIH Publication No.02-3659)。
本发明因此还涉及一种使用本发明的复合物在需要慢性阻塞性肺病治疗的宿主哺乳动物中治疗或预防该病的方法。在该疾病中,支气管是发炎的并且黏液腺体是增生的并产生大量黏液。支气管壁异常并且异常细胞外基质组分的沉积增加了对气流的阻力。该疾病和当前的治疗被描述在例如Fabbri,L.M.,and Hurd,S.S.,Eur.Respir.J.22(2003)1-2中。
本发明因此还涉及一种使用本发明的复合物在需要肺气肿治疗的宿主哺乳动物中治疗或预防该病的方法。在该疾病中,肺泡壁被蛋白水解过程所破坏并且这一破坏损害了氧气到血液的传递。由于通过引起呼吸肌功能丧失的引起通气系统异常的衍生的膨胀过度并且由于导致心脏在晚期衰竭的肺动脉高血压,也出现了生理学的问题。
依照本发明,三氧嘧啶-环糊精复合物优选经由数月或者数年给予需要该治疗的患者。优选通过液体或者粉剂的气雾化使用将复合物以介于微摩尔和纳摩尔浓度/kg和天之间的无毒性剂量范围进行施与。
本发明复合物的确切剂量会变化,但可容易地确定。通常,复合物的日剂量介于1μmol/kg和天-100nmol/kg和天的范围(复合物中三氧嘧啶的浓度)。
药物组合物是优选具有生理相容性的水性组合物。另外,组合物还优选地包括药用添加剂如缓冲液,防腐剂,和/或辅助物质。合适的缓冲系统是基于磷酸钠,醋酸钠或者硼酸钠。需要防腐剂来防止药物组合物使用中的微生物污染。合适的防腐剂是例如苯扎氯铵,三氯叔丁醇,羟苯甲酯(methylparabene),羟苯丙酯(propylparabene),苯乙醇,山梨酸。这些防腐剂通常以0.01-1%重量/体积的量使用。
合适的辅助物质和药学制剂被描述在Remington的PharmaceuticalSciences,16th ed.,1980,Mack Publishing Co.,edited by Oslo et al.中。通常,在制剂中使用合适量的药用盐从而使制剂等渗。药用物质的实例包括盐水,Ringer′s溶液,和葡萄糖溶液。溶液的pH值优选从大约5-大约8,更有选大约7-大约7.5。
如果L-赖氨酸或者L-精氨酸被用作佐剂用于复合物形成,溶液的pH优选从大约6到大约8.5,更优选从大约7.5到大约8.5。
本发明优选的制剂是可注射的或者可雾化的制剂,其优选制备自1∶500摩尔比的CD和三氧嘧啶。
通过将CD溶于水,加入式I三氧嘧啶,和水浴中加热直到后者完全溶解来制备该复合物。优选地,用过滤来对溶液灭菌。优选地,溶液具有200-400的重量摩尔渗透压浓度,优选为大约300mOs/kg。pH是大约7.2。三氧嘧啶和/或者CD的浓度可以依照需要调节。优选通过加入NaCl调节张力。
优选的用于雾化的制剂含有三氧嘧啶,CD,NaCl和水。特别优选的是下列的组合(对200ml的溶液)三氧嘧啶0.05-0.2g,优选0.1g;10-50g CD,优选20g CD,优选HPβCD;氯化钠1.2-1.5g优选1.42g(等渗性)和水,优选无热原、无菌、纯化的水,加到200ml。
通过将CD溶于100ml纯化的水中,搅拌加入三氧嘧啶和NaCl以使其溶解并用水补足以得到200ml溶液而制备该溶液。优选的溶液被通过0.22μm聚丙烯膜过滤除菌或者通过蒸气灭菌法消毒。
其它优选的制剂是眼用制剂,口用制剂,子宫内装置。也可以考虑与其它系统联系,例如纳米颗粒或者微米颗粒或者脂质体。
以下的实施例,参考文献和图仅提供用于理解本发明,其真正的保护范围在后附的权利要求中提出。应该理解可以在不离开本发明精神的情况下对所提出的步骤进行修饰。
附图描述

图1显示对于RMβCD和HP-β-CD获得的化合物I的溶解度。相溶解度图表都是Ap型,其表示CDs形成化学计量(stoechiometry)1∶1和1∶2的复合物。随后计算稳定性常数,其数值见表6。
图2化合物I和DIMEβCD复合物(上部分)和单独DIMEβCD(下部分)的NMR光谱。
图3化合物I(顶部),DIMEβCD(右手侧)和T-ROESY(中间)的NMR光谱。
图4.腹膜内注射化合物I悬浮液对BAL嗜曙红细胞计数(图2a)和支气管周炎症记分(图2b)的影响。对照是仅暴露于PBS而不是过敏原的小鼠(PBS)以及通过吸入暴露于ova和腹膜内注射安慰剂的小鼠(OVA)。
图5.短期(5天)经气溶胶给予过敏原暴露模型化合物I-HP-β-CD复合物,氟替卡松(fluticasone),和安慰剂(PLAC)对BAL嗜曙红细胞(5a),支气管周炎症记分(5b),和组织嗜曙红细胞浸润记分(5c)的治疗性作用。
图6.长期(11周)经气溶胶给予过敏原保露模型化合物I-HP-β-CD复合物,氟替卡松,和安慰剂(PBS)对BAL嗜曙红细胞(6a),支气管周炎症记分(6b),和组织嗜曙红细胞浸润记分(6c)的治疗性作用。通过PBS吸入对敏化但是未暴露于过敏原的小鼠(PBS)和敏化并且暴露于OVA的小鼠(PLAC)进行处理。
图7.化合物I与HP-β-CD在纯化水(●),L-赖氨酸50mM(x)或L-赖氨酸500mM(▲)中的相溶解度图表。
图8.静脉给予(5mg/kg)绵羊(n=6)后,化合物I血清浓度平均值(±S.D.)(a)或者化合物I血清浓度平均值的对数(b)相对时间的曲线。
图9.口服给予(15mg/kg)绵羊(对溶液n=5,对悬浮液n=6)溶液(▲)和悬浮液(●)后,化合物I血清浓度平均值(±S.D.)(a)或者化合物I血清浓度平均值的对数(b)相对时间的曲线。
缩写CD 环糊精βCDβ-环糊精γCDγ-环糊精DIMEβCD二甲基β-环糊精HPβCD 羟丙基β-环糊精RMβCD 随机甲基化的β-环糊精I.V.静脉内实施例1化合物I与环糊精(CD)可溶性复合物的制备1.1称重20mg的化合物I。加入2ml 200mM HPβCD溶液。在37℃搅动24小时。经Millipore filter Millex HV 0.45μm过滤。过滤后获得的溶液溶液形式的化合物I-CD复合物。
1.2称重2.5mg的化合物I。加入2ml 200mM HPβCD溶液。在37℃搅动24小时或者直到化合物I完全溶解。如此获得的溶液含有化合物I-CD复合物。
实施例2相溶解度研究在复合物形成时,实践上不溶于水的化合物I(<0.6μg/ml,MW485)显著溶解。化合物I溶解度的增加因此是化合物I和CD间形成复合物的证据。发现复合物形成和平衡的实现1天后是20%,4天后是40%,7天后达到100%。通过将过量化合物I加入到增加浓度的CD溶液中得到溶解度图表(图1)。在37℃下的恒温控制浴中激烈搅拌7天后,过滤这些溶液并且用HPLC确定溶解的化合物I的量。βCD和γCD以及其合成的衍生物已经容许具有化合物I的复合物形成。β-CD和HPβCD来自ROQUETTE(法国),RMβCD和γCD已由Wacker(德国)提供。
CD水溶液的制备-βCD溶液含有2,4,8,10,12,16mM。
-HPβCD溶液含有10,25,50,75,100,150,200mM。
-RMβCD溶液含有10,25,50,75,100,150,200mM。
-γCD溶液含有10,25,50,100,75,150mM。
复合物形成含有化合物I和环糊精的烧瓶被放置并在恒温控制浴中在37℃搅动7天,从而达到复合平衡。此后,将悬浮液用0.22μm PVDF毫孔过滤器过滤并且将滤液以流动相溶解在DMSO中以获得浓度样品,其被置于基准线上。随后对其依照有效的HPLC方法如下所述定量。
化合物I的剂量HPLC方法设备Merck-Hitachi model L-7100泵,Merck-Hitachi L-7200采样器,Merck-Hitachi L-7350炉,Merck-Hitachi Diode array detector L-7455检测器,接口D-7000,用Merck-Hitachi提供的″Chromatography Data Station Software″数据获取软件来引导该装置。
固定相填充了辛基硅烷C8 LiChorspher60RP-Select B(5μm)Merck固定相的Lichrocart柱(125×4mmd.i.)。
色谱条件流动相磷酸缓冲液0,05M-pH=3和甲醇(30/70,v/v)的混合物。通过超声途径提取气体15分钟。输出1ml/分钟,U.V.检测的λ265nm,工作温度30℃,注射体积20μl。
每种环糊精的化合物I HPLC剂量的结果列于下表(表1-表4)。
没有环糊精所获得的溶解度是0.56μg/ml。
表1
HPβCD存在时化合物I的溶解度
表2HPβCD存在时化合物I的溶解度
表3RMβCD存在时化合物I的溶解度
表4γCD存在时化合物I的溶解度
化合物I与所有研究的环糊精形成复合物,因为观察到了溶解度的增加。还可以直接观察到化合物I和Rameb之间形成的复合物相当地并且完全出人意料地增大了化合物I的水溶解度。这一观察结果对于HP-β-CD也是一样。表5总结了在最大测试浓度对每种环糊精所得到的溶解度结果。相比于化合物I在水中(没有环糊精)的已被确定为0.56μg/ml的溶解度,计算溶解度的增加。
基于这些结果,依照Higuchi,T.,and Connors,K.A.,Advances inAnalytical Chemistry and Instrumentation 4(1965)117-212构建相溶解度图表。
表5对每种环糊精所获得的化合物I溶解度的最大增加
表6
高的K1∶1值表明,在纯化的水中,β-CD衍生物的空穴很好地容纳包含在包涵物中的化合物I分子部分。从0-4mM的βCD浓度,化合物I的溶解度增加并达到了平稳期,达到8mM的βCD。超过8mM的βCD浓度形成了具有较低溶解度(1.5μg/ml)的1∶2化学计量的额外复合物(Cpd.IβCD)。所得到的相图表因此是AL图表。对于γ-CD,HP-βCD和RMβCD,得到Ap型图表。计算出的346M-1的稳定常数表明CD空穴过大而无法获得充分的相互作用。
当化合物I处于复合物形式或者不是时,其具有不同的溶解度。例如,化合物I在乙腈中显示出良好的溶解度(±700μg/ml),而HP-β-CD与化合物I-CD复合物在此溶剂中是不溶的。在这些条件下,被包含的药物保持被限制并且在该溶剂中变得不溶。游离形式的化合物I或者复合形式的化合物I之间不同溶解度的技术可以被用来评价复合的百分比。
实施例3HPβCD存在时各种三氧嘧啶的溶解度根据实施例1和2研究溶解度。结果见表7。
表7
实施例4L-赖氨酸溶液作为佐剂的相溶解度研究溶解度研究如Higuchi,T.,和Connors,K.A.的Advances in AnalyticalChemistry and Instrumentation 4(1965)117-212所描述的那样进行。将过量的化合物I加入到5ml溶解介质中增加浓度的HP-β-CD(0-200mM)中,所述的介质是纯化的水或者L-赖氨酸溶液(50mM或500mM)。密封玻璃容器并且在25℃水浴中振荡悬浮液直到达到复合平衡(7天)。将等份试样滤过0.45μm的PVDF膜滤器并且通过有效的液相色谱(LC)方法测定化合物I的含量。
图7显示了在25℃于纯化水、50mM L-赖氨酸溶液和500mM L-赖氨酸溶液中HP-β-CD存在的情况下获得的化合物I的相溶解度图表。在这三种情况下,化合物I的水中溶解度作为CD浓度的函数增加。不存在L-赖氨酸时获得的溶解度图表证实了以前提到的结果化合物I在200mMHP-β-CD溶液中的溶解度是大约5.5mg/ml(11mM),这相应于化合物I水中溶解度的大约10,000倍的增加。
在L-赖氨酸存在时,化合物I在HP-β-CD溶液中的溶解度甚至更高。200mM HP-β-CD溶液的溶解度在存在50mM和500mM L-赖氨酸的时候分别增加了约2和7倍。表8显示了化合物I在不同介质中的溶解度数据。结果显示了L-赖氨酸和HP-β-CD间的协同效应。在500mM L-赖氨酸和200mM HP-β-CD(38.14mg/ml)存在时的溶解度高于通过分别加入HP-β-CD和L-赖氨酸(5.53mg/ml和0.09mg/ml)所预计的值。这种L-赖氨酸和HP-β-CD之间的协同效应容许化合物I水中溶解度重要的增加。(70,000-倍,对于500mM L-赖氨酸和200mM HP-β-CD)。
表8有或者没有HP-β-CD(200mM)的纯化水和L-赖氨酸(50mM和500mM)中化合物I[mg/ml]的溶解度
实施例5NMR研究DIME-β-CD溶液在D2O中以10mM的浓度制备。由于化合物I的水溶解度太低,无法在D2O中测出单独化合物I的光谱。对于质子的测定,化合物I的NMR谱在DMSO中操作。所有的对质子的NMR实验都在Bruker DRX500分光计中在500MHz操作。温度设定在298K。通过将溶剂的残基共振用作HDO的第二参考来实现校准。对于T-ROESY实验,使用300msec的混和时间。所有操作均使用Bruker的WINNMR程序在Silicon Graphics INDY数据站进行。单独化合物I NMR谱与存在过量DIMEβCD之间的比较容许注意到相应于H-3和H-5质子的信号被上移到高磁场(shifted up feild)。这一移动(shift)组成了包含体的证据。T-ROESY谱分析表明化合物I被包含在CD空穴中。分子的两个不同部分可适应于CD空穴。
实施例6分子模拟研究使用Cambridge Data Base的β-CD的POBRON晶体结构,用Gaussian94进行分子模拟计算。计算化合物I的两种极端空间构象。所得到的结果显示所述的包含体在能量上是可行的而且非常稳定。该稳定性可以通过氢键形成来解释,所述的氢键形成在位于CD外的醇和巴比妥核(barbituric nucleus)的氮的质子和氧间。本发明的结构预料到了包括化合物I和环糊精(优选βCD,γCD及其合成衍生物)的复合形式或者相联系形式的所有药物组合物,无论是它们的形式还是它们的治疗应用。事实上,即使在制剂中化合物I和CDs不是复合形式,该形式也易于在原位形成。
实施例7药物组合物例如,非详尽性地例举不同的制剂的组合物。
可注射制剂的优选实例是-HP-βCD 200mM;化合物I 1mg/ml;适量注射用无菌水。
对于25ml的溶液a)溶液制备称重6.77g的HPβCD(4.2%H2O)并通过注射将其溶解到25ml水中。加入25mg化合物I并在水浴中加热直到后者完全溶解。通过过滤灭菌溶液。
b)溶液特性溶液的重量摩尔渗透压浓度是308mOs/kg。pH是7.2。
化合物I和/或CD的浓度可以依照需要修改。优选通过加入NaCl调节等渗性。
优选的雾化制剂是对于200ml溶液-化合物I 0.1g(MW485)
-没有热原的(pyrogenic)HPβCD 20.15g(MW1,300)-氯化钠 1.42g(等渗性)-无热源,无菌,纯化的水,适量,加至200mla)称重20.15g的没有热原的HPβCD(3.2%H2O,ROQUETTE)并将其溶解到100ml纯化的水中。
b)称重0.1g的化合物I,和1.42g的氯化钠,并将其通过积极搅动加入到溶液中以使其溶解。
c)补足水以获得200ml的溶液。
d)通过0.22μm的聚丙烯膜过滤除菌。
实施例8对生物利用度的药物动力学研究开发具有HP-β-CD和L-赖氨酸组合的用于药物动力学研究的溶液,其容许具有生物相容pH值的高化合物I浓度。
剂型制剂通过将化合物I(10mg/ml)溶解在含有HP-β-CD(200mM),L-赖氨酸(20mM)和注射用水的溶液中获得化合物I/HP-β-CD静脉内溶液。该溶液的重量摩尔渗透压浓度(大约325mOsmol/kg)和pH值(大约8.2)与静脉内注射是相容的。将该溶液通过0.20μm无菌醋酸纤维素滤器在无菌条件下消毒。
通过将化合物I(15mg/ml)溶解到含有HP-β-CD(200mM),L-赖氨酸(50mM)和水的溶液中制备化合物I/HP-β-CD口服溶液。
化合物I悬浮液由化合物I(15mg/ml),作为湿润剂的聚山梨酯80(0.1mg/ml),作为稠化剂的硅镁铝(VEEGUM HV,1%m/v)和甲基纤维素(METHOCEL A400,0.4%m/v)组成。
动物试验方案和药物给予6只健康的绵羊(2雄和4雌)被用作实验动物,其体重范围为45-82kg。在测试中,这些动物随意进食和进水。
按照下表9方案而实现的该试验研究,包括随机双向交叉(two-waycross-over)设计以用于口服给予,而后通过静脉给予。每次给予之间,容许3周的清除期。
表9用于给予含有化合物I的溶液和悬浮液的动物试验设计
对于口服剂型,每个动物从两种制剂中接受等于15mg/kg体重的化合物I剂量。为了适应剂型体积,将这些绵羊在药物给予的那天称重。经口给予前和0.25,0.5,1,1.5,2,3,4,6,8,10,12,24,28,32,48,72,96,120,144,168小时后从颈静脉抽取血样。
对于静脉内剂型,所有6只绵羊均接受5mg化合物I/kg体重。将溶液通过左颈静脉给予,并且在开始静脉给予前和5,10,15,20,30,45分钟,1,1.5,2,3,4,6,8,10,12,24,28,32,48,72,96,120,144,168小时后从右颈静脉抽取血样。
将所有血样离心并且将血清储存在-80℃下直到测试。
生物分析方法开发了全自动的方法来在血清中LC确定该化合物。通过在线将填充了限制存取材料(restricted access material,RAM)即LiChrospher RP-8ADS(alkyl diol silica)的前置柱与分析柱通过柱转换技术偶联来净化样品。ADS吸附剂属于内表面反相支柱的组,并且其已经被成功用于在LC分析前净化生物样品(Yu,Z.,and Westerlund,D.,Chromatographia44(1997)589-594;Hubert,Ph.,et al.,S.T.P.Pharma Pratiques 9(1999)160-180;Souverain,S.,et al.,Journal of Chromatography B 801(2004)141-156)。操作条件描述在先前的文章中(Chiap,P.,et al.,Journal ofChromatography B 817(2005),109-117)。根据基于考虑到全部测量误差的准确测量的新方法,该方法被证明是完全有效的(Hubert,P.,et al.,Analytica Chimica Acta 391(1999)135-148;Hubert,Ph.,et al.,S.T.P.Pharma Pratiques 13(2003)27-64;Hubert,Ph.,et al.,J Pharm Biomed.Anal.36(2004)579-586。
对于生物分析研究,因为要被确定的高浓度,所述方法的剂量范围必须增加到50μg/ml。进行部分重新生效测定,反应功能、真实度、精确度、准确度和线性度均得到了良好的结果。
药物动力学和统计学分析对于静脉内给予研究,对每个动物使用具有一级分布和消除的线性两室模型确定药物动力学参数(Boroujerdi,M.,Pharmacokinetics,Principlesand Applications.McGrow-Hill Companies,USA,2002)。在取样时期,用线性梯形法则计算曲线值下的区域(AUCs0-168)。使用与化区分析相关的常规方程式计算外推的AUC到无限值(AUCs0-∞),全身清除值(Clt),生物半衰期(T1/2β)期,和分布的总体积(Vdt)(Boroujerdi,M.,Pharmacokinetics,Principles and Applications,McGrow-Hill Companies,USA,2002)。
对于口服给予研究,使用具有一级输入和一级输出的线性一室模型对每个动物和对悬浮液和溶液确定药物动力学参数。(Boroujerdi,M.,Pharmacokinetics,Principles and Applications.McGrow-Hill Companies,USA,2002)。如上所述通过梯形求和计算AUCs0-168。AUCs0-∞用下面的方程式估算(方程式1)AUC0-∞=C0(1K-1ka)]]>方程式1其中K和ka分别是总消除率常数和吸收率常数,C0是从起点外推的浓度。
用两种不同的方法确定每只动物血浆中药物的最大浓度(Cmax)和相应的时间(Tmax)直接从浓度-时间表(C最大实验的和T最大实验的),和使用下列方程式(方程式2和3)计算(C最大计算的和T最大计算的)Cmaxcalculated=C0(e-KTmax-e-kaTmax)]]>方程式2Tmaxcalculated=2.303ka-KlogkaK]]>方程式3绝对生物利用度(Fabsol)使用下面的关系估算(方程式4)Fabsol=AUCoral.DIVAUCIV.Doral]]>方程式4其中Doral和DI.V.分别是经口和I.V.给予药量。
除了计算自平均AUC0-∞的绝对生物利用度,所有的药物动力学参数被报道为平均值±标准偏差。
当单独的AUC值比平均值±2标准偏差高或者低的时候,数据被认为是异常的。基于此,在口服溶液给予后,一只绵羊被排除出药物动力学参数确定和统计学分析。
使用方差双向分析(双向ANOVA)来比较两个口服剂型的药物动力学参数。对数转化以将分布标准化后,比较每个算出的参数的平均值。在5%的临界水平,结果被认为是显著的(p<0.05)。
静脉内给予后化合物I的药物动力学单次给予绵羊静脉溶液(5mg/kg)后获得的平均化合物I血清浓度相对时间曲线被报道在图9a。图9b中(平均化合物I血清浓度相对时间曲线的对数),其显示化合物I的药物动力学遵循两室模型。在该静脉内给予后计算的不同药物动力学参数列于表10。
表10静脉内(5mg/kg)给予绵羊(n=6)后获得的化合物I药物动力学参数(平均值±S.D.)
分布期是短的(大约30分钟),表明化合物I快速分布在有机体中。总分布体积是小的(大约8升),表明化合物I分布将被限制到细胞外流体中并且化合物I扩散到组织将不是非常重要的。另一方面,化合物I的生物半衰期是长的(大约15.5小时),因此,药物清除非常慢。考虑到其小的分布体积,有机体内的累积将不会是通过如脂肪中存储引起的,而可能是通过强力结合血浆中的蛋白或者其它组分所致。全身清除值也被算出,大约是358.5ml/h。
口服悬浮液和溶液后后化合物I的药物动力学口服单一剂量化合物I(15mg/kg)溶液和悬浮液后获得的化合物I的平均血清浓度相对时间分布见图10a。在对数转化平均血清浓度后,看起来口服给予后的药物动力学将遵循一室模型(图10b)。药物动力学参数总结在表11中。
表11口服给予(15mg/kg)绵羊后获得的化合物I药物动力学参数(平均值±S.D.,除了F)
给予溶液后化合物I的血清浓度明显高于用等剂量悬浮液给予获得的那些。对溶液所观察到的吸收期(大约4小时)要比给予悬浮液后所达到的吸收期(大约10小时)短。还可以看到溶液和悬浮液的药物动力学有显著差别(p<0.05)(表11)。分别给予溶液和悬浮液后,平均化合物I血清峰浓度是大约54和5μg/ml。溶液的Cmax是大约比悬浮液的高10倍。用溶液(大约3.8h)获得了比用悬浮液(大约11h)早3倍的Tmax。AUC值遵循相同的趋势,Cmax值也是给予溶液后的AUC是大约10倍高于给予悬浮液后的AUC。因此,在与I.V.溶液比较后,溶液的绝对生物利用度(80%)要比悬浮液(8%)高得多。
实施例9体内实验(抑制血管生成)为了研究化合物I-环糊精复合物的可能作用,使用新血管生成(neovascularisation)模型。切除主动脉环并置于培养基中。该培养基含有以下任一种-没有活性成分-化合物I-环糊精复合物(终浓度10-6M,10-7M)-在DMSO的辅助下溶解在DMSO中的化合物I(终浓度10-6,10-7M)在没有基质金属蛋白酶抑制剂化合物I的时候,观察到新血管形成(血管生成)。在化合物I单独存在、溶于DMSO、或者以在环糊精中包涵复合物形式存在的时候,血管生成被显著抑制。
实施例10含有化合物I和HPβCD的制剂在哮喘小鼠模型中用于治疗过敏原诱导的气道炎症和支气管超响应性的应用材料HP-β-CD(取代度=0.64)源自Roquette(法国)。无热原的磷酸缓冲液(PBS)购自Bio-Wittaker(Verviers,Belgium),乙酰甲基胆碱购自Sigma-Aldrich(Germany)。所有其它材料都是分析级的。注射用无菌水在该研究中贯穿使用。无菌的、无热原的和等渗的CD溶液被制备成20,50和75mM。用于吸入的可商购的氟替卡松溶液(Flixotide1mg/ml)购自Glaxo-Smithkline(Genval,Belgium)。
敏化,过敏原暴露和治疗方案为了研究腹膜内注射化合物I对气道炎症的调节,在第0和7天腹膜内注射10μg的吸附了alumin的卵清蛋白(ovalbumin alumin-adsorbed)(aluminject,perbio,Erembodegem,Belgium)将小鼠敏化,随后从21-24天,将其暴露于1%卵清蛋白(OVA)或者PBS气溶胶30分钟。腹膜内注射在OVA吸入前30分钟进行。不同的注射制剂是cremophor 10%-DMSO 10%-PBS 80%-化合物I 30mg/kg(悬浮液);cremophor 10%-DMSO10%-PBS 80%-化合物I 3.75mg/kg(溶液);HPβCD 200mM化合物I7.5mg/kg(溶液);HPβCD 200mM。所有的结果都与被OVA敏化并暴露于PBS和腹膜内注射PBS处理的OVA的小鼠进行比较。为了研究吸入化合物I对气道炎症的调节,将小鼠按照前述敏化。使用被称为短暴露激发和长期暴露激发的两种方法。在短暴露激发中,在Plexilgas暴露室(30×20×15cm)中从21-27天将小鼠暴露于以下浓度的化合物I-复合物的气溶胶水溶液中0.03和0.3mg/ml的活性化合物。化合物I吸入后,从23-27天将小鼠暴露于OVA气溶胶中30分钟。在所谓的长期吸入激发中,将小鼠暴露于复合了水溶液中HPβCD的浓度为0.03和0.3mg/ml的化合物I的气溶胶中30分钟,奇数周5天,暴露于OVA气溶胶奇数周3天,持续11周。偶数周不进行吸入。
通过使用ultrasonic nebuliser SYSTAM(Système Assistance Medical,LeLedat,France)生产气溶胶,其振荡率频率是2.4MHz,具有可变的振动强度和通风水平。将振荡强度固定在位置6并且通风水平是25(V1/2)l/min。
气道响应性测量最后的过敏原暴露后24小时,如Hamelmann,E.,等,Am.J Respir.Crit.Care Med.156(1997)766-775)提出的那样使用气压计体积变动记录仪(barometric plethysmograph)测量Penh来确定支气管超响应性。在基线以及吸入增加剂量(25,50,75和100mM)的乙酰甲基胆碱(Mch)后5分钟测量Penh。
支气管肺泡灌洗(BAL)和组织学在评价气道响应性后即刻处死小鼠,1ml无离子化钙和镁但补充了0.05mM钠EDTA的PBS被经由气管套管滴入4次并通过轻柔的手工抽气回收。将回收的支气管肺泡灌洗流体(BAL)离心(4℃1800rpm 10分钟)。将细胞沉淀清洗两次并最终重悬于1ml PBS中。在Thoma室中进行总细胞计数,并且在用Diff-Quick(Dade,Germany)染色后,使用标准的形态学标准在细胞离心的制剂(Cytospin 2;Cytospin,Shandon td.,Runcorn,Cheshire,U.K.)上对至少400细胞进行不同的细胞计数。BAL后,将胸廓打开并将左主支气管夹住。将左肺切除并立刻冷冻在液氮中用于蛋白质化学和mRNA提取,而将右肺用于组织学。如前所述(Cataldo,D.D.,et al,Am.J.Pathol.161(2002)491-498),用4%多聚甲醛灌注右肺并包埋于石蜡。将来自所有肺叶的5μm厚度的切片用苏木精和曙红染色。用炎症记分来估计支气管周浸润的程度。将切片编码并且以盲法的方式使用其它处描述的可重现的评分系统(Cataldo,D.D.,et al,Am.J.Pathol.161(2002)491-498)对支气管周炎症进行打分。将从0到3的每个标准的值赋予每个评分的组织部分。当没有可以检测到炎症的时候,给予0的值;偶尔出现炎症细胞的用1的值;当多数支气管被一薄层(1-5个细胞)炎症细胞环绕的时候用2的值;当多数支气管被一厚层(大于5个细胞)炎症细胞环绕的时候用3的值。由于每只小鼠有5-7个随机选择的组织切片被记分,炎症记分可以被表达成平均值/动物,而且可以被组间比较。另一个记分被称为组织嗜曙红细胞浸润记分,其特别地反映了嗜曙红细胞浸润支气管壁的量,其被测定如下刚果红染色后,对每个小鼠的7个支气管进行研究。在支气管周围气道壁的限度内计数嗜曙红细胞,测量上皮基膜的周长并将结果表达为嗜曙红细胞/mm基膜的数量。将左肺快速冷冻在液氮中并用Mikro-Dismembrator S(BraunBiotech International,Melsungen,Germany)碾压,研究前将提取物储存在-80℃。将肾脏切除并用石蜡包埋,用苏木精和曙红染色5μm的切片。通过心脏穿刺对血液取样并且将血清储存在-80℃直到进行分析。
所有的体内操作均通过地方兽医道德委员会的批准。
化合物I的腹膜内注射与安慰剂相比(图aa),剂量为3.75-30mg/kg的化合物I(溶液或者沉淀)的腹膜内注射在BAL中降低了过敏原诱导的气道嗜曙红细胞炎症。在相同的剂量,化合物I同样显著降低了支气管周炎症记分,所有测试的制剂具有相同的效力(图4b)。组织嗜曙红细胞浸润记分被剂量为7.5和25mg/kg的化合物I腹膜内注射显著地降低了。
对化合物I和化合物I-HPβCD复合物的吸入暴露通过在短期暴露中使用纯DMSO中40mg/ml化合物I溶液,化合物I的内在活性首先被评价为局部活性的抗炎制剂。当与单独DMSO吸入比较的时候,该制剂的吸入导致BAL嗜曙红细胞(p<0.005),支气管周炎症记分(p<0.01),以及支气管超响应性(p<0.05)的显著减少。
在短期暴露方案中,我们评价了含有HP-β-CD化合物I复合物的制剂对气道炎症和超响应性的作用。将含有HP-β-CD化合物I复合物的制剂的吸入效果与作为参照治疗的安慰剂(PBS)或者氟替卡松(1mg/ml)的效果比较。当与安慰剂比较时,以0.03和0.3mg/ml的剂量吸入那些含有化合物I的制剂在BAL中诱导嗜曙红细胞炎症的显著降低,其程度相当于氟替卡松(p<0.0001)(图aa)。当与安慰剂比较时,支气管周炎症记分也降低(p<0.0001)(图5b),组织嗜曙红细胞浸润记分也一样(p<0.01)(图5c)。
长期过敏原暴露后,BAL嗜曙红细胞在被含有HP-β-CD化合物I复合物的制剂吸入处理后显著降低(p<0.001),其程度相当于氟替卡松(图6a)。支气管周围炎症记分同样被吸入含有HP-β-CD化合物I复合物的制剂所显著降低,氟替卡松也一样(p<0.0001)(图6b)。在被化合物I吸入处理后,组织嗜曙红细胞浸润记分也被降低,其程度相当于氟替卡松处理的小鼠(p<0.01)(图6c)。
参考文献表Bergers,G.,et al.,Nat.Cell Biol.2(2000)737-744Boroujerdi,M.,Pharmacokinetics,Principles and Applications.McGrow-HillCompanies,USA,2002Carmeliet,P.,et al.,Nat.Genet.17(1997)439-444Carstanjen,D.,et al.,Transfusion 42(2002)588-596Cataldo,D.D.,et al.,Am.J.Pathol.161(2002)491-498Chang,C.,and Werb,D.,Trends Cell Biol.11(2001)S37-43Chiap,P.,et al.,Journal of Chromatography B 817(2005),109-117Dong,Z.,et al.,Cell 88(1997)801-810Egeblad,M.,and Werb,Z.,Nat.ReV.Cancer 2(2002)161-174EP 0 869 947Fabbri,L.M.,and Hurd,S.S.,Eur.Respir.J.22(2003)1-2GINA Workshop Report,Global Strategy for Asthma Management andPrevention(NIH Publication No.02-3659)Grams,F.,et al.,Biol.Chem.382(2001)1277-1285Hamelmann,E.,et al.,Am.J Respir.Crit.Care Med.156(1997)766-775Higuchi,T.,and Connors,K.A.,Advances in Analytical Chemistry andInstrumentation 4(1965)117-212Holmbeck,K.,et al.,Cell 99(1999)81-92Hubert,P.,et al.,Analytica Chimica Acta 391(1999)135-148
Hubert,Ph.,et al.,J.Pharm.Biomed.Anal.36(2004)579-586Hubert,Ph.,et al.,S.T.P.Pharma Pratiques 9(1999)160-180Hubert,Ph.,et al.,S.T.P.Pharma Pratiques 13(2003)27-64Lund,L.R.,et al.,EMBO J.18(1999)4645-4656Manes,S.,et al.,J.Biol.Chem.274(1999)6935-6945Overall,C.M.,and Lopez-Otin,C.,Nat.Rev.Cancer 2(2002)657-672Remington′s Pharmaceutical Sciences,16th ed.,1980,Mack PublishingCo.,edited by Oslo et al.
Shapiro,S.D.,Curr.Opin.Cell Biol.10(1998)602-608Souverain,S.,et al.,Journal of Chromatography B 801(2004)141-156US 6,110,924US 6,242,455Vu,T.H.,et al.,Cell 93(1998)411-422WO 01/25217WO 97/23465WO 98/58915Yu,Z.,and Westerlund,D.,Chromatographia 44(1997)589-59权利要求
1.由三氧嘧啶衍生物或其盐和水溶性环糊精形成的三氧嘧啶-环糊精复合物,其中的三氧嘧啶衍生物由式(I)表示 其中R1是C3-C20烷基,其可以任选地被-S-,-O-或者-NH-间断一次或者几次;或者基团W-V,其中W是化学键或者苯基;并且V是苯基,苯氧基,苯硫基,苯基亚磺酰基,苯基磺酰基或者苯基氨基,其中苯基部分可以是未取代的或者被卤素,羟基,C1-C6烷基,C1-C6烷氧基,C1-C6-烷硫基,C1-C6烷基亚磺酰基,C1-C6-烷基氨基,氰基,硝基或者C1-C6-烷基磺酰基取代一次或者几次;和R2是C1-C10烷基,其中烷基是未取代的或者被羟基或者氨基取代一或者二次,并且可以被-S-,-O-或者-NH-任选地间断一次或者几次;苯甲酰基团,其可以是未取代的或者被卤素,羟基,硝基,C1-C6-烷氧基,C1-C6-烷基氨基,C1-C6-烷硫基,C1-C6-烷基亚磺酰基,C1-C6-烷基磺酰基,酰氨磺酰基,C1-C6-烷基酰氨磺酰基,二-C1-C6-烷基酰氨-磺酰基取代一次或者几次;芳香杂环酰基基团,或者苯基-或者杂芳基基团,其是未取代的或者被卤素,羟基,C1-C6-烷氧基,C1-C6-烷基氨基,C1-C6-二烷基氨基,氰基,C1-C6-烷基,C2-C6链烯基,C2-C6-炔基,C1-C6-酰基,C1-C6-烷硫基,C1-C6-烷基磺酰基,C1-C6-烷基亚磺酰基,C1-C6--烷基氨基羰基,氨基羰基,C1-C6-烷基酰氨基磺酰基,酰氨基磺酰基,二-C1-C6-烷基酰氨基磺酰基,硝基,C1-C6-烷氧基羰基,羧基取代一次或者几次。
2.权利要求1的三氧嘧啶-环糊精复合物,其中L-赖氨酸或者L-精氨酸被添加为佐剂。
3.权利要求1-2中任何一项的三氧嘧啶-环糊精复合物,其中的三氧嘧啶衍生物是5-联苯-4-基-5-[4-(4-硝基-苯基)-哌嗪-1-基]嘧啶-2,4,6-三酮5-(4-苯氧基-苯基)-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮5-[4-(4-氯-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮5-[4-(3,4-二氯-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮5-[4-(4-溴-苯氧基)-苯基]-5-(4-嘧啶-2-基-哌嗪-1-基)-嘧啶-2,4,6-三酮或其盐。
4.权利要求1-3中任何一项的三氧嘧啶-环糊精复合物,其中的水溶性环糊精是β-环糊精。
5.权利要求1-3中任何一项的三氧嘧啶-环糊精复合物,其中的水溶性环糊精是羟丙基化的环糊精。
6.权利要求1-3中任何一项的三氧嘧啶-环糊精复合物,其中的水溶性环糊精是随机甲基化的环糊精。
7.权利要求1-3中任何一项的三氧嘧啶-环糊精复合物,其中的水溶性环糊精是硫代丁基-β-环糊精。
8.权利要求1-3中任何一项的三氧嘧啶-环糊精复合物,其中的水溶性环糊精是γ-环糊精。
9一种药物制剂,其含有权利要求1-8中任何一项中定义的三氧嘧啶-环糊精复合物。
10.权利要求9的药物制剂,其含有药用添加剂。
全文摘要
由三氧嘧啶衍生物或其盐和水溶性环糊精衍生物形成的三氧嘧啶-环糊精复合物具有增强的溶解度。
文档编号A61K47/18GK1950110SQ200580010831
公开日2007年4月18日 申请日期2005年3月31日 优先权日2004年4月1日
发明者P·巴尔奇, D·卡塔尔多, R·恩德勒, B·埃夫拉尔, J-M·福伊达特, H-W·克雷尔, G·齐默尔曼 申请人:霍夫曼-拉罗奇有限公司, 列日大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1