作用改善的新lh-rh拮抗剂的制作方法

文档序号:1059095阅读:472来源:国知局
专利名称:作用改善的新lh-rh拮抗剂的制作方法
技术领域
本发明涉及新的LH-RH拮抗剂,尤其是拟肽和侧链经过改变的肽,它们与可药用酸的加成盐和制备这些LH-RH拮抗剂及其盐的方法。本发明肽是黄体激素释放激素(LH-RH)的类似物,它具有下列结构p-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2,〔LH-RH,促性腺激素释放因子〕20多年来,科学研究者们探索具有选择性效能的LH-RH十肽拮抗剂〔M.Karten和J.E.Rivier,Endocrine Reviews 7,44-66(1986)〕。该拮抗剂最令人感兴趣的是它们在内分泌学、妇科学、避孕和癌症等领域的应用。已制备了大量用作有效LH-RH拮抗剂的化合物。到目前为止最令人感兴趣的化合物是那些具有经过改变的LH-RH结构的化合物。
通过在1,2,3和6或2,3和6位引入芳族氨基酸酯得到第一系列化合物。描述该化合物的常规方法如下首先,指出代替原有氨基酸、进入LH-RH肽链中的氨基酸,通过上标数字来标记发生取代的位置。而且,用放在后边的“LH-RH”来表示它们是发生了取代的LH-RH类似物。
已知的拮抗剂为〔Ac-D-Phe(4-Cl)1,2,D-Trp3,6〕LH-RH(D,H.Coy等在Gross,E.和Meienhofer,J.(编)Peptide;Proceedings of the 6th AmericanPeptide Symposium,pp.775-779,Pierce Chem.Co.,Rockville III.(1979){Ac-Pro1,D-Phe(4-Cl)2,D-Nal(2)3,6}LH-RH(美国专利号4,419,347)和〔Ac-Pro1,D-Phe(4-Cl)2,D-Trp3,6〕LH-RH(J.L.Pineda等在J.Clin.Endocrinol.Metab.56,420,1983)。
为了提高拮抗剂的水溶性,例如在6-位引入碱性氨基酸如D-Arg。例如〔Ac-D-Phe(4-Cl)1,2,D-Trp3,D-Arg6,D-Ala10〕LH-RH(ORG-30276)(D.H.Coy等,Emdocrinology 100,1445,1982);和〔Ac-D-Nal(2)1,D-Phe(4-F)2,D-Trp3,D-Arg6〕LH-RH(ORF-18260)(J.E.Rivier等在Vickery B.H.Nestor,Jr.J.J.,Hafez,E.S.E.(编).LHRH及其类似物,pp.11-22 MTP Press,Lancaster.UK 1984)。
该类似物不仅具有预期的改善的水溶性,而且表现出改善的拮抗剂活性。然而,当将它们以1.25或1.5mg/kg的剂量皮下给予大鼠时,这些非常有效的、在6-位含D-Arg6和其它碱性侧链的亲水性类似物引起面部和肢体的暂时性水肿(F.Schmidt等,Contraception 29,283,1984J.E.Morgan等,Int.Archs.Allergy Appl.Immun.80,70(1986))。更有效的LH-RH拮抗剂在WO 92/19651,WO 94/19370,WO 92/17025,WO 94/14841,WO 94/13313,US-A 5,300,492,US-A5,140,009和EP 0 413 209 A1中有描述。
给予大鼠某些该种拮抗剂后引起水肿作用发生使得人们对其用于人类的安全性产生怀疑,并因此延迟了将这些药物应用于临床。因此,非常需要无副作用的拮抗剂肽。
通过通式(I)化合物及其与可药用酸的盐实现了本发明上述目的
其中,n为数字3或4,R1为未取代的或取代的烷基、烷氧基、芳基、杂芳基、芳烷基、杂芳烷基、芳烷氧基或杂芳烷氧基,R2和R3彼此独立地为氢原子,未取代的或取代的烷基、芳烷基或杂芳烷基,或者-NR2R3为氨基酸残基,并且R4为具有下式(II)结构的基团
其中,p为1-4的整数,R5为氢或烷基并且R6为未取代的或取代的芳基或杂芳基,经过取代后构成芳基或杂芳基也是可能的,或者R4为通式(III)的环
其中,q为数字1或2,R7为氢原子或烷基,R8为氢原子或烷基并且X为氧或硫原子,其中,芳族基团或杂芳族基团可以是部分或全部氢化的,并且手性碳原子可具有R-或S-构型。
优选的R1至R4的组合为a)、R1为苄氧基,R2为氢并且R3为氢,b)、R1为苄氧基,R2为氢并且R4为脒基苯基,和c)、R2为氢,R3为氢并且R4为4-脒基苯基。
优选的烷基为甲基,乙基,正丙基,异丙基,正丁基,异丁基,叔丁基,2-乙基己基,十二烷基和十六烷基。
优选的芳基为苯基,萘基,菲剂,芴基。
优选的杂芳基为吡啶基,嘧啶基,咪唑基,咪唑并吡啶基,吲哚基,吲唑基,三唑基,四唑基,苯并咪唑基,喹啉基,2,5-二氯吡啶-3-基和呋喃基。
优选的氢化杂芳基为哌啶子基,哌嗪基,吗啉代基和吡咯烷基。
芳烷基和杂芳烷基为通过亚烷基,优选亚甲基、亚乙基、正亚丙基或正亚丁基连接到相应的连接位点的那些基团。
优选的取代基为卤原子如氟、氯、溴和碘,和甲基、乙基、异丙基、叔丁基、氰基、硝基、羧酸、羧酰胺、羧酸甲酯、羧酸乙酯、丁烯酸乙酯、三氟甲基、苯甲酰基、甲氧基、苄氧基、吡啶氧基、氨基、二甲基氨基、异丙基氨基、脒基和喹啉基甲氧基。
而且,按照本发明,通式(V)化合物Ac-D-Nal(2)1-D(pCl)Phe2-D-Pal(3)3-Ser4-Tyr5-D-Xxx6-Leu7-Arg8-Pro9-D-Ala10-NH2(V)
其中D-Xxx为通式(VI)氨基酸残基
并且n,p,q,R4,R5,R6,R7,R8和X如上定义,及其与可药用酸的盐也可以实现上述目的。
本发明化合物具有高效拮抗性并且没有不利的副作用,尤其无水肿作用。另外,如果它们不以水溶性差的可药用酸的盐形式存在,那么将具有改善的水溶性。而且,该化合物对人LH-RH受体具有高度亲和力,即在抑制促性腺激素从哺乳动物、包括人的垂体释放方面是高度有效的,表现出对大鼠睾酮的长期抑制作用,并且在体外引起最小的组胺释放。
优选的通式(I)化合物为α-N-Z-〔ε-N’-4-(4-脒基苯基)氨基-1,4-二氧代丁基〕赖氨酰胺和α-N-Z-〔ε-N’-(咪唑烷-2-酮-4-基)甲酰基〕赖氨酰胺。优选的式(V)肽为那些其中Xxx为〔ε-N’-4-(4-脒基苯基)氨基-1,4-二氧代丁基〕赖氨酰基或〔ε-N’-(咪唑烷-2-酮-4-基)甲酰基〕赖氨酰基的肽。优选地,与可药用酸的盐为在水中难溶的,特别优选的盐为那些与4,4’-亚甲基-二(3-羟基-2-萘甲酸)的盐,所述酸也称作双羟萘酸。
用于定义肽的命名法与由IUPAC-IUB生物化学命名委员会(Commission on Biochemical Nomenclature)(欧洲 生物化学杂志1984,138,9-37)所描述的命名法是一致的,在该命名法中,与常规的表示方法相同,即,N端的氨基出现在左边而C端的羧基出现在右边。本发明LH-RH拮抗剂如肽和拟肽包括天然存在的氨基酸和合成氨基酸,前者包括Ala,Val,Leu,Ile,Ser,Thr,Lys,Arg,Asp,Asn,Glu,Gln,Cys,Met,Phe,Tyr,Pro,Trp和His。各氨基酸基的缩写基于氨基酸的俗名,Ala为丙氨酸,Arg为精氨酸,Gly为甘氨酸,Leu为亮氨酸,Lys为赖氨酸,Pal(3)为3-(3-吡啶基)丙氨酸,Nal(2)为3-(2-萘基)丙氨酸,Phe为苯丙氨酸,(pcl)Phe为4-氯苯丙氨酸,Pro为脯氨酸,Ser为丝氨酸,Thr为苏氨酸,Trp为色氨酸,Tyr为酪氨酸。如果不另外说明,本文所描述的所有的氨基酸都来源于L-系列。例如,D-Nal(2)为3-(2-萘基)-D-丙氨酸的缩写,Ser为L-丝氨酸的缩写。所使用的其它缩写为Boc叔丁氧基羰基Bop苯并三唑-1-氧基三-(二甲基氨基)鏻六氟磷酸盐DCC二环已基碳化二亚胺DCM二氯甲烷Ddz二甲氧基苯基二甲基甲氧羰基(二甲氧基二甲基-Z)DIC二异丙基碳化二亚胺DIPEA N,N-二异丙基乙胺DMF二甲基甲酰胺Fmoc 芴基甲氧基羰基HF 液态无水氢氟酸HOBt 1-羟基苯并三唑HPLC 高压液相色谱TFA三氟乙酸Z 苄氧羰基可通过首先提供给三个官能团(α-氨基、ε-氨基和α-羧酸基)中的两个以保护基,然后用适宜的方法让第三个官能团基反应,来制备本发明通式(I)化合物。如果需要并且如果该方法产生较好的结果,那么也可以在第一步引入中间体保护基,然后在第二步后,由所需要的官能团基取代。适宜的保护基和连接保护基的方法是本领域已知的。在“肽合成原理”,Springer Verlag 1984,在课本“固相肽合成”J.M.Stewart和J.D.Young,Pierce Chem.Company,Rockford,III,1984中,和在G.Barany和R.B.Merrifield“肽”,Ch.1,pp.1-285,1979,Academic Press Inc中描述了保护基的实例。
可通过经典的片断缩合方法或通过Merrifield的固相合成方法,利用已经在侧链由通式(VII)羧酸和通过将十肽单位与适宜的羧酸通过在D-赖氨酸6侧链酰胺键反应酰化的D-赖氨酸在顺序的一个氨基酸上新建另一个氨基酸来合成本发明式(IV)化合物。因此,本发明提供三种可供选择的制备通式(V)化合物的方法。
第一种可能性包含下列步骤(a)、为D-赖氨酸或D-鸟氨酸的α-氨基和羧酸基团,提供适宜的保护基,(b)、将所提供的具有保护基的D-赖氨酸或D-鸟氨酸与通式(VII)羧酸反应R4-COOH(VII)其中R4如上所定义,(c)、为了在步骤(h)中在6位引入基团,除掉在步骤(b)中得到的化合物在α-羧酸基团上的保护基,(d)、将在氨基端提供有保护基的D-丙氨酸偶联到树脂形式的固体载体上(Merrifield合成),(e)、除掉丙氨酸氨基上的保护基,(f)、将结合到固体载体上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(g)、除掉在脯氨酸氮原子上的保护基,(h)、利用在步骤(c)中为6位所描述的D-赖氨酸或D-鸟氨酸,按照从8到1的顺序,用通式(V)中的氨基酸1-8重复步骤(f)和(g),(i)、将步骤(h)中得到的化合物从载体上脱下,如果需要,进行纯化(例如HPLC),(j)、如果需要,与可药用酸,优选双羟萘酸反应。
按照第二种选择,制备通式(V)化合物的方法包括步骤(a)、将在氨基上具有保护基的D-丙氨酸偶联到适用于固相合成的载体上,
(b)、除掉在丙氨酸氨基上的保护基,(c)、将结合到树脂上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(d)、除掉在脯氨酸氮原子上的保护基,(e)、按照从8-1的顺序,用通式(V)中的氨基酸1-8重复步骤(c)和(d),(f)、将在步骤(e)中得到的化合物从载体上脱下,(g)、与式(VII)羧酸反应R4-COOH(VII)其中R4如上所定义,(h)、如果需要,与可药用酸,优选双羟萘酸反应。
第三种制备通式(V)化合物的方法包括步骤(a)、将在氨基上具有保护基的D-丙氨酸偶联到适用于固相合成的载体上,(b)、除掉在丙氨酸氨基上的保护基,(c)、将结合到树脂上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(d)、除掉在脯氨酸氮原子上的保护基,(e)、按照从8-6的顺序,用通式(V)中的氨基酸6-8重复步骤(c)和(d),(f)、除掉D-赖氨酸或D-鸟氨酸6-位上的ε-氨基保护基并且与式(VII)羧酸反应R4-COOH(VII)其中R4如上所定义,(g)、除掉D-赖氨酸或D-鸟氨酸α-氨基上的保护基,(h)、按照从5到1的顺序,用通式(IV)氨基酸1-5重复步骤(c)和(d),
(i)、将步骤(h)中得到的化合物从树脂上脱下并且纯化(例如HPLC),(j)、如果需要,与可药用酸,优选双羟萘酸反应。
优选的通式(VII)羧酸为咪唑烷-2-酮-4-羧酸和N-(4-脒基苯基)氨基-4-氧代丁酸。
按照已知的方法,例如,通过纯固相技术、部分固相技术或通过经典的溶液偶联(见M.Bodanszky,“肽合成原理”,Springer Verlag1984)来合成式(V)化合物。例如在课本“固相肽合成”J.M.Stewart和J.D.Young,Pierce Chem.Company,Rockford,III,1984中,和在G.Barany和R.B.Merrifield的“肽”,Ch.1,pp.1-285,1979,Academic Press Inc描述了固相合成的方法。在“Methoden derOrganischen Chemie〔有机化学方法〕(Houben-Weyl),Synthese vonPeptiden〔肽合成〕”E.Wunsch(编)1974,Georg Thieme Verlag,Stuttgart,FRG中详细描述了经典的溶液合成。
如下进行分步合成,例如,首先,通过共价键将α-氨基被保护的羧基端氨基酸与常规使用的不溶性载体结合,除掉该氨基酸的α-氨基保护基,将下一个被保护氨基酸通过其羧基结合到由此得到的氨基上,并且以该种方式,以正确的顺序、一步一步连接其它待合成肽的氨基酸,在连接了所有的氨基酸后,从载体上脱下完成的肽如果需要,进一步除掉侧链官能团保护基。在常规方法中,通过从适宜的、用常规方法保护的氨基酸开始合成进行分步缩合。同样地,使用通过商业渠道获得的保护氨基酸,也可以利用自动肽合成剂,例如从瑞士Bachem得到的Labortec SP 650。
按照常规使用的方法,将各氨基酸彼此连接,下列方法是尤其适宜的·在二环己基碳化二亚胺或二异丙基碳化二亚胺(DCC,DIC)存在下的对称酸酐法·一般的碳化二亚胺法·碳化二亚胺-羟基苯并三唑法(见The peptide,Volume 2,Ed.E.Gross and J.Meienhofer)。就连接精氨酸而言,优选地使用碳化二亚胺法。就其它氨基酸而言,通常使用对称或混合酸酐法。
在片断偶联中,优选地使用无需外消旋作用即可进行的酸偶联,或DCC-1-羟基苯并三唑或DCC-3-羟基-4-氧代-3,4-二氢-1,2,3-苯并三嗪法。也可以使用片断的活化酯。
就分步缩合氨基酸而言,特别适宜的活化酯为那些N-端保护的氨基酸的酯,例如N-羟基琥珀酰亚胺酯或2,4,5-三氯苯基酯。通过具有接近乙酸酸度的N-羟基化合物,例如1-羟基苯并三唑,可以非常容易地催化氨解。
适宜的中间体氨基保护基为可通过氢化除掉的基团,例如苄氧基羰基(=Z基)或可通过弱酸除掉的基团。例如,α-氨基保护基为叔丁氧基羰基,苄氧羰基或苄硫羰基(carbobenzothio)(适当时,各基团具有对-溴或对-硝基苄基),三氟乙酰基,邻苯二甲酰基,邻-硝基苯氧基乙酰基,三苯甲基,对-甲苯磺酰基,苄基,在苯核上取代的苄基(对-溴或对-硝基苄基)和α-苯基乙基。本文也参考Jesse P.Greenstein和Milton Winitz,《氨基酸化学》,纽约1961,John Wiley和sons,Inc.,第二卷,例如883页等和《肽》,第二卷,E.Gross和J.Meienhofer编,Academic Press,New York。这些保护基也基本上适用于保护相应氨基酸的其它官能团侧基(OH基,NH2基)。
优选地,通过苄基和类似的基团来保护所存在的羟基(丝氨酸,苏氨酸)。优选地,通过正交方式保护不在α-位的其它氨基(例如在ω-位的氨基,精氨酸的胍基)。
在常规使用的不同溶剂或悬浮剂(例如二氯甲烷)中进行连接氨基酸的反应,如果需要,可加入二甲基甲酰胺来改善溶解性。
就赖氨酸的氨基与通式(VII)羧酸反应引入R4-CO而言,上述方法基本上适用于氨基酸的连接。然而,特别优选的是用碳化二亚胺,例如1-乙基-3-(3-二甲基氨基丙基)碳化二亚胺,和1-羟基-苯并三唑进行缩合。
适宜的合成载体为不溶性聚合物,例如球形聚苯乙烯树脂,它可以在有机溶剂(例如聚苯乙烯和1%二乙烯基苯的共聚物)中膨胀。可按照下列流程图在树脂(MBHA树脂,即带有甲基二苯甲基酰胺基团的聚苯乙烯树脂),它在从载体上进行HF裂解后提供所需要的肽C-端酰胺功能团流程图肽合成流程
以3-倍摩尔过量在二异丙基碳化二亚胺(DIC)和1-羟基苯并三唑(HOBt)存在下在CH2Cl2/DMF中在90分钟内,将N α-Boc保护的氨基酸偶联,并通过加入50%的三氟乙酸(TFA)的CH2Cl2溶液在半小时内除掉BOC保护基。为了检查是否完全缩合,可使用Christensen的氯醌试验和Kaiser的茚三酮试验。通过用5-倍过量的乙酰咪唑在CH2Cl2中乙酰化来保护游离的氨基。在树脂上进行肽合成反应步骤的顺序与流程图相同。为了脱下树脂结合的肽,将固相合成的各终产物在真空中用P2O5干燥并在0℃下,在500-倍过量的HF/苯甲醚10∶1(v/v)中处理60分钟。
真空蒸馏掉HF和苯甲醚后,通过与无水乙醚搅拌,得到肽酰胺的白色固体;通过用50%强度的乙酸水溶液洗涤除掉额外得到的聚合物载体。通过小心地真空浓缩乙酸溶液,可得到各肽的高粘性油状物,该油状物在加入无水乙醚后,在冷却下转化为白色固体。
通过常规制备性高压液相色谱(HPLC)法进一步纯化。
在已知的方法中,可通过将肽与酸反应,将其转化为酸加成盐。相反地,通过将酸加成盐与碱反应,可得到游离肽。可通过将肽的三氟乙酸盐(TFA盐)与游离的双羟萘酸或相应的双羟萘酸二钠盐反应来制备肽的双羟萘酸盐。为此,在极性非质子介质,优选二甲基乙酰胺中,用双羟萘酸二钠溶液处理肽的TFA盐溶液,分离所形成的淡黄色沉淀物。
下列实施例说明但不限制本发明。实施例1Ac-D-Nal(2)-D-(pCl)Phe-D-Pal(3)-Ser-Tyr-D-[ε-N’-(咪唑烷-2-酮-4-基)甲酰基]-Lys-Leu-Arg-Pro-D-Ala-NH2按照流程图,在5g mBHA树脂上(装载密度为1.08mmol/g)进行合成。将赖氨酸为以Fmoc-D-Lys(Boc)-OH形式偶联,在除掉侧链上的Boc基后,用3倍过量的咪唑烷-2-酮-4-羧酸酰化。用20%哌啶/DMF除掉Fmoc后,按照流程图,在N端进行延伸。除掉聚合物载体后,得到5.2g粗品肽,通过制备性HPLC标准方法进行纯化。冷冻干燥后,得到2.1g实验式为C74H97N18O15Cl、具有正确的FAB-MS 1514(M+H+)(计算值1512.7)和相应的1H-NMR谱的HPLC均一产品。
1H-NMR(500MHz,DMSO-d6,δppm)8.56,m,2H,芳香.H;8.08,m,1H,芳香.H;7.81,m,1H,芳香.H;7.73m,2H,芳香.H;7.66,m,1H,芳香.H;7.60,s,1H,芳香H;7.44,m,2H,芳香.H;7.30,d,1H,芳香.H;7.25,和7.18,2d,2×2H,芳香.Hp-Cl-
Phe;6.97和6.60,2d,2×2H,芳香.H Tyr;9.2-6.3,几个单峰,酰胺NH;4.8-4.0,几个m,Cα-H和脂肪.H;2.1-1.1,s几个m,其余脂肪.H;1.70,s,3H,乙酰基;1.22,d,3H,Cβ-H Ala;0.85,dd,6H,Cδ-H Leu实施例2Ac-D-Nal(2)-D-(pCl)Phe-D-Pal(3)-Ser-Tyr-D-[ε-N’-4-(4-脒基苯基)氨基-1,4-二氧代丁基]-Lys-Leu-Arg-Pro-D-Ala-NH2在新蒸馏过的DMF中,在1.0mmol(0.16g)1-乙基-3-(3-二甲基氨基苯基)碳化二亚胺和1.0mmol(0.16g)1-羟基苯并三唑存在下,将0.7mmol(1.03g)十肽Ac-D-Nal-D-(pCl)Phe-D-Pal-Ser-Tyr-D-Lys-Leu-Arg-Pro-D-Ala-NH2与1.0mmol(0.27g)(4-脒基苯基)氨基-4-氧代丁酸反应。在真空中24小时除掉溶剂,将得到的残渣溶解在水中并将溶液冷冻干燥。将得到的粗品通过制备性反相HPLC纯化;共得到0.61g实验式为C81H104N19O15Cl、具有正确的FAB-MS1618.7(M+H+)(计算值1617.7)和相应的1H-NMR谱的HPLC均一产品。
1H-NMR(500MHz,DMSO-d6,δppm)10.4,s,1H和9.15,s,2H,和8.8,s,1H,4-脒基苯胺的NH;8.60,m,2H,芳香 H;8.20,m,1H,芳香.H;7.80,m,1H,芳香.H;7.73,m,芳香.H;7.61,s,1H,芳香.H;7.44,m,2H,芳香.H;7.30,d,1H,芳香.H;7.25和7.20,2d,4H,芳香.H(pCl)Phe;7.0and 6.6,2D,4H,芳香.H Tyr;8.3-7.2,几个单峰,酰胺-NH;4.73-4.2,几个多重峰,Cα-H;4.13,m,1H,Cα-H;Ala;3.78-2.4,几个多重峰,Cβ-H和脂肪.H;1.72,s,3H,乙酰基;1.22,d,3H,Cβ Ala;0.85,dd,6H,Cδ Leu实施例3通过与在2ml水溶液中的0.130g(0.3mmol)双羟萘酸二钠反应,将溶解在50ml H2O中的0.5g(0.3mmol)实施例1肽LH-RH拮抗剂转化为肽的双羟萘酸盐,该物质以黄色沉淀物的形式迅速从溶液中沉淀出来。得到0.281g黄绿色细结晶粉末,双羟萘酸的含量为33%,实施例4通过与在2ml水溶液中的0.195g(0.45mmol)双羟萘酸二钠反应,将溶解在5ml二甲基乙酰胺中的0.3g(0.17mmol)实施例2肽LH-RH拮抗剂转化为肽的双羟萘酸盐,该物质在加入50ml水后,以黄色沉淀的形式得到。获得0.330g黄色细结晶产物,双羟萘酸的含量为20%。
按照下列流程式1,3,4和5,可得到通式(I)化合物,其中三个官能团R1,R3和R4有规律地改变。流程式1显示实施例1化合物的合成流程式1
按流程式1制备通式I化合物的一般方法在除湿和搅拌下,将通式I和合成流程式1所依据的、由R4基取代的羧酸R4-COOH在R4为碱性基团时也可以以盐如盐酸盐、硫酸氢盐或醋酸盐的形式存在,溶解或悬浮在非极性或两极性非质子有机溶剂如四氢呋喃、二噁烷、甲基叔丁基醚、甲苯、二甲基甲酰胺、二甲基乙酰胺、N-甲基-吡咯烷酮、二甲亚砜或二氯甲烷中,并在搅拌下,用作为酸中和剂的碱例如二异丙胺、三乙胺、N-甲基吗啉、二甲基氨基吡啶或吡啶处理。然后加入Z-(L)-赖氨酰胺盐酸盐在稀释剂(diduent)中的混合物,适宜的稀释剂为上述那些用于溶解R4基取代羧酸R4-COOH的稀释剂。然后,用一种作为酸中和剂的碱将反应混合物的PH调至例如PH 6.5-9.0,优选7.0-8.5,特别是7.0-7.5。最后,在搅拌下,将偶联试剂例如苯并三唑-1-基氧基-三(二甲基氨基)鏻六氟磷酸盐(BOP),或苯并三唑-1-基氧基-三吡咯烷基鏻六氟磷酸盐(PyBOP)或二环己基碳化二亚胺(DCC)的溶液加到反应混合物中,并在短时间后,将溶液的PH调至上述PH范围。例如,在0-80℃,优选地,在10-50℃,特别是在20-30℃下,将悬浮液搅拌1-15小时,然后吸滤,将固体洗涤并将滤液真空浓缩至干。通过与有机溶剂例如甲苯,四氢呋喃,丙酮,甲乙酮或异丙醇摩擦,将残渣结晶,或者通过重结晶、蒸馏或通过在硅胶上或在氧化铝上进行柱层析或快速层析将残渣纯化。例如,所使用的稀释剂为二氯甲烷、甲醇、氨(25%)85∶15∶1(vol/vol)的混合物或二氯甲烷、甲醇、氨(25%)80∶25∶5(vol/vol)的混合物。三氟乙酸盐的合成将按上述方法纯化的化合物溶解在质子或非质子溶剂中,所述溶剂包括醇例如甲醇、乙醇、异丙醇或环状醚例如四氢呋喃或二噁烷,并用2N的氢氧化钠溶液将PH调至10-11。将沉淀的固体吸滤,洗涤,真空干燥,并在乙醇溶液中在10-80℃,优选在20-40℃下,用一摩尔当量或2-4倍摩尔过量的三氟乙酸处理。将溶液在0-4℃下放置24小时后,将所需要的三氟乙酸盐结晶,将该结晶吸滤并真空干燥。
按照合成流程式1所依据的该通用方法合成实施例5和下表1中所描述的化合物实施例5α-N-〔苄氧基羰基〕-ε-N-〔5〔(4-脒基-苯基)-氨基〕-5-氧代-戊酰基〕-L-赖氨酰胺三氟乙酸盐在除湿和搅拌下,将5g(17.5mmol)5-〔〔4-(氨基亚氨基甲基)苯基〕氨基〕-5-氧代戊酸盐酸盐悬浮在200ml二甲基甲酰胺中,用3.85ml(35.0mmol)N-甲基吗啉处理。加入5.53g(17.5mmol)Z-(L)-赖氨酰胺盐酸盐在100ml二甲基甲酰胺中的混合物并用N-甲基吗啉将PH调至7.0-7.5。最后,加入9.73g(21.9mmol)苯并三唑-1-基氧基-三(二甲基氨基)鏻六氟磷酸盐(BOP)的溶液并在10-15分钟后,再次将PH调至7.0-7.5。在室温和不断地检查PH(应该为7.0-7.5)下,将黄色悬浮液搅拌3-4小时,将无色沉淀物吸滤,用二甲基甲酰胺洗涤两次并将黄色滤液蒸发至干。将油状残渣用5×40ml甲乙酮浸提,将五次溶剂处理的甲乙酮相倾出并倒掉。将所得到的结晶形式的残渣粗品吸滤,用30ml甲乙酮洗涤并在室温下真空干燥。然后,将固体溶解在大约50ml乙醇中,并用2N的氢氧化钠溶液将PH调至10-11。将沉淀的碱吸滤,用水和乙醇洗涤并在35℃下真空干燥。产量5.5g(理论值的62%)三氟乙酸盐在60℃下,在乙醇悬浮液中,将5.5g碱用5倍摩尔量的三氟乙酸处理。将溶液在4℃下放置过夜,将得到的三氟乙酸盐吸滤并在35℃下真空干燥。产量5.9g(理论值的87.7%)熔点185℃元素分析计算值C 53.84 H 5.65N 13.45实测值C 54.11 H 5.74N 13.331H-NMR(500Mhz DMSO-d6,δppm)10.47,s,1H,苯胺酰胺,9.14和8.8 2s,NH脒,7.82,m,1H,Lys-ε-NH,7.79和7.46,2s,芳氢,7.27和6.93 2s,2H,CONH2,7.20,d,1H,氨基乙酸酯NH,5.0,s,2H,苄氢,3.89,m,1H,Cα-H,3.0和2.58和2.40,3m,共6H,脂肪氢,1.60-1.20,4m,共6H,其他脂肪H。
按照上述方法,制备表I中(式I)显示的其它化合物,n全部等于4。表1合成流程式1和通式I中的α,ε-N-取代的L-赖氨酰胺衍生物(就所有实施例而言,n等于4)
表1(续)
表1(续)
从下表2中可见上述实施例中化合物的熔点表2实施例5-34化合物的熔点
按照合成流程式1制备表1中通式I化合物的前体在实施例5-34合成的最后步骤中用作起始物质的Z-(L)赖氨酰胺是从商业渠道获得的。可通过与合成流程式2类似的、文献中已知的方法来制备于合成流程式1中可进一步用作起始物质的取代的“芳基”-或“杂芳基氨基-氧代-链烷酸”(P.R.Bovy,J.Organ.Chem.58,7948(1993))。流程式2
流程式2中所使用的芳族或杂芳族胺A-NH2是从商业渠道获得的;可按照与文献中已知方法(R.Westwood,J.Med.Chem 31,1098(1988))类似的方法来合成实施例28化合物所依据的氨基咪唑并〔1,2-a〕吡啶。
已预先设计用作前体的“芳基氨基-氧代-链烷酸”或“杂芳基氨基-氧代-链烷酸”可进一步通过下列方法制备,即,从链烷烃二羧酸单甲酯,例如从辛二酸单甲酯和壬二酸单甲酯开始,将其在沸腾醇例如在沸腾乙醇或丁醇中,或者任选在芳族溶剂例如在甲苯或二甲苯中,在加热煮沸下,在不超过50巴压力的高压釜中的沸点下,在溶剂沸点温度下,通过氨解反应与芳族或杂芳族胺反应,将反应溶液真空浓缩并通过从甲醇或乙醇中结晶或通过柱层析将残渣纯化。例如,所使用的洗脱剂为二氯甲烷、甲醇、氨(25%)的混合物,其比例为85∶15∶1(vol/vol)或二氯甲烷、甲醇、氨(25%)的混合物,其比例为80∶25∶5(vol/vol)。
制备通式(I)化合物方法的替代过程如下,其中,在通式(I)化合物中,R1为苄氧基羰基并且R2和R3为氢原子1、将α-羧酸基酰胺化。
2、将ε-氨基用Z基保护。
3、将α-氨基用BOC基保护,使得在后来可选择性地除掉氨基保护基。
4、除掉在ε-氨基上的Z保护基。
5、将所需要的R4-CO-基引入到ε-氨基上。
6、除掉在α-氨基上的BOC基。
7、提供含Z基的α-氨基。
按照下述实施例35化合物合成的流程式3,可得到另外的代表通式I化合物流程式3
按照流程式3制备通式I化合物的一般方法第1步在-30℃至30℃下,优选地在-20℃至20℃下,特别优选地在-15℃至5℃下,将Z-Lys(BOC)-OH和碱例如三乙胺、二异丙胺、N-甲基吗啉、N-乙基哌啶、和脂族或芳族酰氯例如乙酰氯、异丁酰氯、异戊酰氯、新戊酰氯、苯甲酰氯或4-甲氧基苯甲酰氯加到两极性非质子传递或非极性有机溶剂如四氢呋喃、二甲亚砜、二甲基甲酰胺、乙腈、乙酸乙酯、二甲基乙酰胺、N-甲基吡咯烷酮、二噁烷、甲苯、醚、二氯甲烷或氯仿中。在一段时间例如在30分钟-3小时后,在剧烈搅拌下,加入冷却至-10℃的、胺在两极性非质子传递或非极性有机溶剂例如四氢呋喃、二甲亚砜、二甲基甲酰胺、乙腈、乙酸乙酯、二甲基乙酰胺、N-甲基吡咯烷酮、二噁烷、甲苯、醚、二氯甲烷或氯仿中的溶液或悬浮液中。在-30℃至30℃下,优选地在-20℃至20℃下,特别优选地在-15℃至5℃下,将悬浮液搅拌1-2小时。反应结束后,将盐酸盐形式的碱吸滤掉并将滤液浓缩。将油状残渣用非质子传递或非极性有机溶剂例如醚、二异丙基醚、甲基叔丁基醚、石油醚、甲苯、二甲苯、戊烷、己烷处理。将溶液搅拌一段时间,例如30分钟-3小时,直至产生白色粉末沉淀。将沉淀物吸滤并干燥。第2步在-20℃至30℃下,优选地在-10℃至20℃下,特别优选地在-5℃至5℃下并且在搅拌15分钟-1小时下,将上述第1步过程中得到的Z-Lys(Boc)酰胺溶解在三氟乙酸中。将过量的三氟乙酸浓缩并将油状残渣用两极性非质子传递或非极性有机溶剂如二甲基甲酰胺、二氯甲烷、四氢呋喃、乙腈、N-甲基吡咯烷酮、乙酸乙酯处理。然后,在两极性非质子传递或非极性有机溶剂如二甲基甲酰胺、二氯甲烷、四氢呋喃、乙腈、N-甲基吡咯烷酮、乙酸乙酯中,加入所需要的酸、碱如二异丙基乙胺、N-甲基吗啉和适宜的偶联剂如BOP,PyBOP、DCC。在-10℃至100℃下,优选地在0℃-80℃下,特别优选地在10℃-35℃下进行反应。反应1-5小时并在室温放置24小时后,将溶剂浓缩。将残渣用有机溶剂如水、异丙醇、二氯甲烷或醚沉淀。将粗品通过在硅胶柱上层析纯化。
按照合成流程式3所依据的该一般方法的第1步和第2步,合成下表3中所列出的化合物,n全部为4。
表3流程式3和通式I中的α,ε-N-取代的L-赖氨酰胺衍生物(对于所有的实施例来说,n等于4)
表3(续)
表3(续)
实施例35N-(α-N-Z-〔ε-N-4-(4-脒基苯基)-氨基-1,4-二氧代-丁基〕赖氨酸-N-(3-吡啶基甲基))酰胺第1步Z-Lys(Boc)-N-(3-吡啶基甲基)酰胺N-(α-N-Z-〔ε-N-叔丁氧基羰基〕赖氨酸-N-(3-吡啶基甲基)酰胺在-15℃下,将4g(10mmol)通过商业渠道获得的Z-Lys(Boc)-OH、1g(10mmol)三乙胺和1.26g(10mmol)新戊酰氯加入60ml四氢呋喃中。30分钟后,在剧烈搅拌下,加入预先冷却至-10℃的1.08g(10mmol)3-(氨基甲基)吡啶在20ml四氢呋喃中的溶液。将悬浮液在-15℃下搅拌1-2小时。在低温下,将三乙胺盐酸盐吸滤,然后将四氢呋喃蒸发。将油状残渣用100ml乙醚处理。将溶液搅拌直至产生白色粉末沉淀。将沉淀物吸滤并干燥。产量4g(理论值的85%)。第2步N-(α-N-Z-〔ε-N-4-(4-脒基苯基)-氨基-1,4-二氧代-丁基〕赖氨酸-N-(3-吡啶基甲基))酰胺在0℃下,将2g(4.25mmol)Z-Lys(Boc)-N-(3-吡啶基甲基)酰胺溶解在20ml的TFA中并将溶液搅拌20分钟。将过量的TFA浓缩并将油状残渣用10mlDMF处理。然后加入4.6ml(42.5mmol)N-甲基吗啉、1.15g(4.25mmol)4-〔〔(4-氨基亚氨基甲基)苯基〕氨基〕-4-氧代丁酸盐酸盐、2.35g(5.3mmol)BOP和20mlDMF。将混合物在室温下搅拌24小时。将DMF浓缩,并将残渣用40ml水浸提两次,然后吸滤并干燥。将粗品通过在硅胶柱上层析纯化,洗脱剂为89b(在1升NH4OH 25%中,含70%HCCl3,40%MeOH,10%CH3COO-Na+)。产量340mg(理论值的14%)。
按照实施例35类似的方法得到实施例36-55。表4实施例35-55化合物的熔点
按照下列流程式4和5制备其它通式I化合物。流程式4与羧酸的反应
流程式5与氯甲酸酯的反应
1、按照流程式4和5,用羧酸或氯甲酸酯进行酰化在室温下,在非质子传递溶剂(DMF,DMSO)中,在碱(DIPEA,NMM)和偶联剂(DCC,DIC,EDCI)存在下,将H-Lys(Boc)-NH2与羧酸反应,得到酰胺。除掉溶剂后,将残渣用水处理并将不溶性的粗品吸滤。将产品通过从醇(MeOH,EtOH<2-PrOH)或酯(MEK,EA)中结晶进行纯化。
在碱水溶液(Schotten-Baumann条件)中,H-Lys(Boc)-NH2与酰氯的反应产生所需要的衍生物,产率90-95%。将粗品通过吸滤分离并通过从醇(MeOH/EtOH/异丙醇)或乙酸乙酯或甲乙酮中重结晶来纯化。2、用TFA除掉Boc保护基在室温下,在二氯甲烷和三氟乙酸(2∶1)的混合物中,用大约60分钟的时间除掉保护基是定量的。将所分离出来的、通常为油状的产品R1-Lys-N在不经过进一步纯化步骤的情况下,迅速进行下一步反应。3、酰化,其中R4=4-((4-(氨基亚氨基甲基)苯基)氨基)-4-氧代丁酸盐酸盐在室温下,在非质子传递溶剂(DMF,DMSO)中,在碱(NMM,DIPEA)存在下,利用偶联剂如EDCI、Bop或PyBop来进行与另一羧酸(R4)的反应。除掉溶剂后,当加入水时产品开始沉淀。通过制备性HPLC方法,在RP18-柱上,利用洗脱剂混合物水、乙腈和三氟乙酸进行纯化。得到TFA盐形式的产品。
按照流程式4和5所依据的该一般方法,合成实施例56和下表5中所描述的化合物实施例56在室温下,将32mmol Z-赖氨酰胺和32mmol 4-((4-(氨基亚氨基甲基)苯基)氨基)-4-氧代丁酸盐酸盐加到120ml无水脱气N,N-二甲基甲酰胺(DMF)中。
在搅拌下,起始物质迅速溶解。在加入104 mmol二异丙基乙胺和40mmol BOP后,将混合物在RT下搅拌16小时。在水浴温度为50-55℃和压力大约为10毫巴的旋转蒸发器上,将溶剂和过量的DIPEA蒸去。将油状残渣用250ml水处理,在超声浴均化并冷却。将沉淀的粗品吸滤并在滤器上用水洗涤。
用氯化钙真空干燥后,得到大约16g HCl盐形式的米色粉末,纯度大约为90%(HPLC)。
为了制备相应的三氟乙酸盐,将产品悬浮在100ml水中并用32mmol(2.45ml)三氟乙酸(99%)处理。为了再除掉过量的酸,将混合物在旋转蒸发器上稍稍蒸发,然后,将水性悬浮液冷冻干燥。
从醇(EtOH/MeOH)中重结晶后,可将由此得到的产品再次冷冻干燥以便获得更好的溶解度。
产量 5.26gM.P.210-213℃
表5流程式4和5中并且具有通式I结构的α,ε-N-取代的L-赖氨酰胺衍生物(对于所有的实施例来说,n等于4)
表5(续)
表5(续)
表5(续)
表6实施例56-82化合物的熔
注“up to…”是指在冷冻干燥后,该物质形成具有相应物理性质的非晶型泡沫。严格来说,熔点是不存在的,更确切地说,是慢慢地熔结在一起直至液化。通式I化合物的盐本发明化合物也可以以其酸加成盐的形式存在,例如,无机酸如盐酸、硫酸、磷酸的盐,有机酸如乙酸、三氟乙酸、乳酸、丙二酸、马来酸、富马酸、葡糖酸、葡糖醛酸、柠檬酸、双羟萘酸、甲磺酸、羟乙磺酸、丙酮酸和琥珀酸的盐。
通式I化合物及其盐都是具有生物活性的。通式I化合物可以以游离形式或与生理上可耐受的酸形成的盐的形式给予。可通过口服、非肠道、静脉内、透皮或通过吸入给药。
本发明进一步涉及药物组合物,其至少包含一种通式I化合物或其与生理上可耐受的酸形成的盐,如果需要,还含可药用赋形剂和/或稀释剂或助剂。实施例83 Cetrorelix、实施例1、实施例2和实施例56与人LH-RH受体结合的亲和力(CetrorelixAc-D-Nal(2)-D-p-Cl-Phe-D-Pal(3)-Ser-Tyr-D-Cit-Leu-Arg-Pro-D-Ala-NH2)测定结合亲和力(解离常数)的方法通过竞争性结合试验来测定结合亲和力(“置换结合试验”;Beckers等.Eur.J.Biochem.231,535-543,1995)。所使用的放射标记配体为〔125I〕Cetrorelix(比活性为5-10×105dpm/pmol;溶解在20%v∶v乙腈,0.2%w∶v白蛋白,0.1%w∶v TFA,≈80%v∶v水中)。碘标记肽的结合力为60%-85%。所使用的未标记试验化合物为在溶液中的Cetrorelix、实施例1、实施例2和实施例56。所述物质的使用浓度为0.01nM-1000nM(Cetrorelix,实施例1,实施例2)或0.01μM-10μM(实施例56)。
使用PBS/EDTA(无Ca2+/Mg2+的PBS/1mM EDTA)从非汇合条件下生长的细胞培养皿中分离过度表达用于结合试验的人LH-RH受体的各个细胞克隆L3.5/78细胞,确定细胞数并将细胞以相应的细胞密度重新悬浮在孵育介质(含有4.5g/l葡萄糖、10mM Hepes pH7.5、0.5%w∶vBSA、1g/l杆菌肽、0.1g/l SBTI、0.1%w∶v NaN3的Dulbecco改良Eagle培养基)中。起初将200μL聚硅氧烷/石蜡油混合物(84/16%体积比)引入专用400μL反应容器(Renner,Beckman型)并用移液管将50μL细胞悬浮液(2.5×105细胞)移到其中。将50μL含有〔125I〕Cetrorelix的结合介质和合适浓度的试验化合物加到聚硅氧烷/石蜡油层上的细胞悬浮液中。然后在37℃温室中旋转孵育混合物60分钟。此步骤之后,使用HTA13.8旋转仪在Heraeus Biofuge 15中以9000rpm转速(室温)离心2分钟。在该过程中,细胞从聚硅氧烷/石蜡油层中沉积并与结合介质分离。离心后,将反应容器在液N2中休克-冷冻并用镊子将反应容器的末端(细胞沉积物)切掉,将含细胞沉积物(结合的配位体〔125I〕Cetrorelix)和上清液(未结合、游离的配位体〔125I〕Cetrorelix)的末端转移到计数管中。为了测定最大结合(Bo),不加入竞争物。为了测定非特异性结合,加入1μM未标记的Cetrorelix用于竞争反应。在总结合Bo≤10%时,非特异性结合较低。在γ-计数器中确定数目;利用EBDA/配位体V3.0程序进行分析(McPherson,J.Pharmacol.Metherds 14,213-228,1985)。绘制剂量效应图可用于评价IC50(在受体上反应中,引起50%抑制作用时的浓度),并且利用EBDA/配体程序来计算解离常数kd[nM].
结果从竞争曲线(见

图1)显而易见,所有试验化合物都与放射性标记的配位体〔125I〕Cetrorelix竞争与人LH-RH受体的结合。在各实例中,绘制结合(用总结合Bo的%表示)与竞争物浓度的曲线。就图1中所显示的化合物而言,可计算下列以解离常数Kd[nM]来表示的结合亲和力Cetrorelix(SB-75)-0.214nM,实施例1-0.305nM,实施例2-0.104nM,实施例56-986nM。从表7中可得到以各测定结果的平均值表示的结合亲和力。实施例84 在功能测定中,实施例2和实施例56对人LH-RH受体的拮抗作用测定IP3(D-myo-1,3,5-三磷酸)的方法将过度表达人LH-RH受体的细胞克隆亚汇合培养物(L 3.5/78)用PBS 1×洗涤,将细胞用PBS/EDTA移出并将细胞悬浮液沉积。将细胞重新悬浮在孵育介质(含有4.5g/l葡萄糖、10mM Hepes pH7.5、0.5%w∶v BSA、5mM LiCl、1g/l杆菌肽、0.1g/l SBTI的Dulbecco改良Eagle培养基)中,等分加入到1.5ml反应容器中并在37℃下预孵育30分钟。每个测定点需要在500μl体积中含4×106个细胞。预孵育步骤后,将LH-RH(在10mM tris PH 7.5,1mM二硫苏糖醇,0.1%w∶v BAS/Bachem Art # H4005中的储备液0.5mM)以10nM的最终浓度加到细胞悬浮液中。通过同时以相应的浓度(例如,对于实施例2来说,为0.0316,0.1,0.316等至100nM)加入来测定拮抗剂的作用。作为阴性对照,将不含LH-RH的细胞孵育。在37℃下孵育15分钟后,通过三氯乙酸(TCA)提取,将所形成的IP3从细胞中分离出来。为此,将500μl冰冷却的15%(w∶v)TCA溶液加到该细胞悬浮液中。通过在4℃下,在Heraeus Biofuge 15R离心机中,以2000×g转速离心15分钟,将得到的沉淀物沉积下来。将放置在冰上的15ml容器中的950μl上清液用10倍体积的冷却、水饱和乙醚提取3次。在最后一次提取后,将溶液用0.5M NaHCO3溶液调至PH 7.5。
通过敏感竞争性结合试验方法,利用IP3结合蛋白、标记的[3H]-IP3和未标记的IP3测定细胞提取液中IP3的浓度。为此,使用从Amersham得到分析试剂盒(TRK 1000);如测定流程中所述进行测定。在进行各步骤后,最后加入2ml用于样品水溶液的闪烁剂(RotiszintEcoplus),将含结合[3H]-IP3的再悬浮沉积物小心地与其混合,并在β-闪烁计数器中测定。利用标准曲线计算细胞中IP3的量并绘制剂量-效应曲线。从该曲线的转折点可计算IC50。
结果图1显示适宜的肽拮抗剂实施例2(图2)以及拟肽实施例56(图3)的剂量-效应曲线。用10nM LH-RH进行刺激并以物质浓度为函数测定对IP3形成的抑制作用。对于实施例2和实施例56来说,不可能测得任何激动活性,即该物质本身不对IP3合成产生任何刺激作用。在这里没有显示的对照试验中表明LH-RH不能刺激非转染的细胞合成IP3。最高浓度时测量的IP3浓度与未刺激的细胞一致。在实施例2和实施例56中,我们都得到了LH-RH功能性拮抗剂,但它们的效力不同。在所选择的试验条件下,实施例2的IC50大约为0.4nM,然而实施例56的IC50大约为4μM。这些活性与体外用〔125I〕Cetrorelix进行的竞争结合试验中测定的结合亲和力非常相关,实施例2的Kd=0.109μM,而实施例56的Kd=1.08μM。实施例85 实施例1、实施例2和实施例56在健康雄性大鼠中的激素抑制作用为了测定对健康雄性大鼠血液中睾酮抑制作用,将试验物质皮下注射到动物的右肋腹。实施例1和实施例2的剂量为1.5mg/kg,实施例56的剂量为10mg/kg。为了测定睾酮,在0、2、4、8(仅仅测定实施例56)、24、48、72和96小时,然后每3天一次直到抑制作用消失,从动物的舌下静脉抽取300μL血液。给予实施例1的物质后1ng/ml的睾酮抑制作用在一个动物中持续264小时,在两个动物中持续336小时,在另一个动物中持续384小时(图4)。给予实施例2的物质后,在一个动物中抑制睾酮到该水平持续408小时,在4个动物中持续648小时(图5)。实施例56(10mg/kg s.c.)两小时后抑制所有5只动物的睾酮水平并维持该作用至8小时。在下一个测量点(24小时),睾酮值再次升高(图6)。
表7生物学数据与SB-75比较与人LH-RH受体的结合亲和力(用解离常数Kd[nM]表示;使用ENDA/配体分析程序进行评价。以各种试验的平均值来表示,括号内是试验的数目)以及体内睾酮抑制作用、体外组胺释放和水溶性
*)因溶解性低不能测定
权利要求
1.通式(I)化合物及其与可药用酸的盐
其中,n为数字3或4,R1为未取代的或取代的烷基、烷氧基、芳基、杂芳基、芳烷基、杂芳烷基、芳烷氧基或杂芳烷氧基,R2和R3彼此独立地为氢原子,未取代的或取代的烷基、芳烷基或杂芳烷基,其中,取代又可形成芳基或杂芳基,或者-NR2R3为氨基酸残基,并且R4为具有下式(II)结构的基团-(CH2)p-CO-NR5R6(II)其中,p为1-4的整数,R5为氢或烷基,R6为未取代的或取代的芳基或杂芳基,或者R4为通式(III)环状基团
其中,q为数字1或2,R7为氢原子或烷基,R6为氢原子或烷基并且X为氧或硫原子,其中,可以将芳族基团或杂芳族基团部分或全部氢化,并且手性碳原子可具有R-或S-构型。
2.α-N-Z-〔ε-N’-4-(4-脒基-苯基)-氨基-1,4-二氧代-丁基〕赖氨酰胺及其与可药用酸的盐。
3.α-N-Z-〔ε-N’-4-(4-脒基-苯基)-氨基-1,5-二氧代-戊基〕赖氨酰胺及其与可药用酸的盐。
4.α-N-Z-〔ε-N’-(咪唑啉烷-2-酮-4-基)-甲酰基〕赖氨酰胺及其与可药用酸的盐。
5.权利要求1-4之一的化合物,其中所述盐为双羟萘酸盐。
6.通式(V)化合物及其与可药用酸的盐Ac-D-Nal(2)1-D(pCl)Phe2-D-Pal(3)3-Ser4-Tyr5-D-Xxx6-Leu7-Arg8-Pro9-D-Ala10-NH2(V)其中D-Xxx为通式(VI)氨基酸残基
其中n为整数3或4,R4为具有下式(II)结构的基团
其中,p为1-4的整数,R5为氢或烷基,R6为未取代的或取代的芳基或杂芳基,或者R4为通式(III)环状基团
其中,q为数字1或2,R7为氢原子或烷基,R6为氢原子或烷基,X为氧或硫原子。
7.权利要求6的化合物,其中Xxx为〔ε-N-4-(4-脒基-苯基)氨基-1,4-二氧代丁基〕赖氨酰基。
8.权利要求6的化合物,其中Xxx为〔ε-N-(咪唑烷-2-酮-4-基)甲酰基〕赖氨酰基。
9.权利要求6-8之一的化合物,其中所述盐为双羟萘酸盐。
10.含权利要求1-9之一的化合物的药物组合物。
11.制备权利要求6化合物的方法,其包含步骤(a)、为D-赖氨酸或D-鸟氨酸的α-氨基和羧酸基团提供适宜的保护基,(b)、将所提供的具有保护基的D-赖氨酸或D-鸟氨酸与通式(VII)羧酸反应R4-COOH(VII)其中R4如权利要求1所定义,(c)、为了在步骤(h)中在6位引入基团,除掉在步骤(b)中得到的化合物在α-羧酸基团上的保护基,(d)、将在氨基端具有保护基的D-丙氨酸偶联到树脂形式的固体载体上,(e)、除掉丙氨酸氨基上的保护基,(f)、将结合到固体载体上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(g)、除掉在脯氨酸氮原子上的保护基,(h)、利用在步骤(c)中对于6位所描述的修饰的D-赖氨酸或D-鸟氨酸,按照从8到1的顺序,用通式(V)中的氨基酸1-8重复步骤(f)和(g),(i)、将步骤(h)中得到的化合物从载体上脱下,如果需要,进行纯化,特别是通过HPLC进行,(j)、如果需要,与可药用酸,优选双羟萘酸反应。
12.制备权利要求6的化合物的方法,它包含步骤(a)、将在氨基上具有保护基的D-丙氨酸偶联到适用于固相合成的载体上,(b)、除掉在丙氨酸氨基上的保护基,(c)、将结合到树脂上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(d)、除掉在脯氨酸氮原子上的保护基,(e)、按照从8-1的顺序,用通式(V)中的氨基酸1-8重复步骤(c)和(d),(f)、将在步骤(e)中得到的化合物从载体上脱下,(g)、与式(VII)羧酸反应R4-COOH(VII)其中R4如权利要求1所定义,(h)、如果需要,与可药用酸,优选双羟萘酸反应。
13.制备权利要求6的化合物的方法,它包含步骤(a)、将在氨基上具有保护基的D-丙氨酸偶联到适用于固相合成的载体上,(b)、除掉在丙氨酸氨基上的保护基,(c)、将结合到树脂上的丙氨酸与在氮原子上具有保护基的脯氨酸反应,(d)、除掉在脯氨酸氮原子上的保护基,(e)、按照从8-6的顺序,用通式(V)中的氨基酸6-8重复步骤(c)和(d),(f)、除掉6-位D-赖氨酸或D-鸟氨酸上的ε-氨基保护基并且与式(VII)羧酸反应R4-COOH(VII)其中R4如权利要求1所定义,(g)、除掉D-赖氨酸或D-鸟氨酸α-氨基上的保护基,(h)、按照从5到1的顺序,用通式(IV)中的氨基酸1-5重复步骤(c)和(d),(i)、将步骤(h)中得到的化合物从树脂上脱下并且纯化,尤其通过HPLC纯化,(j)、如果需要,与可药用酸,优选双羟萘酸反应。
14.制备权利要求11-13之一的化合物的方法,其中,将N-(4-脒基苯基)氨基-4-氧代丁酸用作通式(VII)羧酸。
15.制备权利要求11-13之一的化合物的方法,其中,将咪唑烷-2-酮-4-羧酸用作通式(VII)羧酸。
16.制备权利要求11-15之一的化合物的方法,其中,将双羟萘酸用作可药用酸。
17.权利要求1-9的物质在制备用于治疗激素依赖型肿瘤,尤其是前列腺癌或乳腺癌,和用于其治疗需要抑制LH-RH激素的非肿瘤适应症的药物的用途。
18.制备包含权利要求1-9化合物的药物的方法,其特征在于将权利要求1-9的物质与常规赋形剂和助剂混合并配制成药物。
全文摘要
本发明公开了新的LH-RH拮抗剂,特别是在侧链上修饰后的拟肽和肽及其与药用酸的盐,和制备这些LH-RH拮抗剂和其盐的方法。所公开的肽为黄体激素释放激素(LH-RH)类似物。所公开的化合物具有高拮抗力且无不良副作用,特别是酸水肿作用。
文档编号A61K31/341GK1202882SQ96198624
公开日1998年12月23日 申请日期1996年11月14日 优先权日1995年11月28日
发明者B·库特施尔, M·布尔德, T·比克斯, T·卡恩尼尔, P-P·艾米格, P-M·查尔恩蒂尔 申请人:Asta药物股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1