复合陶瓷体及其制备方法

文档序号:1984907阅读:254来源:国知局
专利名称:复合陶瓷体及其制备方法
技术领域
本发明涉及一种复合陶瓷体,特别是适于摩擦构件如制动盘的复合陶瓷体,该复合陶瓷体包含纤维增强的含碳芯区和含SiC的表面区。此外,本发明还涉及一种制备纤维增强的复合陶瓷体,特别是用于摩擦构件如制动盘的复合陶瓷体的方法,其中提供一种需要时具有所需孔隙度的含纤维的碳体,该碳体渗有硅,并通过进行能形成SiC的化学反应使该碳体陶瓷化。
由DE 19834571 C2中已知一种由含多孔碳基质的纤维增强的C/C前体制备陶瓷体的方法,其中以可熔化的硅渗入通过热解呈纤维增强的前体。这时液态硅可填入孔中,以使在如此所制备的CMC(陶瓷基质-复合材料)体的表面层中形成所需的硬度。
在DE 4438455 C1中描述了一种采用以液态硅渗入多孔碳体来制备摩擦部件的方法,其中该多孔碳体是这种结构,即在确定的内区和/或外区中形成空腔和/或掏空以用于冷却和/或硬化,并在陶瓷化后保持其形状和尺寸。
由CMC材料组成的相应的陶瓷体可用于制动盘,如DE 4237655 A1或EP 071214 B1中所述。
从JP 0003199172 AA中已知一种涂覆过的碳纤维增强的复合材料,其中碳纤维存在于基质中,该基质在中心部分由碳组成和在表面区由碳化物组成。仅在表面区中从内到外是连续或近连续的过渡。
DE 19805868 A1涉及一种制备纤维复合材料的方法,其中应用其性能从外向里而提高的纤维涂层,以得到一种梯度材料。为此在压制成形中采用不同涂层性能的压制物料,其中外层可完全由碳化硅组成。此外纤维性能及纤维长度是可变化的。所用的增强纤维本身由含热解碳涂层的芯体和可热解的粘合剂的外层构成,该粘合剂经热解转变成碳。可实现用液态硅的渗入。
现今得到应用的CMC制动盘除芯区(芯层压片)外还含几乎是单片结构的外SiC层(表面区)。由于摩擦原因这种表面层是必须的。与此相反,芯区应具有CFC特性,以达总装置的尽可能的准延性断裂失效。按目前的研制状态,该层结构是一种由单片结构的表面区构向CFC芯区的特有的层过渡。由此在机械和热物理特性中产生很大的差别。由于单片结构层不仅有很大的裂隙问题,并且在应用中易产生另外的裂隙,所以该相应的层体系在外观上也是要考虑的。
本发明基于此问题,进一步提供一种复合陶瓷体以及制备开头所述的这类复合陶瓷体的方法,该复合陶瓷体表现出良好的持久性能,并且尤其不易于在表面上形成裂隙。同时,还应基本上保持有关耐磨的外单片结构SiC层的已知的各别层结构的优点和芯区的延展性。
按照本发明,该问题是基本通过前述类型的复合陶瓷体如下解决的,即该复合陶瓷体由纤维增强的碳体组成,在芯区的纤维比在表面区的纤维长,在表面区的纤维的丝数比芯区的纤维的丝数少和/或在表面区的碳体比芯区的碳体有更大的孔隙度,并且该复合陶瓷体所含的SiC的组分从芯区内直到表面区是恒定或基本上恒定变化的。特别是该复合陶瓷体的SiC组分稳定变化,使芯区具有延展特性,而表面区具有单片结构的SiC层特性或Si/SiC层特性。
为此,所述表面区基本上应有如下组分·SiC为约20重量%-约100重量%,·游离Si为约0重量%-约30重量%,·碳为约0重量%-约80重量%,·Si3N4为约0重量%-约20重量%,和/或·B4C为约0重量%-约20重量%。
与此相对,所述芯区应有如下组分·SiC为约0重量%-约70重量%,·游离Si为约0重量%-约30重量%,·碳为约20重量%-约100重量%,和/或·B4C为约0重量%-约20重量%。
特别是在应用织物、束状物、毡、面砖或纸作为含碳的原料时,该复合陶瓷体应含碳纤维和/或石墨纤维和/或SiC纤维即长度为约1mm-约60mm的纤维作为增强纤维。
也可利用预成形体来制备含碳或其中加有产生碳的物质的复合陶瓷,这时预成形体以可热解的粘合剂浸渍,对RTM方法(树脂转移模制)或压制法可利用三维或多维预成形体和TFP技术(泰勒-纤维-布局)中的预成形体。“多维”意指具有大于3个增强方向的预成形体。
在本发明的另一方案中,通过含纤维的碳体的热解和陶瓷化来制备复合陶瓷体,其中芯区中的纤维比表面区中的纤维长。此外,在表面区的纤维的丝数比芯区的纤维的丝数更小。
也可以使所述碳体有这样的开口孔隙度,即在表面区的孔体积大于芯区的孔体积。特别是该碳体含具有不同碳产额的添加剂,其中在表面区中的该碳产额低于芯区中的该碳产额。作为添加剂可采用热塑性塑料如聚乙烯或丙烯或弹性体如硅橡胶或热固塑料如低交联的环氧树脂或天然材料如锯屑末。也可通过所用添加剂如碳、石墨、SiC粉末、Si粉末、B4C粉末的粒度分布来调节孔隙度。
通过本发明原理,可提供一种其SiC含量从芯区到表面区是连续增加的复合陶瓷体。SiC含量或Si/SiC含量的渐次变化阻止了按现有技术具有延展特性的芯区和优选具有单片结构的SiC层特牲的表面层之间的不恒定过渡。由此实现不易在表面形成裂隙、较好的持久特性和由此得到较好的寿命特性。由此实现了复合陶瓷体的这种结构,即实现从单片或几乎单片结构的SiC表面结构经多个阶段过渡到以CFC为主的CMC芯结构。因此可将材料组成从单片或几乎单片结构的组成变成纤维增强的复合材料。
一种用于制备复合陶瓷体的方法,其中提供含纤维的需要时含所需孔隙度的碳体,该碳体渗有硅并经形成SiC的化学反应使该碳体陶瓷化,该方法的特征在于,在以Si渗入该碳体前,通过不同的纤维长度和/或不同丝数的纤维和/或有目的地调节孔隙度而构成该碳体,使得复合陶瓷体的SiC含量从芯区的内区到表面区呈恒定的或基本恒定地增加。
按本发明,通过选择不同的纤维长度和/或不同丝数的纤维和/或有目的地调节孔隙度而实现所述碳体的结构。
孔隙度可通过具有不同碳产额的添加剂来调节。也可应用其在表面区的碳产额小于在芯区的碳产额的添加剂。通过添加剂的粒度分布同样可在所需范围内调节孔隙度,以使在表面区产生准单片结构的SiC结构和在芯区产生以CFC为主的材料。
在热解时有针对性地调节工艺参数也提供了同样的可能性。
通过本发明原理,提供了一种复合陶瓷,它特别可用于制动盘、制动覆层、离合器、离合器盘、轴承材料、密封环和滑环、炉结构和设备结构的装料辅助工具。为此,该复合陶瓷具有这样的层结构,即SiC含量从里向外准连续性地增加。也可对B4C或Si3N4进行相应的渐进调节。
本发明的其它详情、优点和特征不仅可由引用这些内容的权利要求,也可由下列实施例的描述得到。
实施例1制备具有渐进变化结构的离合器盘采用小面重的织物,其中应用30单层。
外4层织物层用木屑和酚树脂粘合剂和乙醇喷涂。木屑、酚树脂粘合剂和乙醇的重量组分按纤维面重计为20%。使紧接的4层织物层的重量组分类似地为15%。使接下来的4层的重量组分为10%,再接着4层的重量组分为7%,再接着4层的重量组分为3%。内10层未经处理。
所有层均相应于渐进变化过程送入RTM模槽中,用酚树脂渗入并经硬化。接着进行碳化。由这种半成品加工成有加工余量的环,并接着硅化。此过程后该经硅化的构件具有几乎连续的渐进变化(几乎连续变化的SiC组分),其中表面区具有下列组成8% Si、75% SiC和17% C,而内区组成为3% Si、33% SiC和64% C。
陡的过渡不再明显,并且明显避免了在表面区的裂隙形成。
实施例2制备有渐进变化结构的工业应用的制动覆层为此制备采用长度为3、6、9和12mm的短碳纤维。该纤维以其各自的长度掺入含碳填料、酚树脂和乙醇,并通过混合处理加工成混合物。该混合物组成如下40体积%的C纤维、30体积%的碳填料和30体积%的酚树脂。
该干燥的混合物通过充填设备以下列顺序引入压制模槽中以制备覆层(按覆层应用情况和固化,该渐近变化可相对中心轴对称地也可不对称地进行)·10重量% 3mm的C-纤维·5重量% 混合物即50:50的3mm和6mm的C-纤维·5重量% 6mm的C-纤维
·5重量% 混合物即50:50的6mm和9mm的C-纤维·5重量% 9mm的C-纤维·5重量% 混合物即50:50的9mm和12mm的C-纤维·15重量% 12mm的C-纤维·15重量% 12mm的C-纤维·5重量% 混合物即50:50的9mm和12mm的C-纤维·5重量% 9mm的C-纤维·5重量% 混合物即50:50的6mm和9mm的C-纤维·5重量% 6mm的C-纤维·5重量% 混合物即50:50的3mm和6mm的C-纤维·10重量% 3mm的C-纤维碳化和硅化后可确定下列的渐进变化结构近表面区由85%SiC、4% Si和11% C组成,而内区由38% SiC、3%Si和59% C组成。该相应的渐进变化结构是连续的,并且在制备后在表面区该覆层仅有极少的裂隙。
其它详情、优点和特征可由下列实施例给出。
在唯一的附图
中示意给出制备特别是适用于摩擦构件的复合陶瓷体的本发明的方法。其中将一个或多个预制体10直接送入模具如RTM-模槽中或将原料12如具有含碳填料和粘合剂以及如乙醇的碳纤维经混合14后送入模具如RTM-模槽中(步骤16)。对也包括织物层的一个或多个预制体可在送入模具之前或之后用粘合剂浸渍。还可加入其它添加剂。此外对该原料可进行处置或掺入添加剂,以使所制备的陶瓷体中的SiC含量呈准连续或多级变化,使外区具有单片结构或近单片结构的SiC层的特性,但芯是以CFC为主的CMC结构。
在下一方法步骤18中,将其压制成所需几何形状,以在方法步骤20中热解即碳化或石墨化由模具中取出的模制体。
碳化可在500℃-1450℃,特别是900℃-1200℃下进行,石墨化可在1500℃-3000℃,特别是1800℃-2500℃下进行。接着该碳体经硅化,这时将该碳体送入填充有硅的容器中,并在约1450℃-约1700℃下硅化如1-7小时(方法步骤22)。对如此所制得的复合陶瓷体需要时可进行加工(方法步骤24),以达所需的最终几何形状。另外或附加的可能性是在硅化前可对碳体进行加工。
硅化也可按不同于前述方法的下列方式进行。如采用在约1450℃-约2000℃下在硅熔体中的压力工艺/真空工艺是可能的。采用经预先涂覆的含硅浆料的湿法也是可能的。也可应用灯芯法或毛细法,在该法中多孔灯心与碳体和充填硅的容器相接触。
按此所制备的复合陶瓷体的优点是,可实现芯区到表面区的SiC含量的准连续变化,其中芯区具有以CFC为主的材料特性,表面区具有单片结构的或改进单片结构的SiC结构特性。
上述工艺步骤特别是由实施例给出的工艺步骤仅用于说明本发明的目的。所给出的数值也纯粹是示例性的而非用于限制保护范围。
权利要求
1.一种复合陶瓷体,特别是适于摩擦构件如制动盘的复合陶瓷体,其包含纤维增强的含碳芯区和含SiC的表面区,其特征在于,该复合陶瓷体由纤维增强的碳体组成,在芯区的纤维比在表面区的纤维长,在表面区的纤维的丝数比芯区的纤维的丝数少和/或在表面区的碳体比芯区的碳体有更大的孔隙度,并且该复合陶瓷体的SiC含量从芯区内直到表面区是恒定或基本上恒定变化的。
2.权利要求1的复合陶瓷体,其特征在于,该复合陶瓷体的SiC含量连续变化,使得芯区具有延展特性,表面区具有单片结构的SiC层特性或Si/SiC层特性。
3.权利要求1的复合陶瓷体,其特征在于,为调节孔隙度,所述碳体含具有不同碳产额的添加剂。
4.权利要求3的复合陶瓷体,其特征在于,所述添加剂是具有不同碳产额的的热塑性塑料。
5.权利要求4的复合陶瓷体,其特征在于,所述添加剂是热塑性塑料如聚乙烯或丙烯和/或弹性体如硅橡胶和/或热固塑料如低交联的环氧树脂和/或天然材料如锯屑。
6.权利要求3-5至少之一的复合陶瓷体,其特征在于,可通过所用添加剂如碳和/或石墨和/或SiC粉末和/或Si粉末和/或B4C粉末的粒度分布来调节孔隙度。
7.至少权利要求1的复合陶瓷体,其特征在于,该复合陶瓷体的表面区含SiC为约20重量%-约100重量%,游离Si为约0重量%-约30重量%,碳为约0重量%-约80重量%,Si3N4为约0重量%-约20重量%,和/或B4C为约0重量%-约20重量%。
8.至少权利要求1的复合陶瓷体,其特征在于,该复合陶瓷体的芯区含SiC为约0重量%-约70重量%,游离Si为约0重量%-约30重量%,碳为约20重量%-约100重量%,和/或B4C为约0重量%-约20重量%。
9.一种制备纤维增强的复合陶瓷体,特别是适用于摩擦构件如制动盘的复合陶瓷体的方法,其中提供含纤维的需要时含所需孔隙度的碳体,该碳体经渗入硅并经进行形成SiC的化学反应使该碳体陶瓷化,该方法的特征在于,在以Si渗入该碳体前,通过不同的纤维长度和/或不同丝数的纤维和/或有目的地调节孔隙度而构造该碳体,使得复合陶瓷体的SiC含量从芯区的内区到表面区呈恒定的或基本恒定的增加。
10.权利要求9的方法,其特征在于,在芯区应用的纤维比在表面区应用的纤维更长。
11.权利要求9的方法,其特征在于,在表面区应用的纤维的丝数比在芯区应用的纤维的丝数更少。
12.权利要求9的方法,其特征在于,所述孔隙度通过具有不同碳产额的添加剂调节。
13.权利要求9或12的方法,其特征在于,在表面区应用的添加剂的碳产额低于在芯区应用的添加剂的碳产额。
14.权利要求9、12或13至少之一的方法,其特征在于,所述孔隙度通过添加剂的粒度分布来调节。
15.权利要求9、12、13或14至少之一的方法,其特征在于,作为添加剂可采用热塑性塑料如聚乙烯或丙烯和/或弹性体如硅橡胶和/或热固性塑料如低交联的环氧树脂和/或天然材料如锯屑。
16.权利要求9、12、13、14或15至少之一的方法,其特征在于,可采用具有不同粒度的添加剂如碳和/或石墨和/或SiC粉末和/或Si粉末和/或B4C粉末作为添加剂。
17.权利要求9-16至少之一的制备摩擦构件,特别是离合器盘的方法,其特征在于,应用由各层组成的织物,外织物层经喷涂涂以由可再生原料如木材的屑末和粘合剂组成的层,其后的织物层均相应进行喷涂,其中经喷涂的涂层材料的重量组分在经喷涂的整体织物层中由外向里下降。
18.权利要求17的方法,其特征在于,所述层均相应于通过喷涂所要达到的渐进变化过程送入RTM模槽中,经酚树脂渗入并随后硬化。
19.权利要求17或18的方法,其特征在于,硬化后进行碳化,然后经加工并最后进行硅化。
20.权利要求9-16至少之一的方法,其特征在于,为制备复合陶瓷体应用一个或多个预成形体。
全文摘要
本发明涉及一种复合陶瓷体及其制备方法。该复合陶瓷体具有纤维增强的含碳芯区和含SiC的表面区。为达该陶瓷体的持久性能,本发明提出,该复合陶瓷体所含的SiC组分从芯区内直到表面区呈恒定或基本恒定的变化。
文档编号C04B35/565GK1656042SQ03811612
公开日2005年8月17日 申请日期2003年3月24日 优先权日2002年3月22日
发明者M·埃伯特, M·亨里希, D·克尔, T·谢贝尔, R·维斯 申请人:申克碳化技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1